|  | /* | 
|  | *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "modules/audio_processing/aec3/erle_estimator.h" | 
|  |  | 
|  | #include <cmath> | 
|  |  | 
|  | #include "api/array_view.h" | 
|  | #include "modules/audio_processing/aec3/render_delay_buffer.h" | 
|  | #include "modules/audio_processing/aec3/spectrum_buffer.h" | 
|  | #include "rtc_base/random.h" | 
|  | #include "rtc_base/strings/string_builder.h" | 
|  | #include "test/gtest.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | namespace { | 
|  | constexpr int kLowFrequencyLimit = kFftLengthBy2 / 2; | 
|  | constexpr float kTrueErle = 10.f; | 
|  | constexpr float kTrueErleOnsets = 1.0f; | 
|  | constexpr float kEchoPathGain = 3.f; | 
|  |  | 
|  | void VerifyErleBands( | 
|  | rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle, | 
|  | float reference_lf, | 
|  | float reference_hf) { | 
|  | for (size_t ch = 0; ch < erle.size(); ++ch) { | 
|  | std::for_each( | 
|  | erle[ch].begin(), erle[ch].begin() + kLowFrequencyLimit, | 
|  | [reference_lf](float a) { EXPECT_NEAR(reference_lf, a, 0.001); }); | 
|  | std::for_each( | 
|  | erle[ch].begin() + kLowFrequencyLimit, erle[ch].end(), | 
|  | [reference_hf](float a) { EXPECT_NEAR(reference_hf, a, 0.001); }); | 
|  | } | 
|  | } | 
|  |  | 
|  | void VerifyErle( | 
|  | rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle, | 
|  | float erle_time_domain, | 
|  | float reference_lf, | 
|  | float reference_hf) { | 
|  | VerifyErleBands(erle, reference_lf, reference_hf); | 
|  | EXPECT_NEAR(kTrueErle, erle_time_domain, 0.5); | 
|  | } | 
|  |  | 
|  | void VerifyErleGreaterOrEqual( | 
|  | rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle1, | 
|  | rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle2) { | 
|  | for (size_t ch = 0; ch < erle1.size(); ++ch) { | 
|  | for (size_t i = 0; i < kFftLengthBy2Plus1; ++i) { | 
|  | EXPECT_GE(erle1[ch][i], erle2[ch][i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void FormFarendTimeFrame(Block* x) { | 
|  | const std::array<float, kBlockSize> frame = { | 
|  | 7459.88, 17209.6, 17383,   20768.9, 16816.7, 18386.3, 4492.83, 9675.85, | 
|  | 6665.52, 14808.6, 9342.3,  7483.28, 19261.7, 4145.98, 1622.18, 13475.2, | 
|  | 7166.32, 6856.61, 21937,   7263.14, 9569.07, 14919,   8413.32, 7551.89, | 
|  | 7848.65, 6011.27, 13080.6, 15865.2, 12656,   17459.6, 4263.93, 4503.03, | 
|  | 9311.79, 21095.8, 12657.9, 13906.6, 19267.2, 11338.1, 16828.9, 11501.6, | 
|  | 11405,   15031.4, 14541.6, 19765.5, 18346.3, 19350.2, 3157.47, 18095.8, | 
|  | 1743.68, 21328.2, 19727.5, 7295.16, 10332.4, 11055.5, 20107.4, 14708.4, | 
|  | 12416.2, 16434,   2454.69, 9840.8,  6867.23, 1615.75, 6059.9,  8394.19}; | 
|  | for (int band = 0; band < x->NumBands(); ++band) { | 
|  | for (int channel = 0; channel < x->NumChannels(); ++channel) { | 
|  | RTC_DCHECK_GE(kBlockSize, frame.size()); | 
|  | std::copy(frame.begin(), frame.end(), x->begin(band, channel)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void FormFarendFrame(const RenderBuffer& render_buffer, | 
|  | float erle, | 
|  | std::array<float, kFftLengthBy2Plus1>* X2, | 
|  | rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> E2, | 
|  | rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> Y2) { | 
|  | const auto& spectrum_buffer = render_buffer.GetSpectrumBuffer(); | 
|  | const int num_render_channels = spectrum_buffer.buffer[0].size(); | 
|  | const int num_capture_channels = Y2.size(); | 
|  |  | 
|  | X2->fill(0.f); | 
|  | for (int ch = 0; ch < num_render_channels; ++ch) { | 
|  | for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { | 
|  | (*X2)[k] += spectrum_buffer.buffer[spectrum_buffer.write][ch][k] / | 
|  | num_render_channels; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int ch = 0; ch < num_capture_channels; ++ch) { | 
|  | std::transform(X2->begin(), X2->end(), Y2[ch].begin(), | 
|  | [](float a) { return a * kEchoPathGain * kEchoPathGain; }); | 
|  | std::transform(Y2[ch].begin(), Y2[ch].end(), E2[ch].begin(), | 
|  | [erle](float a) { return a / erle; }); | 
|  | } | 
|  | } | 
|  |  | 
|  | void FormNearendFrame( | 
|  | Block* x, | 
|  | std::array<float, kFftLengthBy2Plus1>* X2, | 
|  | rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> E2, | 
|  | rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> Y2) { | 
|  | for (int band = 0; band < x->NumBands(); ++band) { | 
|  | for (int ch = 0; ch < x->NumChannels(); ++ch) { | 
|  | std::fill(x->begin(band, ch), x->end(band, ch), 0.f); | 
|  | } | 
|  | } | 
|  |  | 
|  | X2->fill(0.f); | 
|  | for (size_t ch = 0; ch < Y2.size(); ++ch) { | 
|  | Y2[ch].fill(500.f * 1000.f * 1000.f); | 
|  | E2[ch].fill(Y2[ch][0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void GetFilterFreq( | 
|  | size_t delay_headroom_samples, | 
|  | rtc::ArrayView<std::vector<std::array<float, kFftLengthBy2Plus1>>> | 
|  | filter_frequency_response) { | 
|  | const size_t delay_headroom_blocks = delay_headroom_samples / kBlockSize; | 
|  | for (size_t ch = 0; ch < filter_frequency_response[0].size(); ++ch) { | 
|  | for (auto& block_freq_resp : filter_frequency_response) { | 
|  | block_freq_resp[ch].fill(0.f); | 
|  | } | 
|  |  | 
|  | for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { | 
|  | filter_frequency_response[delay_headroom_blocks][ch][k] = kEchoPathGain; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | class ErleEstimatorMultiChannel | 
|  | : public ::testing::Test, | 
|  | public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {}; | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(MultiChannel, | 
|  | ErleEstimatorMultiChannel, | 
|  | ::testing::Combine(::testing::Values(1, 2, 4, 8), | 
|  | ::testing::Values(1, 2, 8))); | 
|  |  | 
|  | TEST_P(ErleEstimatorMultiChannel, VerifyErleIncreaseAndHold) { | 
|  | const size_t num_render_channels = std::get<0>(GetParam()); | 
|  | const size_t num_capture_channels = std::get<1>(GetParam()); | 
|  | constexpr int kSampleRateHz = 48000; | 
|  | constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); | 
|  |  | 
|  | std::array<float, kFftLengthBy2Plus1> X2; | 
|  | std::vector<std::array<float, kFftLengthBy2Plus1>> E2(num_capture_channels); | 
|  | std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels); | 
|  | std::vector<bool> converged_filters(num_capture_channels, true); | 
|  |  | 
|  | EchoCanceller3Config config; | 
|  | config.erle.onset_detection = true; | 
|  |  | 
|  | Block x(kNumBands, num_render_channels); | 
|  | std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>> | 
|  | filter_frequency_response( | 
|  | config.filter.refined.length_blocks, | 
|  | std::vector<std::array<float, kFftLengthBy2Plus1>>( | 
|  | num_capture_channels)); | 
|  | std::unique_ptr<RenderDelayBuffer> render_delay_buffer( | 
|  | RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels)); | 
|  |  | 
|  | GetFilterFreq(config.delay.delay_headroom_samples, filter_frequency_response); | 
|  |  | 
|  | ErleEstimator estimator(0, config, num_capture_channels); | 
|  |  | 
|  | FormFarendTimeFrame(&x); | 
|  | render_delay_buffer->Insert(x); | 
|  | render_delay_buffer->PrepareCaptureProcessing(); | 
|  | // Verifies that the ERLE estimate is properly increased to higher values. | 
|  | FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2, E2, | 
|  | Y2); | 
|  | for (size_t k = 0; k < 1000; ++k) { | 
|  | render_delay_buffer->Insert(x); | 
|  | render_delay_buffer->PrepareCaptureProcessing(); | 
|  | estimator.Update(*render_delay_buffer->GetRenderBuffer(), | 
|  | filter_frequency_response, X2, Y2, E2, converged_filters); | 
|  | } | 
|  | VerifyErle(estimator.Erle(/*onset_compensated=*/true), | 
|  | std::pow(2.f, estimator.FullbandErleLog2()), config.erle.max_l, | 
|  | config.erle.max_h); | 
|  | VerifyErleGreaterOrEqual(estimator.Erle(/*onset_compensated=*/false), | 
|  | estimator.Erle(/*onset_compensated=*/true)); | 
|  | VerifyErleGreaterOrEqual(estimator.ErleUnbounded(), | 
|  | estimator.Erle(/*onset_compensated=*/false)); | 
|  |  | 
|  | FormNearendFrame(&x, &X2, E2, Y2); | 
|  | // Verifies that the ERLE is not immediately decreased during nearend | 
|  | // activity. | 
|  | for (size_t k = 0; k < 50; ++k) { | 
|  | render_delay_buffer->Insert(x); | 
|  | render_delay_buffer->PrepareCaptureProcessing(); | 
|  | estimator.Update(*render_delay_buffer->GetRenderBuffer(), | 
|  | filter_frequency_response, X2, Y2, E2, converged_filters); | 
|  | } | 
|  | VerifyErle(estimator.Erle(/*onset_compensated=*/true), | 
|  | std::pow(2.f, estimator.FullbandErleLog2()), config.erle.max_l, | 
|  | config.erle.max_h); | 
|  | VerifyErleGreaterOrEqual(estimator.Erle(/*onset_compensated=*/false), | 
|  | estimator.Erle(/*onset_compensated=*/true)); | 
|  | VerifyErleGreaterOrEqual(estimator.ErleUnbounded(), | 
|  | estimator.Erle(/*onset_compensated=*/false)); | 
|  | } | 
|  |  | 
|  | TEST_P(ErleEstimatorMultiChannel, VerifyErleTrackingOnOnsets) { | 
|  | const size_t num_render_channels = std::get<0>(GetParam()); | 
|  | const size_t num_capture_channels = std::get<1>(GetParam()); | 
|  | constexpr int kSampleRateHz = 48000; | 
|  | constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); | 
|  |  | 
|  | std::array<float, kFftLengthBy2Plus1> X2; | 
|  | std::vector<std::array<float, kFftLengthBy2Plus1>> E2(num_capture_channels); | 
|  | std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels); | 
|  | std::vector<bool> converged_filters(num_capture_channels, true); | 
|  | EchoCanceller3Config config; | 
|  | config.erle.onset_detection = true; | 
|  | Block x(kNumBands, num_render_channels); | 
|  | std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>> | 
|  | filter_frequency_response( | 
|  | config.filter.refined.length_blocks, | 
|  | std::vector<std::array<float, kFftLengthBy2Plus1>>( | 
|  | num_capture_channels)); | 
|  | std::unique_ptr<RenderDelayBuffer> render_delay_buffer( | 
|  | RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels)); | 
|  |  | 
|  | GetFilterFreq(config.delay.delay_headroom_samples, filter_frequency_response); | 
|  |  | 
|  | ErleEstimator estimator(/*startup_phase_length_blocks=*/0, config, | 
|  | num_capture_channels); | 
|  |  | 
|  | FormFarendTimeFrame(&x); | 
|  | render_delay_buffer->Insert(x); | 
|  | render_delay_buffer->PrepareCaptureProcessing(); | 
|  |  | 
|  | for (size_t burst = 0; burst < 20; ++burst) { | 
|  | FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErleOnsets, | 
|  | &X2, E2, Y2); | 
|  | for (size_t k = 0; k < 10; ++k) { | 
|  | render_delay_buffer->Insert(x); | 
|  | render_delay_buffer->PrepareCaptureProcessing(); | 
|  | estimator.Update(*render_delay_buffer->GetRenderBuffer(), | 
|  | filter_frequency_response, X2, Y2, E2, | 
|  | converged_filters); | 
|  | } | 
|  | FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2, E2, | 
|  | Y2); | 
|  | for (size_t k = 0; k < 1000; ++k) { | 
|  | render_delay_buffer->Insert(x); | 
|  | render_delay_buffer->PrepareCaptureProcessing(); | 
|  | estimator.Update(*render_delay_buffer->GetRenderBuffer(), | 
|  | filter_frequency_response, X2, Y2, E2, | 
|  | converged_filters); | 
|  | } | 
|  | FormNearendFrame(&x, &X2, E2, Y2); | 
|  | for (size_t k = 0; k < 300; ++k) { | 
|  | render_delay_buffer->Insert(x); | 
|  | render_delay_buffer->PrepareCaptureProcessing(); | 
|  | estimator.Update(*render_delay_buffer->GetRenderBuffer(), | 
|  | filter_frequency_response, X2, Y2, E2, | 
|  | converged_filters); | 
|  | } | 
|  | } | 
|  | VerifyErleBands(estimator.ErleDuringOnsets(), config.erle.min, | 
|  | config.erle.min); | 
|  | FormNearendFrame(&x, &X2, E2, Y2); | 
|  | for (size_t k = 0; k < 1000; k++) { | 
|  | estimator.Update(*render_delay_buffer->GetRenderBuffer(), | 
|  | filter_frequency_response, X2, Y2, E2, converged_filters); | 
|  | } | 
|  | // Verifies that during ne activity, Erle converges to the Erle for | 
|  | // onsets. | 
|  | VerifyErle(estimator.Erle(/*onset_compensated=*/true), | 
|  | std::pow(2.f, estimator.FullbandErleLog2()), config.erle.min, | 
|  | config.erle.min); | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |