blob: d060f5f436bd93aa8f93f5ee9d8cea25346d811c [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/video/i420_buffer.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/video_coding/codecs/test/video_codec_unittest.h"
#include "modules/video_coding/codecs/vp9/include/vp9.h"
#include "modules/video_coding/codecs/vp9/svc_config.h"
#include "test/video_codec_settings.h"
namespace webrtc {
namespace {
const size_t kWidth = 1280;
const size_t kHeight = 720;
} // namespace
class TestVp9Impl : public VideoCodecUnitTest {
protected:
std::unique_ptr<VideoEncoder> CreateEncoder() override {
return VP9Encoder::Create();
}
std::unique_ptr<VideoDecoder> CreateDecoder() override {
return VP9Decoder::Create();
}
void ModifyCodecSettings(VideoCodec* codec_settings) override {
webrtc::test::CodecSettings(kVideoCodecVP9, codec_settings);
codec_settings->width = kWidth;
codec_settings->height = kHeight;
codec_settings->VP9()->numberOfTemporalLayers = 1;
codec_settings->VP9()->numberOfSpatialLayers = 1;
}
void ExpectFrameWith(uint8_t temporal_idx) {
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
EXPECT_EQ(temporal_idx, codec_specific_info.codecSpecific.VP9.temporal_idx);
}
};
// Disabled on ios as flake, see https://crbug.com/webrtc/7057
#if defined(WEBRTC_IOS)
TEST_F(TestVp9Impl, DISABLED_EncodeDecode) {
#else
TEST_F(TestVp9Impl, EncodeDecode) {
#endif
VideoFrame* input_frame = NextInputFrame();
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*input_frame, nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
// First frame should be a key frame.
encoded_frame._frameType = kVideoFrameKey;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
decoder_->Decode(encoded_frame, false, nullptr));
std::unique_ptr<VideoFrame> decoded_frame;
rtc::Optional<uint8_t> decoded_qp;
ASSERT_TRUE(WaitForDecodedFrame(&decoded_frame, &decoded_qp));
ASSERT_TRUE(decoded_frame);
EXPECT_GT(I420PSNR(input_frame, decoded_frame.get()), 36);
}
// We only test the encoder here, since the decoded frame rotation is set based
// on the CVO RTP header extension in VCMDecodedFrameCallback::Decoded.
// TODO(brandtr): Consider passing through the rotation flag through the decoder
// in the same way as done in the encoder.
TEST_F(TestVp9Impl, EncodedRotationEqualsInputRotation) {
VideoFrame* input_frame = NextInputFrame();
input_frame->set_rotation(kVideoRotation_0);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*input_frame, nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
EXPECT_EQ(kVideoRotation_0, encoded_frame.rotation_);
input_frame->set_rotation(kVideoRotation_90);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*input_frame, nullptr, nullptr));
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
EXPECT_EQ(kVideoRotation_90, encoded_frame.rotation_);
}
TEST_F(TestVp9Impl, DecodedQpEqualsEncodedQp) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
// First frame should be a key frame.
encoded_frame._frameType = kVideoFrameKey;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
decoder_->Decode(encoded_frame, false, nullptr));
std::unique_ptr<VideoFrame> decoded_frame;
rtc::Optional<uint8_t> decoded_qp;
ASSERT_TRUE(WaitForDecodedFrame(&decoded_frame, &decoded_qp));
ASSERT_TRUE(decoded_frame);
ASSERT_TRUE(decoded_qp);
EXPECT_EQ(encoded_frame.qp_, *decoded_qp);
}
TEST_F(TestVp9Impl, ParserQpEqualsEncodedQp) {
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
int qp = 0;
ASSERT_TRUE(vp9::GetQp(encoded_frame._buffer, encoded_frame._length, &qp));
EXPECT_EQ(encoded_frame.qp_, qp);
}
TEST_F(TestVp9Impl, EncoderWith2TemporalLayers) {
// Override default settings.
codec_settings_.VP9()->numberOfTemporalLayers = 2;
// Tl0PidIdx is only used in non-flexible mode.
codec_settings_.VP9()->flexibleMode = false;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
// Temporal layer 0.
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
EncodedImage encoded_frame;
CodecSpecificInfo codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrame(&encoded_frame, &codec_specific_info));
EXPECT_EQ(0, codec_specific_info.codecSpecific.VP9.temporal_idx);
// Temporal layer 1.
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
ExpectFrameWith(1);
// Temporal layer 0.
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
ExpectFrameWith(0);
// Temporal layer 1.
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
ExpectFrameWith(1);
}
TEST_F(TestVp9Impl, EncoderExplicitLayering) {
// Override default settings.
codec_settings_.VP9()->numberOfTemporalLayers = 1;
codec_settings_.VP9()->numberOfSpatialLayers = 2;
codec_settings_.width = 960;
codec_settings_.height = 540;
codec_settings_.spatialLayers[0].minBitrate = 200;
codec_settings_.spatialLayers[0].maxBitrate = 500;
codec_settings_.spatialLayers[0].targetBitrate =
(codec_settings_.spatialLayers[0].minBitrate +
codec_settings_.spatialLayers[0].maxBitrate) /
2;
codec_settings_.spatialLayers[1].minBitrate = 400;
codec_settings_.spatialLayers[1].maxBitrate = 1500;
codec_settings_.spatialLayers[1].targetBitrate =
(codec_settings_.spatialLayers[1].minBitrate +
codec_settings_.spatialLayers[1].maxBitrate) /
2;
codec_settings_.spatialLayers[0].width = codec_settings_.width / 2;
codec_settings_.spatialLayers[0].height = codec_settings_.height / 2;
codec_settings_.spatialLayers[1].width = codec_settings_.width;
codec_settings_.spatialLayers[1].height = codec_settings_.height;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
// Ensure it fails if scaling factors in horz/vert dimentions are different.
codec_settings_.spatialLayers[0].width = codec_settings_.width;
codec_settings_.spatialLayers[0].height = codec_settings_.height / 2;
codec_settings_.spatialLayers[1].width = codec_settings_.width;
codec_settings_.spatialLayers[1].height = codec_settings_.height;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_ERR_PARAMETER,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
// Ensure it fails if scaling factor is not power of two.
codec_settings_.spatialLayers[0].width = codec_settings_.width / 3;
codec_settings_.spatialLayers[0].height = codec_settings_.height / 3;
codec_settings_.spatialLayers[1].width = codec_settings_.width;
codec_settings_.spatialLayers[1].height = codec_settings_.height;
EXPECT_EQ(WEBRTC_VIDEO_CODEC_ERR_PARAMETER,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
}
TEST_F(TestVp9Impl, EnableDisableSpatialLayers) {
// Configure encoder to produce N spatial layers. Encode few frames of layer 0
// then enable layer 1 and encode few more frames and so on until layer N-1.
// Then disable layers one by one in the same way.
const size_t num_spatial_layers = 3;
const size_t num_temporal_layers = 1;
codec_settings_.VP9()->numberOfSpatialLayers =
static_cast<unsigned char>(num_spatial_layers);
codec_settings_.VP9()->numberOfTemporalLayers =
static_cast<unsigned char>(num_temporal_layers);
std::vector<SpatialLayer> layers =
GetSvcConfig(codec_settings_.width, codec_settings_.height,
num_spatial_layers, num_temporal_layers);
for (size_t i = 0; i < layers.size(); ++i) {
codec_settings_.spatialLayers[i] = layers[i];
}
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
VideoBitrateAllocation bitrate_allocation;
for (size_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) {
bitrate_allocation.SetBitrate(sl_idx, 0,
layers[sl_idx].targetBitrate * 1000);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->SetRateAllocation(bitrate_allocation,
codec_settings_.maxFramerate));
const size_t num_frames_to_encode = 3;
for (size_t frame_num = 0; frame_num < num_frames_to_encode; ++frame_num) {
SetWaitForEncodedFramesThreshold(sl_idx + 1);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
std::vector<EncodedImage> encoded_frame;
std::vector<CodecSpecificInfo> codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrames(&encoded_frame, &codec_specific_info));
}
}
for (size_t i = 0; i < num_spatial_layers - 1; ++i) {
const size_t sl_idx = num_spatial_layers - i - 1;
bitrate_allocation.SetBitrate(sl_idx, 0, 0);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->SetRateAllocation(bitrate_allocation,
codec_settings_.maxFramerate));
const size_t num_frames_to_encode = 3;
for (size_t frame_num = 0; frame_num < num_frames_to_encode; ++frame_num) {
SetWaitForEncodedFramesThreshold(sl_idx);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
std::vector<EncodedImage> encoded_frame;
std::vector<CodecSpecificInfo> codec_specific_info;
ASSERT_TRUE(WaitForEncodedFrames(&encoded_frame, &codec_specific_info));
}
}
}
TEST_F(TestVp9Impl, EndOfSuperframe) {
const size_t num_spatial_layers = 2;
const size_t num_temporal_layers = 1;
codec_settings_.VP9()->numberOfSpatialLayers =
static_cast<unsigned char>(num_spatial_layers);
codec_settings_.VP9()->numberOfTemporalLayers =
static_cast<unsigned char>(num_temporal_layers);
std::vector<SpatialLayer> layers =
GetSvcConfig(codec_settings_.width, codec_settings_.height,
num_spatial_layers, num_temporal_layers);
for (size_t i = 0; i < layers.size(); ++i) {
codec_settings_.spatialLayers[i] = layers[i];
}
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
// Encode both base and upper layers. Check that end-of-superframe flag is
// set on upper layer frame but not on base layer frame.
VideoBitrateAllocation bitrate_allocation;
bitrate_allocation.SetBitrate(0, 0, layers[0].targetBitrate * 1000);
bitrate_allocation.SetBitrate(1, 0, layers[1].targetBitrate * 1000);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->SetRateAllocation(bitrate_allocation,
codec_settings_.maxFramerate));
SetWaitForEncodedFramesThreshold(2);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
std::vector<EncodedImage> frames;
std::vector<CodecSpecificInfo> codec_specific;
ASSERT_TRUE(WaitForEncodedFrames(&frames, &codec_specific));
EXPECT_FALSE(codec_specific[0].codecSpecific.VP9.end_of_superframe);
EXPECT_TRUE(codec_specific[1].codecSpecific.VP9.end_of_superframe);
// Encode only base layer. Check that end-of-superframe flag is
// set on base layer frame.
bitrate_allocation.SetBitrate(1, 0, 0);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->SetRateAllocation(bitrate_allocation,
codec_settings_.maxFramerate));
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->InitEncode(&codec_settings_, 1 /* number of cores */,
0 /* max payload size (unused) */));
SetWaitForEncodedFramesThreshold(1);
EXPECT_EQ(WEBRTC_VIDEO_CODEC_OK,
encoder_->Encode(*NextInputFrame(), nullptr, nullptr));
ASSERT_TRUE(WaitForEncodedFrames(&frames, &codec_specific));
EXPECT_EQ(codec_specific[0].codecSpecific.VP9.spatial_idx, 0);
EXPECT_TRUE(codec_specific[0].codecSpecific.VP9.end_of_superframe);
}
} // namespace webrtc