| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/gain_controller2.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <memory> |
| #include <numeric> |
| |
| #include "api/array_view.h" |
| #include "modules/audio_processing/agc2/agc2_testing_common.h" |
| #include "modules/audio_processing/audio_buffer.h" |
| #include "modules/audio_processing/test/audio_buffer_tools.h" |
| #include "modules/audio_processing/test/bitexactness_tools.h" |
| #include "rtc_base/checks.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| namespace test { |
| namespace { |
| |
| // Sets all the samples in `ab` to `value`. |
| void SetAudioBufferSamples(float value, AudioBuffer& ab) { |
| for (size_t k = 0; k < ab.num_channels(); ++k) { |
| std::fill(ab.channels()[k], ab.channels()[k] + ab.num_frames(), value); |
| } |
| } |
| |
| float RunAgc2WithConstantInput(GainController2& agc2, |
| float input_level, |
| int num_frames, |
| int sample_rate_hz) { |
| const int num_samples = rtc::CheckedDivExact(sample_rate_hz, 100); |
| AudioBuffer ab(sample_rate_hz, 1, sample_rate_hz, 1, sample_rate_hz, 1); |
| |
| // Give time to the level estimator to converge. |
| for (int i = 0; i < num_frames + 1; ++i) { |
| SetAudioBufferSamples(input_level, ab); |
| agc2.Process(&ab); |
| } |
| |
| // Return the last sample from the last processed frame. |
| return ab.channels()[0][num_samples - 1]; |
| } |
| |
| AudioProcessing::Config::GainController2 CreateAgc2FixedDigitalModeConfig( |
| float fixed_gain_db) { |
| AudioProcessing::Config::GainController2 config; |
| config.adaptive_digital.enabled = false; |
| config.fixed_digital.gain_db = fixed_gain_db; |
| EXPECT_TRUE(GainController2::Validate(config)); |
| return config; |
| } |
| |
| std::unique_ptr<GainController2> CreateAgc2FixedDigitalMode( |
| float fixed_gain_db, |
| int sample_rate_hz) { |
| auto agc2 = std::make_unique<GainController2>(); |
| agc2->ApplyConfig(CreateAgc2FixedDigitalModeConfig(fixed_gain_db)); |
| agc2->Initialize(sample_rate_hz, /*num_channels=*/1); |
| return agc2; |
| } |
| |
| } // namespace |
| |
| TEST(GainController2, CheckDefaultConfig) { |
| AudioProcessing::Config::GainController2 config; |
| EXPECT_TRUE(GainController2::Validate(config)); |
| } |
| |
| TEST(GainController2, CheckFixedDigitalConfig) { |
| AudioProcessing::Config::GainController2 config; |
| // Attenuation is not allowed. |
| config.fixed_digital.gain_db = -5.0f; |
| EXPECT_FALSE(GainController2::Validate(config)); |
| // No gain is allowed. |
| config.fixed_digital.gain_db = 0.0f; |
| EXPECT_TRUE(GainController2::Validate(config)); |
| // Positive gain is allowed. |
| config.fixed_digital.gain_db = 15.0f; |
| EXPECT_TRUE(GainController2::Validate(config)); |
| } |
| |
| TEST(GainController2, CheckHeadroomDb) { |
| AudioProcessing::Config::GainController2 config; |
| config.adaptive_digital.headroom_db = -1.0f; |
| EXPECT_FALSE(GainController2::Validate(config)); |
| config.adaptive_digital.headroom_db = 0.0f; |
| EXPECT_TRUE(GainController2::Validate(config)); |
| config.adaptive_digital.headroom_db = 5.0f; |
| EXPECT_TRUE(GainController2::Validate(config)); |
| } |
| |
| TEST(GainController2, CheckMaxGainDb) { |
| AudioProcessing::Config::GainController2 config; |
| config.adaptive_digital.max_gain_db = -1.0f; |
| EXPECT_FALSE(GainController2::Validate(config)); |
| config.adaptive_digital.max_gain_db = 0.0f; |
| EXPECT_FALSE(GainController2::Validate(config)); |
| config.adaptive_digital.max_gain_db = 5.0f; |
| EXPECT_TRUE(GainController2::Validate(config)); |
| } |
| |
| TEST(GainController2, CheckInitialGainDb) { |
| AudioProcessing::Config::GainController2 config; |
| config.adaptive_digital.initial_gain_db = -1.0f; |
| EXPECT_FALSE(GainController2::Validate(config)); |
| config.adaptive_digital.initial_gain_db = 0.0f; |
| EXPECT_TRUE(GainController2::Validate(config)); |
| config.adaptive_digital.initial_gain_db = 5.0f; |
| EXPECT_TRUE(GainController2::Validate(config)); |
| } |
| |
| TEST(GainController2, CheckAdaptiveDigitalMaxGainChangeSpeedConfig) { |
| AudioProcessing::Config::GainController2 config; |
| config.adaptive_digital.max_gain_change_db_per_second = -1.0f; |
| EXPECT_FALSE(GainController2::Validate(config)); |
| config.adaptive_digital.max_gain_change_db_per_second = 0.0f; |
| EXPECT_FALSE(GainController2::Validate(config)); |
| config.adaptive_digital.max_gain_change_db_per_second = 5.0f; |
| EXPECT_TRUE(GainController2::Validate(config)); |
| } |
| |
| TEST(GainController2, CheckAdaptiveDigitalMaxOutputNoiseLevelConfig) { |
| AudioProcessing::Config::GainController2 config; |
| config.adaptive_digital.max_output_noise_level_dbfs = 5.0f; |
| EXPECT_FALSE(GainController2::Validate(config)); |
| config.adaptive_digital.max_output_noise_level_dbfs = 0.0f; |
| EXPECT_TRUE(GainController2::Validate(config)); |
| config.adaptive_digital.max_output_noise_level_dbfs = -5.0f; |
| EXPECT_TRUE(GainController2::Validate(config)); |
| } |
| |
| // Checks that the default config is applied. |
| TEST(GainController2, ApplyDefaultConfig) { |
| auto gain_controller2 = std::make_unique<GainController2>(); |
| AudioProcessing::Config::GainController2 config; |
| gain_controller2->ApplyConfig(config); |
| } |
| |
| TEST(GainController2FixedDigital, GainShouldChangeOnSetGain) { |
| constexpr float kInputLevel = 1000.0f; |
| constexpr size_t kNumFrames = 5; |
| constexpr size_t kSampleRateHz = 8000; |
| constexpr float kGain0Db = 0.0f; |
| constexpr float kGain20Db = 20.0f; |
| |
| auto agc2_fixed = CreateAgc2FixedDigitalMode(kGain0Db, kSampleRateHz); |
| |
| // Signal level is unchanged with 0 db gain. |
| EXPECT_FLOAT_EQ(RunAgc2WithConstantInput(*agc2_fixed, kInputLevel, kNumFrames, |
| kSampleRateHz), |
| kInputLevel); |
| |
| // +20 db should increase signal by a factor of 10. |
| agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGain20Db)); |
| EXPECT_FLOAT_EQ(RunAgc2WithConstantInput(*agc2_fixed, kInputLevel, kNumFrames, |
| kSampleRateHz), |
| kInputLevel * 10); |
| } |
| |
| TEST(GainController2FixedDigital, ChangeFixedGainShouldBeFastAndTimeInvariant) { |
| // Number of frames required for the fixed gain controller to adapt on the |
| // input signal when the gain changes. |
| constexpr size_t kNumFrames = 5; |
| |
| constexpr float kInputLevel = 1000.0f; |
| constexpr size_t kSampleRateHz = 8000; |
| constexpr float kGainDbLow = 0.0f; |
| constexpr float kGainDbHigh = 25.0f; |
| static_assert(kGainDbLow < kGainDbHigh, ""); |
| |
| auto agc2_fixed = CreateAgc2FixedDigitalMode(kGainDbLow, kSampleRateHz); |
| |
| // Start with a lower gain. |
| const float output_level_pre = RunAgc2WithConstantInput( |
| *agc2_fixed, kInputLevel, kNumFrames, kSampleRateHz); |
| |
| // Increase gain. |
| agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGainDbHigh)); |
| static_cast<void>(RunAgc2WithConstantInput(*agc2_fixed, kInputLevel, |
| kNumFrames, kSampleRateHz)); |
| |
| // Back to the lower gain. |
| agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGainDbLow)); |
| const float output_level_post = RunAgc2WithConstantInput( |
| *agc2_fixed, kInputLevel, kNumFrames, kSampleRateHz); |
| |
| EXPECT_EQ(output_level_pre, output_level_post); |
| } |
| |
| struct FixedDigitalTestParams { |
| FixedDigitalTestParams(float gain_db_min, |
| float gain_db_max, |
| size_t sample_rate, |
| bool saturation_expected) |
| : gain_db_min(gain_db_min), |
| gain_db_max(gain_db_max), |
| sample_rate(sample_rate), |
| saturation_expected(saturation_expected) {} |
| float gain_db_min; |
| float gain_db_max; |
| size_t sample_rate; |
| bool saturation_expected; |
| }; |
| |
| class FixedDigitalTest |
| : public ::testing::Test, |
| public ::testing::WithParamInterface<FixedDigitalTestParams> {}; |
| |
| TEST_P(FixedDigitalTest, CheckSaturationBehaviorWithLimiter) { |
| const float kInputLevel = 32767.0f; |
| const size_t kNumFrames = 5; |
| |
| const auto params = GetParam(); |
| |
| const auto gains_db = |
| test::LinSpace(params.gain_db_min, params.gain_db_max, 10); |
| for (const auto gain_db : gains_db) { |
| SCOPED_TRACE(std::to_string(gain_db)); |
| auto agc2_fixed = CreateAgc2FixedDigitalMode(gain_db, params.sample_rate); |
| const float processed_sample = RunAgc2WithConstantInput( |
| *agc2_fixed, kInputLevel, kNumFrames, params.sample_rate); |
| if (params.saturation_expected) { |
| EXPECT_FLOAT_EQ(processed_sample, 32767.0f); |
| } else { |
| EXPECT_LT(processed_sample, 32767.0f); |
| } |
| } |
| } |
| |
| static_assert(test::kLimiterMaxInputLevelDbFs < 10, ""); |
| INSTANTIATE_TEST_SUITE_P( |
| GainController2, |
| FixedDigitalTest, |
| ::testing::Values( |
| // When gain < `test::kLimiterMaxInputLevelDbFs`, the limiter will not |
| // saturate the signal (at any sample rate). |
| FixedDigitalTestParams(0.1f, |
| test::kLimiterMaxInputLevelDbFs - 0.01f, |
| 8000, |
| false), |
| FixedDigitalTestParams(0.1, |
| test::kLimiterMaxInputLevelDbFs - 0.01f, |
| 48000, |
| false), |
| // When gain > `test::kLimiterMaxInputLevelDbFs`, the limiter will |
| // saturate the signal (at any sample rate). |
| FixedDigitalTestParams(test::kLimiterMaxInputLevelDbFs + 0.01f, |
| 10.0f, |
| 8000, |
| true), |
| FixedDigitalTestParams(test::kLimiterMaxInputLevelDbFs + 0.01f, |
| 10.0f, |
| 48000, |
| true))); |
| |
| // Processes a test audio file and checks that the gain applied at the end of |
| // the recording is close to the expected value. |
| TEST(GainController2, CheckFinalGainWithAdaptiveDigitalController) { |
| // Create AGC2 enabling only the adaptive digital controller. |
| GainController2 agc2; |
| AudioProcessing::Config::GainController2 config; |
| config.fixed_digital.gain_db = 0.0f; |
| config.adaptive_digital.enabled = true; |
| agc2.ApplyConfig(config); |
| |
| // The input audio is a 48k stereo recording. |
| constexpr int kSampleRateHz = AudioProcessing::kSampleRate48kHz; |
| constexpr int kStereo = 2; |
| test::InputAudioFile input_file( |
| test::GetApmCaptureTestVectorFileName(kSampleRateHz), |
| /*loop_at_end=*/true); |
| const StreamConfig stream_config(kSampleRateHz, kStereo, |
| /*has_keyboard=*/false); |
| |
| // Initialize AGC2 for the used input. |
| agc2.Initialize(kSampleRateHz, kStereo); |
| |
| // Init buffers. |
| constexpr int kFrameDurationMs = 10; |
| std::vector<float> frame(kStereo * stream_config.num_frames()); |
| AudioBuffer audio_buffer(kSampleRateHz, kStereo, kSampleRateHz, kStereo, |
| kSampleRateHz, kStereo); |
| |
| // Simulate. |
| constexpr float kGainDb = -6.0f; |
| const float gain = std::pow(10.0f, kGainDb / 20.0f); |
| constexpr int kDurationMs = 10000; |
| constexpr int kNumFramesToProcess = kDurationMs / kFrameDurationMs; |
| for (int i = 0; i < kNumFramesToProcess; ++i) { |
| ReadFloatSamplesFromStereoFile(stream_config.num_frames(), |
| stream_config.num_channels(), &input_file, |
| frame); |
| // Apply a fixed gain to the input audio. |
| for (float& x : frame) |
| x *= gain; |
| test::CopyVectorToAudioBuffer(stream_config, frame, &audio_buffer); |
| // Process. |
| agc2.Process(&audio_buffer); |
| } |
| |
| // Estimate the applied gain by processing a probing frame. |
| SetAudioBufferSamples(/*value=*/1.0f, audio_buffer); |
| agc2.Process(&audio_buffer); |
| const float applied_gain_db = |
| 20.0f * std::log10(audio_buffer.channels_const()[0][0]); |
| |
| constexpr float kExpectedGainDb = 5.6f; |
| constexpr float kToleranceDb = 0.3f; |
| EXPECT_NEAR(applied_gain_db, kExpectedGainDb, kToleranceDb); |
| } |
| |
| } // namespace test |
| } // namespace webrtc |