| /* |
| * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "system_wrappers/include/clock.h" |
| |
| #include "system_wrappers/include/field_trial.h" |
| |
| #if defined(WEBRTC_WIN) |
| |
| // Windows needs to be included before mmsystem.h |
| #include "rtc_base/win32.h" |
| |
| #include <mmsystem.h> |
| |
| |
| #elif defined(WEBRTC_POSIX) |
| |
| #include <sys/time.h> |
| #include <time.h> |
| |
| #endif // defined(WEBRTC_POSIX) |
| |
| #include "rtc_base/synchronization/mutex.h" |
| #include "rtc_base/time_utils.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| int64_t NtpOffsetUsCalledOnce() { |
| constexpr int64_t kNtpJan1970Sec = 2208988800; |
| int64_t clock_time = rtc::TimeMicros(); |
| int64_t utc_time = rtc::TimeUTCMicros(); |
| return utc_time - clock_time + kNtpJan1970Sec * rtc::kNumMicrosecsPerSec; |
| } |
| |
| NtpTime TimeMicrosToNtp(int64_t time_us) { |
| static int64_t ntp_offset_us = NtpOffsetUsCalledOnce(); |
| |
| int64_t time_ntp_us = time_us + ntp_offset_us; |
| RTC_DCHECK_GE(time_ntp_us, 0); // Time before year 1900 is unsupported. |
| |
| // Convert seconds to uint32 through uint64 for a well-defined cast. |
| // A wrap around, which will happen in 2036, is expected for NTP time. |
| uint32_t ntp_seconds = |
| static_cast<uint64_t>(time_ntp_us / rtc::kNumMicrosecsPerSec); |
| |
| // Scale fractions of the second to NTP resolution. |
| constexpr int64_t kNtpFractionsInSecond = 1LL << 32; |
| int64_t us_fractions = time_ntp_us % rtc::kNumMicrosecsPerSec; |
| uint32_t ntp_fractions = |
| us_fractions * kNtpFractionsInSecond / rtc::kNumMicrosecsPerSec; |
| |
| return NtpTime(ntp_seconds, ntp_fractions); |
| } |
| |
| void GetSecondsAndFraction(const timeval& time, |
| uint32_t* seconds, |
| double* fraction) { |
| *seconds = time.tv_sec + kNtpJan1970; |
| *fraction = time.tv_usec / 1e6; |
| |
| while (*fraction >= 1) { |
| --*fraction; |
| ++*seconds; |
| } |
| while (*fraction < 0) { |
| ++*fraction; |
| --*seconds; |
| } |
| } |
| |
| } // namespace |
| |
| class RealTimeClock : public Clock { |
| public: |
| RealTimeClock() |
| : use_system_independent_ntp_time_(!field_trial::IsEnabled( |
| "WebRTC-SystemIndependentNtpTimeKillSwitch")) {} |
| |
| Timestamp CurrentTime() override { |
| return Timestamp::Micros(rtc::TimeMicros()); |
| } |
| |
| NtpTime CurrentNtpTime() override { |
| return use_system_independent_ntp_time_ ? TimeMicrosToNtp(rtc::TimeMicros()) |
| : SystemDependentNtpTime(); |
| } |
| |
| NtpTime ConvertTimestampToNtpTime(Timestamp timestamp) override { |
| // This method does not check `use_system_independent_ntp_time_` because |
| // all callers never used the old behavior of `CurrentNtpTime`. |
| return TimeMicrosToNtp(timestamp.us()); |
| } |
| |
| protected: |
| virtual timeval CurrentTimeVal() = 0; |
| |
| private: |
| NtpTime SystemDependentNtpTime() { |
| uint32_t seconds; |
| double fraction; |
| GetSecondsAndFraction(CurrentTimeVal(), &seconds, &fraction); |
| |
| return NtpTime(seconds, static_cast<uint32_t>( |
| fraction * kMagicNtpFractionalUnit + 0.5)); |
| } |
| |
| bool use_system_independent_ntp_time_; |
| }; |
| |
| #if defined(WINUWP) |
| class WinUwpRealTimeClock final : public RealTimeClock { |
| public: |
| WinUwpRealTimeClock() = default; |
| ~WinUwpRealTimeClock() override {} |
| |
| protected: |
| timeval CurrentTimeVal() override { |
| // The rtc::WinUwpSystemTimeNanos() method is already time offset from a |
| // base epoch value and might as be synchronized against an NTP time server |
| // as an added bonus. |
| auto nanos = rtc::WinUwpSystemTimeNanos(); |
| |
| struct timeval tv; |
| |
| tv.tv_sec = rtc::dchecked_cast<long>(nanos / 1000000000); |
| tv.tv_usec = rtc::dchecked_cast<long>(nanos / 1000); |
| |
| return tv; |
| } |
| }; |
| |
| #elif defined(WEBRTC_WIN) |
| // TODO(pbos): Consider modifying the implementation to synchronize itself |
| // against system time (update ref_point_) periodically to |
| // prevent clock drift. |
| class WindowsRealTimeClock : public RealTimeClock { |
| public: |
| WindowsRealTimeClock() |
| : last_time_ms_(0), |
| num_timer_wraps_(0), |
| ref_point_(GetSystemReferencePoint()) {} |
| |
| ~WindowsRealTimeClock() override {} |
| |
| protected: |
| struct ReferencePoint { |
| FILETIME file_time; |
| LARGE_INTEGER counter_ms; |
| }; |
| |
| timeval CurrentTimeVal() override { |
| const uint64_t FILETIME_1970 = 0x019db1ded53e8000; |
| |
| FILETIME StartTime; |
| uint64_t Time; |
| struct timeval tv; |
| |
| // We can't use query performance counter since they can change depending on |
| // speed stepping. |
| GetTime(&StartTime); |
| |
| Time = (((uint64_t)StartTime.dwHighDateTime) << 32) + |
| (uint64_t)StartTime.dwLowDateTime; |
| |
| // Convert the hecto-nano second time to tv format. |
| Time -= FILETIME_1970; |
| |
| tv.tv_sec = (uint32_t)(Time / (uint64_t)10000000); |
| tv.tv_usec = (uint32_t)((Time % (uint64_t)10000000) / 10); |
| return tv; |
| } |
| |
| void GetTime(FILETIME* current_time) { |
| DWORD t; |
| LARGE_INTEGER elapsed_ms; |
| { |
| MutexLock lock(&mutex_); |
| // time MUST be fetched inside the critical section to avoid non-monotonic |
| // last_time_ms_ values that'll register as incorrect wraparounds due to |
| // concurrent calls to GetTime. |
| t = timeGetTime(); |
| if (t < last_time_ms_) |
| num_timer_wraps_++; |
| last_time_ms_ = t; |
| elapsed_ms.HighPart = num_timer_wraps_; |
| } |
| elapsed_ms.LowPart = t; |
| elapsed_ms.QuadPart = elapsed_ms.QuadPart - ref_point_.counter_ms.QuadPart; |
| |
| // Translate to 100-nanoseconds intervals (FILETIME resolution) |
| // and add to reference FILETIME to get current FILETIME. |
| ULARGE_INTEGER filetime_ref_as_ul; |
| filetime_ref_as_ul.HighPart = ref_point_.file_time.dwHighDateTime; |
| filetime_ref_as_ul.LowPart = ref_point_.file_time.dwLowDateTime; |
| filetime_ref_as_ul.QuadPart += |
| static_cast<ULONGLONG>((elapsed_ms.QuadPart) * 1000 * 10); |
| |
| // Copy to result |
| current_time->dwHighDateTime = filetime_ref_as_ul.HighPart; |
| current_time->dwLowDateTime = filetime_ref_as_ul.LowPart; |
| } |
| |
| static ReferencePoint GetSystemReferencePoint() { |
| ReferencePoint ref = {}; |
| FILETIME ft0 = {}; |
| FILETIME ft1 = {}; |
| // Spin waiting for a change in system time. As soon as this change happens, |
| // get the matching call for timeGetTime() as soon as possible. This is |
| // assumed to be the most accurate offset that we can get between |
| // timeGetTime() and system time. |
| |
| // Set timer accuracy to 1 ms. |
| timeBeginPeriod(1); |
| GetSystemTimeAsFileTime(&ft0); |
| do { |
| GetSystemTimeAsFileTime(&ft1); |
| |
| ref.counter_ms.QuadPart = timeGetTime(); |
| Sleep(0); |
| } while ((ft0.dwHighDateTime == ft1.dwHighDateTime) && |
| (ft0.dwLowDateTime == ft1.dwLowDateTime)); |
| ref.file_time = ft1; |
| timeEndPeriod(1); |
| return ref; |
| } |
| |
| Mutex mutex_; |
| DWORD last_time_ms_; |
| LONG num_timer_wraps_; |
| const ReferencePoint ref_point_; |
| }; |
| |
| #elif defined(WEBRTC_POSIX) |
| class UnixRealTimeClock : public RealTimeClock { |
| public: |
| UnixRealTimeClock() {} |
| |
| ~UnixRealTimeClock() override {} |
| |
| protected: |
| timeval CurrentTimeVal() override { |
| struct timeval tv; |
| gettimeofday(&tv, nullptr); |
| return tv; |
| } |
| }; |
| #endif // defined(WEBRTC_POSIX) |
| |
| Clock* Clock::GetRealTimeClock() { |
| #if defined(WINUWP) |
| static Clock* const clock = new WinUwpRealTimeClock(); |
| #elif defined(WEBRTC_WIN) |
| static Clock* const clock = new WindowsRealTimeClock(); |
| #elif defined(WEBRTC_POSIX) |
| static Clock* const clock = new UnixRealTimeClock(); |
| #else |
| static Clock* const clock = nullptr; |
| #endif |
| return clock; |
| } |
| |
| SimulatedClock::SimulatedClock(int64_t initial_time_us) |
| : time_us_(initial_time_us) {} |
| |
| SimulatedClock::SimulatedClock(Timestamp initial_time) |
| : SimulatedClock(initial_time.us()) {} |
| |
| SimulatedClock::~SimulatedClock() {} |
| |
| Timestamp SimulatedClock::CurrentTime() { |
| return Timestamp::Micros(time_us_.load(std::memory_order_relaxed)); |
| } |
| |
| NtpTime SimulatedClock::ConvertTimestampToNtpTime(Timestamp timestamp) { |
| int64_t now_us = timestamp.us(); |
| uint32_t seconds = (now_us / 1'000'000) + kNtpJan1970; |
| uint32_t fractions = static_cast<uint32_t>( |
| (now_us % 1'000'000) * kMagicNtpFractionalUnit / 1'000'000); |
| return NtpTime(seconds, fractions); |
| } |
| |
| void SimulatedClock::AdvanceTimeMilliseconds(int64_t milliseconds) { |
| AdvanceTime(TimeDelta::Millis(milliseconds)); |
| } |
| |
| void SimulatedClock::AdvanceTimeMicroseconds(int64_t microseconds) { |
| AdvanceTime(TimeDelta::Micros(microseconds)); |
| } |
| |
| // TODO(bugs.webrtc.org(12102): It's desirable to let a single thread own |
| // advancement of the clock. We could then replace this read-modify-write |
| // operation with just a thread checker. But currently, that breaks a couple of |
| // tests, in particular, RepeatingTaskTest.ClockIntegration and |
| // CallStatsTest.LastProcessedRtt. |
| void SimulatedClock::AdvanceTime(TimeDelta delta) { |
| time_us_.fetch_add(delta.us(), std::memory_order_relaxed); |
| } |
| |
| } // namespace webrtc |