|  | /* | 
|  | *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "rtc_base/random.h" | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | #include <limits> | 
|  | #include <vector> | 
|  |  | 
|  | #include "rtc_base/numerics/math_utils.h"  // unsigned difference | 
|  | #include "test/gtest.h" | 
|  |  | 
|  | namespace webrtc { | 
|  |  | 
|  | namespace { | 
|  | // Computes the positive remainder of x/n. | 
|  | template <typename T> | 
|  | T fdiv_remainder(T x, T n) { | 
|  | RTC_CHECK_GE(n, 0); | 
|  | T remainder = x % n; | 
|  | if (remainder < 0) | 
|  | remainder += n; | 
|  | return remainder; | 
|  | } | 
|  | }  // namespace | 
|  |  | 
|  | // Sample a number of random integers of type T. Divide them into buckets | 
|  | // based on the remainder when dividing by bucket_count and check that each | 
|  | // bucket gets roughly the expected number of elements. | 
|  | template <typename T> | 
|  | void UniformBucketTest(T bucket_count, int samples, Random* prng) { | 
|  | std::vector<int> buckets(bucket_count, 0); | 
|  |  | 
|  | uint64_t total_values = 1ull << (std::numeric_limits<T>::digits + | 
|  | std::numeric_limits<T>::is_signed); | 
|  | T upper_limit = | 
|  | std::numeric_limits<T>::max() - | 
|  | static_cast<T>(total_values % static_cast<uint64_t>(bucket_count)); | 
|  | ASSERT_GT(upper_limit, std::numeric_limits<T>::max() / 2); | 
|  |  | 
|  | for (int i = 0; i < samples; i++) { | 
|  | T sample; | 
|  | do { | 
|  | // We exclude a few numbers from the range so that it is divisible by | 
|  | // the number of buckets. If we are unlucky and hit one of the excluded | 
|  | // numbers we just resample. Note that if the number of buckets is a | 
|  | // power of 2, then we don't have to exclude anything. | 
|  | sample = prng->Rand<T>(); | 
|  | } while (sample > upper_limit); | 
|  | buckets[fdiv_remainder(sample, bucket_count)]++; | 
|  | } | 
|  |  | 
|  | for (T i = 0; i < bucket_count; i++) { | 
|  | // Expect the result to be within 3 standard deviations of the mean. | 
|  | EXPECT_NEAR(buckets[i], samples / bucket_count, | 
|  | 3 * sqrt(samples / bucket_count)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(RandomNumberGeneratorTest, BucketTestSignedChar) { | 
|  | Random prng(7297352569824ull); | 
|  | UniformBucketTest<signed char>(64, 640000, &prng); | 
|  | UniformBucketTest<signed char>(11, 440000, &prng); | 
|  | UniformBucketTest<signed char>(3, 270000, &prng); | 
|  | } | 
|  |  | 
|  | TEST(RandomNumberGeneratorTest, BucketTestUnsignedChar) { | 
|  | Random prng(7297352569824ull); | 
|  | UniformBucketTest<unsigned char>(64, 640000, &prng); | 
|  | UniformBucketTest<unsigned char>(11, 440000, &prng); | 
|  | UniformBucketTest<unsigned char>(3, 270000, &prng); | 
|  | } | 
|  |  | 
|  | TEST(RandomNumberGeneratorTest, BucketTestSignedShort) { | 
|  | Random prng(7297352569824ull); | 
|  | UniformBucketTest<int16_t>(64, 640000, &prng); | 
|  | UniformBucketTest<int16_t>(11, 440000, &prng); | 
|  | UniformBucketTest<int16_t>(3, 270000, &prng); | 
|  | } | 
|  |  | 
|  | TEST(RandomNumberGeneratorTest, BucketTestUnsignedShort) { | 
|  | Random prng(7297352569824ull); | 
|  | UniformBucketTest<uint16_t>(64, 640000, &prng); | 
|  | UniformBucketTest<uint16_t>(11, 440000, &prng); | 
|  | UniformBucketTest<uint16_t>(3, 270000, &prng); | 
|  | } | 
|  |  | 
|  | TEST(RandomNumberGeneratorTest, BucketTestSignedInt) { | 
|  | Random prng(7297352569824ull); | 
|  | UniformBucketTest<signed int>(64, 640000, &prng); | 
|  | UniformBucketTest<signed int>(11, 440000, &prng); | 
|  | UniformBucketTest<signed int>(3, 270000, &prng); | 
|  | } | 
|  |  | 
|  | TEST(RandomNumberGeneratorTest, BucketTestUnsignedInt) { | 
|  | Random prng(7297352569824ull); | 
|  | UniformBucketTest<unsigned int>(64, 640000, &prng); | 
|  | UniformBucketTest<unsigned int>(11, 440000, &prng); | 
|  | UniformBucketTest<unsigned int>(3, 270000, &prng); | 
|  | } | 
|  |  | 
|  | // The range of the random numbers is divided into bucket_count intervals | 
|  | // of consecutive numbers. Check that approximately equally many numbers | 
|  | // from each inteval are generated. | 
|  | void BucketTestSignedInterval(unsigned int bucket_count, | 
|  | unsigned int samples, | 
|  | int32_t low, | 
|  | int32_t high, | 
|  | int sigma_level, | 
|  | Random* prng) { | 
|  | std::vector<unsigned int> buckets(bucket_count, 0); | 
|  |  | 
|  | ASSERT_GE(high, low); | 
|  | ASSERT_GE(bucket_count, 2u); | 
|  | uint32_t interval = webrtc_impl::unsigned_difference<int32_t>(high, low) + 1; | 
|  | uint32_t numbers_per_bucket; | 
|  | if (interval == 0) { | 
|  | // The computation high - low + 1 should be 2^32 but overflowed | 
|  | // Hence, bucket_count must be a power of 2 | 
|  | ASSERT_EQ(bucket_count & (bucket_count - 1), 0u); | 
|  | numbers_per_bucket = (0x80000000u / bucket_count) * 2; | 
|  | } else { | 
|  | ASSERT_EQ(interval % bucket_count, 0u); | 
|  | numbers_per_bucket = interval / bucket_count; | 
|  | } | 
|  |  | 
|  | for (unsigned int i = 0; i < samples; i++) { | 
|  | int32_t sample = prng->Rand(low, high); | 
|  | EXPECT_LE(low, sample); | 
|  | EXPECT_GE(high, sample); | 
|  | buckets[webrtc_impl::unsigned_difference<int32_t>(sample, low) / | 
|  | numbers_per_bucket]++; | 
|  | } | 
|  |  | 
|  | for (unsigned int i = 0; i < bucket_count; i++) { | 
|  | // Expect the result to be within 3 standard deviations of the mean, | 
|  | // or more generally, within sigma_level standard deviations of the mean. | 
|  | double mean = static_cast<double>(samples) / bucket_count; | 
|  | EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The range of the random numbers is divided into bucket_count intervals | 
|  | // of consecutive numbers. Check that approximately equally many numbers | 
|  | // from each inteval are generated. | 
|  | void BucketTestUnsignedInterval(unsigned int bucket_count, | 
|  | unsigned int samples, | 
|  | uint32_t low, | 
|  | uint32_t high, | 
|  | int sigma_level, | 
|  | Random* prng) { | 
|  | std::vector<unsigned int> buckets(bucket_count, 0); | 
|  |  | 
|  | ASSERT_GE(high, low); | 
|  | ASSERT_GE(bucket_count, 2u); | 
|  | uint32_t interval = high - low + 1; | 
|  | uint32_t numbers_per_bucket; | 
|  | if (interval == 0) { | 
|  | // The computation high - low + 1 should be 2^32 but overflowed | 
|  | // Hence, bucket_count must be a power of 2 | 
|  | ASSERT_EQ(bucket_count & (bucket_count - 1), 0u); | 
|  | numbers_per_bucket = (0x80000000u / bucket_count) * 2; | 
|  | } else { | 
|  | ASSERT_EQ(interval % bucket_count, 0u); | 
|  | numbers_per_bucket = interval / bucket_count; | 
|  | } | 
|  |  | 
|  | for (unsigned int i = 0; i < samples; i++) { | 
|  | uint32_t sample = prng->Rand(low, high); | 
|  | EXPECT_LE(low, sample); | 
|  | EXPECT_GE(high, sample); | 
|  | buckets[(sample - low) / numbers_per_bucket]++; | 
|  | } | 
|  |  | 
|  | for (unsigned int i = 0; i < bucket_count; i++) { | 
|  | // Expect the result to be within 3 standard deviations of the mean, | 
|  | // or more generally, within sigma_level standard deviations of the mean. | 
|  | double mean = static_cast<double>(samples) / bucket_count; | 
|  | EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(RandomNumberGeneratorTest, UniformUnsignedInterval) { | 
|  | Random prng(299792458ull); | 
|  | BucketTestUnsignedInterval(2, 100000, 0, 1, 3, &prng); | 
|  | BucketTestUnsignedInterval(7, 100000, 1, 14, 3, &prng); | 
|  | BucketTestUnsignedInterval(11, 100000, 1000, 1010, 3, &prng); | 
|  | BucketTestUnsignedInterval(100, 100000, 0, 99, 3, &prng); | 
|  | BucketTestUnsignedInterval(2, 100000, 0, 4294967295, 3, &prng); | 
|  | BucketTestUnsignedInterval(17, 100000, 455, 2147484110, 3, &prng); | 
|  | // 99.7% of all samples will be within 3 standard deviations of the mean, | 
|  | // but since we test 1000 buckets we allow an interval of 4 sigma. | 
|  | BucketTestUnsignedInterval(1000, 1000000, 0, 2147483999, 4, &prng); | 
|  | } | 
|  |  | 
|  | TEST(RandomNumberGeneratorTest, UniformSignedInterval) { | 
|  | Random prng(66260695729ull); | 
|  | BucketTestSignedInterval(2, 100000, 0, 1, 3, &prng); | 
|  | BucketTestSignedInterval(7, 100000, -2, 4, 3, &prng); | 
|  | BucketTestSignedInterval(11, 100000, 1000, 1010, 3, &prng); | 
|  | BucketTestSignedInterval(100, 100000, 0, 99, 3, &prng); | 
|  | BucketTestSignedInterval(2, 100000, std::numeric_limits<int32_t>::min(), | 
|  | std::numeric_limits<int32_t>::max(), 3, &prng); | 
|  | BucketTestSignedInterval(17, 100000, -1073741826, 1073741829, 3, &prng); | 
|  | // 99.7% of all samples will be within 3 standard deviations of the mean, | 
|  | // but since we test 1000 buckets we allow an interval of 4 sigma. | 
|  | BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng); | 
|  | } | 
|  |  | 
|  | // The range of the random numbers is divided into bucket_count intervals | 
|  | // of consecutive numbers. Check that approximately equally many numbers | 
|  | // from each inteval are generated. | 
|  | void BucketTestFloat(unsigned int bucket_count, | 
|  | unsigned int samples, | 
|  | int sigma_level, | 
|  | Random* prng) { | 
|  | ASSERT_GE(bucket_count, 2u); | 
|  | std::vector<unsigned int> buckets(bucket_count, 0); | 
|  |  | 
|  | for (unsigned int i = 0; i < samples; i++) { | 
|  | uint32_t sample = bucket_count * prng->Rand<float>(); | 
|  | EXPECT_LE(0u, sample); | 
|  | EXPECT_GE(bucket_count - 1, sample); | 
|  | buckets[sample]++; | 
|  | } | 
|  |  | 
|  | for (unsigned int i = 0; i < bucket_count; i++) { | 
|  | // Expect the result to be within 3 standard deviations of the mean, | 
|  | // or more generally, within sigma_level standard deviations of the mean. | 
|  | double mean = static_cast<double>(samples) / bucket_count; | 
|  | EXPECT_NEAR(buckets[i], mean, sigma_level * sqrt(mean)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(RandomNumberGeneratorTest, UniformFloatInterval) { | 
|  | Random prng(1380648813ull); | 
|  | BucketTestFloat(100, 100000, 3, &prng); | 
|  | // 99.7% of all samples will be within 3 standard deviations of the mean, | 
|  | // but since we test 1000 buckets we allow an interval of 4 sigma. | 
|  | // BucketTestSignedInterval(1000, 1000000, -352, 2147483647, 4, &prng); | 
|  | } | 
|  |  | 
|  | TEST(RandomNumberGeneratorTest, SignedHasSameBitPattern) { | 
|  | Random prng_signed(66738480ull), prng_unsigned(66738480ull); | 
|  |  | 
|  | for (int i = 0; i < 1000; i++) { | 
|  | signed int s = prng_signed.Rand<signed int>(); | 
|  | unsigned int u = prng_unsigned.Rand<unsigned int>(); | 
|  | EXPECT_EQ(u, static_cast<unsigned int>(s)); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 1000; i++) { | 
|  | int16_t s = prng_signed.Rand<int16_t>(); | 
|  | uint16_t u = prng_unsigned.Rand<uint16_t>(); | 
|  | EXPECT_EQ(u, static_cast<uint16_t>(s)); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 1000; i++) { | 
|  | signed char s = prng_signed.Rand<signed char>(); | 
|  | unsigned char u = prng_unsigned.Rand<unsigned char>(); | 
|  | EXPECT_EQ(u, static_cast<unsigned char>(s)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(RandomNumberGeneratorTest, Gaussian) { | 
|  | const int kN = 100000; | 
|  | const int kBuckets = 100; | 
|  | const double kMean = 49; | 
|  | const double kStddev = 10; | 
|  |  | 
|  | Random prng(1256637061); | 
|  |  | 
|  | std::vector<unsigned int> buckets(kBuckets, 0); | 
|  | for (int i = 0; i < kN; i++) { | 
|  | int index = prng.Gaussian(kMean, kStddev) + 0.5; | 
|  | if (index >= 0 && index < kBuckets) { | 
|  | buckets[index]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | const double kPi = 3.14159265358979323846; | 
|  | const double kScale = 1 / (kStddev * sqrt(2.0 * kPi)); | 
|  | const double kDiv = -2.0 * kStddev * kStddev; | 
|  | for (int n = 0; n < kBuckets; ++n) { | 
|  | // Use Simpsons rule to estimate the probability that a random gaussian | 
|  | // sample is in the interval [n-0.5, n+0.5]. | 
|  | double f_left = kScale * exp((n - kMean - 0.5) * (n - kMean - 0.5) / kDiv); | 
|  | double f_mid = kScale * exp((n - kMean) * (n - kMean) / kDiv); | 
|  | double f_right = kScale * exp((n - kMean + 0.5) * (n - kMean + 0.5) / kDiv); | 
|  | double normal_dist = (f_left + 4 * f_mid + f_right) / 6; | 
|  | // Expect the number of samples to be within 3 standard deviations | 
|  | // (rounded up) of the expected number of samples in the bucket. | 
|  | EXPECT_NEAR(buckets[n], kN * normal_dist, 3 * sqrt(kN * normal_dist) + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |