blob: d55ab9f82a1fb707b46f82f0b4c819a3bb5d1812 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include <algorithm>
#include <string>
#include "media/base/streamparams.h"
#include "media/engine/constants.h"
#include "media/engine/simulcast.h"
#include "modules/video_coding/codecs/vp8/include/vp8_common_types.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/field_trial.h"
namespace cricket {
namespace {
constexpr int kScreenshareDefaultTl0BitrateKbps = 200;
constexpr int kScreenshareDefaultTl1BitrateKbps = 1000;
static const char* kSimulcastScreenshareFieldTrialName =
"WebRTC-SimulcastScreenshare";
} // namespace
struct SimulcastFormat {
int width;
int height;
// The maximum number of simulcast layers can be used for
// resolutions at |widthxheigh|.
size_t max_layers;
// The maximum bitrate for encoding stream at |widthxheight|, when we are
// not sending the next higher spatial stream.
int max_bitrate_kbps;
// The target bitrate for encoding stream at |widthxheight|, when this layer
// is not the highest layer (i.e., when we are sending another higher spatial
// stream).
int target_bitrate_kbps;
// The minimum bitrate needed for encoding stream at |widthxheight|.
int min_bitrate_kbps;
};
// These tables describe from which resolution we can use how many
// simulcast layers at what bitrates (maximum, target, and minimum).
// Important!! Keep this table from high resolution to low resolution.
const SimulcastFormat kSimulcastFormats[] = {
{1920, 1080, 3, 5000, 4000, 800},
{1280, 720, 3, 2500, 2500, 600},
{960, 540, 3, 900, 900, 450},
{640, 360, 2, 700, 500, 150},
{480, 270, 2, 450, 350, 150},
{320, 180, 1, 200, 150, 30},
{0, 0, 1, 200, 150, 30}
};
const int kMaxScreenshareSimulcastLayers = 2;
// Multiway: Number of temporal layers for each simulcast stream.
int DefaultNumberOfTemporalLayers(int simulcast_id) {
RTC_CHECK_GE(simulcast_id, 0);
RTC_CHECK_LT(simulcast_id, webrtc::kMaxSimulcastStreams);
const int kDefaultNumTemporalLayers = 3;
const std::string group_name =
webrtc::field_trial::FindFullName("WebRTC-VP8ConferenceTemporalLayers");
if (group_name.empty())
return kDefaultNumTemporalLayers;
int num_temporal_layers = kDefaultNumTemporalLayers;
if (sscanf(group_name.c_str(), "%d", &num_temporal_layers) == 1 &&
num_temporal_layers > 0 &&
num_temporal_layers <= webrtc::kMaxTemporalStreams) {
return num_temporal_layers;
}
RTC_LOG(LS_WARNING) << "Attempt to set number of temporal layers to "
"incorrect value: "
<< group_name;
return kDefaultNumTemporalLayers;
}
int FindSimulcastFormatIndex(int width, int height) {
RTC_DCHECK_GE(width, 0);
RTC_DCHECK_GE(height, 0);
for (uint32_t i = 0; i < arraysize(kSimulcastFormats); ++i) {
if (width * height >=
kSimulcastFormats[i].width * kSimulcastFormats[i].height) {
return i;
}
}
RTC_NOTREACHED();
return -1;
}
int FindSimulcastFormatIndex(int width, int height, size_t max_layers) {
RTC_DCHECK_GE(width, 0);
RTC_DCHECK_GE(height, 0);
RTC_DCHECK_GT(max_layers, 0);
for (uint32_t i = 0; i < arraysize(kSimulcastFormats); ++i) {
if (width * height >=
kSimulcastFormats[i].width * kSimulcastFormats[i].height &&
max_layers == kSimulcastFormats[i].max_layers) {
return i;
}
}
RTC_NOTREACHED();
return -1;
}
// Simulcast stream width and height must both be dividable by
// |2 ^ (simulcast_layers - 1)|.
int NormalizeSimulcastSize(int size, size_t simulcast_layers) {
const int base2_exponent = static_cast<int>(simulcast_layers) - 1;
return ((size >> base2_exponent) << base2_exponent);
}
size_t FindSimulcastMaxLayers(int width, int height) {
int index = FindSimulcastFormatIndex(width, height);
return kSimulcastFormats[index].max_layers;
}
int FindSimulcastMaxBitrateBps(int width, int height) {
const int format_index = FindSimulcastFormatIndex(width, height);
return kSimulcastFormats[format_index].max_bitrate_kbps * 1000;
}
int FindSimulcastTargetBitrateBps(int width, int height) {
const int format_index = FindSimulcastFormatIndex(width, height);
return kSimulcastFormats[format_index].target_bitrate_kbps * 1000;
}
int FindSimulcastMinBitrateBps(int width, int height) {
const int format_index = FindSimulcastFormatIndex(width, height);
return kSimulcastFormats[format_index].min_bitrate_kbps * 1000;
}
void SlotSimulcastMaxResolution(size_t max_layers, int* width, int* height) {
int index = FindSimulcastFormatIndex(*width, *height, max_layers);
*width = kSimulcastFormats[index].width;
*height = kSimulcastFormats[index].height;
RTC_LOG(LS_INFO) << "SlotSimulcastMaxResolution to width:" << *width
<< " height:" << *height;
}
void BoostMaxSimulcastLayer(int max_bitrate_bps,
std::vector<webrtc::VideoStream>* layers) {
// Spend additional bits to boost the max layer.
int bitrate_left_bps = max_bitrate_bps - GetTotalMaxBitrateBps(*layers);
if (bitrate_left_bps > 0) {
layers->back().max_bitrate_bps += bitrate_left_bps;
}
}
int GetTotalMaxBitrateBps(const std::vector<webrtc::VideoStream>& layers) {
int total_max_bitrate_bps = 0;
for (size_t s = 0; s < layers.size() - 1; ++s) {
total_max_bitrate_bps += layers[s].target_bitrate_bps;
}
total_max_bitrate_bps += layers.back().max_bitrate_bps;
return total_max_bitrate_bps;
}
std::vector<webrtc::VideoStream> GetSimulcastConfig(size_t max_layers,
int width,
int height,
int max_bitrate_bps,
double bitrate_priority,
int max_qp,
int max_framerate,
bool is_screenshare) {
if (is_screenshare) {
return GetScreenshareLayers(max_layers, width, height, max_bitrate_bps,
bitrate_priority, max_qp, max_framerate,
ScreenshareSimulcastFieldTrialEnabled());
} else {
return GetNormalSimulcastLayers(max_layers, width, height, max_bitrate_bps,
bitrate_priority, max_qp, max_framerate);
}
}
std::vector<webrtc::VideoStream> GetNormalSimulcastLayers(
size_t max_layers,
int width,
int height,
int max_bitrate_bps,
double bitrate_priority,
int max_qp,
int max_framerate) {
// TODO(bugs.webrtc.org/8785): Currently if the resolution isn't large enough
// (defined in kSimulcastFormats) we scale down the number of simulcast
// layers. Consider changing this so that the application can have more
// control over exactly how many simulcast layers are used.
size_t num_simulcast_layers = FindSimulcastMaxLayers(width, height);
if (num_simulcast_layers > max_layers) {
// TODO(bugs.webrtc.org/8486): This scales down the resolution if the
// number of simulcast layers created by the application isn't sufficient
// (defined in kSimulcastFormats). For example if the input frame's
// resolution is HD, but there are only 2 simulcast layers, the
// resolution gets scaled down to VGA. Consider taking this logic out to
// allow the application more control over the resolutions.
SlotSimulcastMaxResolution(max_layers, &width, &height);
num_simulcast_layers = max_layers;
}
std::vector<webrtc::VideoStream> layers(num_simulcast_layers);
// Format width and height has to be divisible by |2 ^ num_simulcast_layers -
// 1|.
width = NormalizeSimulcastSize(width, num_simulcast_layers);
height = NormalizeSimulcastSize(height, num_simulcast_layers);
// Add simulcast streams, from highest resolution (|s| = num_simulcast_layers
// -1) to lowest resolution at |s| = 0.
for (size_t s = num_simulcast_layers - 1;; --s) {
layers[s].width = width;
layers[s].height = height;
// TODO(pbos): Fill actual temporal-layer bitrate thresholds.
layers[s].max_qp = max_qp;
layers[s].num_temporal_layers = DefaultNumberOfTemporalLayers(s);
layers[s].max_bitrate_bps = FindSimulcastMaxBitrateBps(width, height);
layers[s].target_bitrate_bps = FindSimulcastTargetBitrateBps(width, height);
int num_temporal_layers = DefaultNumberOfTemporalLayers(s);
if (s == 0 && num_temporal_layers != 3) {
// If alternative number temporal layers is selected, adjust the
// bitrate of the lowest simulcast stream so that absolute bitrate for the
// base temporal layer matches the bitrate for the base temporal layer
// with the default 3 simulcast streams. Otherwise we risk a higher
// threshold for receiving a feed at all.
const float rate_factor =
webrtc::kVp8LayerRateAlloction[3][0] /
webrtc::kVp8LayerRateAlloction[num_temporal_layers][0];
layers[s].max_bitrate_bps =
static_cast<int>(layers[s].max_bitrate_bps * rate_factor);
layers[s].target_bitrate_bps =
static_cast<int>(layers[s].target_bitrate_bps * rate_factor);
}
layers[s].min_bitrate_bps = FindSimulcastMinBitrateBps(width, height);
layers[s].max_framerate = max_framerate;
width /= 2;
height /= 2;
if (s == 0) {
break;
}
}
// If there is bitrate leftover, give it to the largest layer.
BoostMaxSimulcastLayer(max_bitrate_bps, &layers);
// Currently the relative bitrate priority of the sender is controlled by
// the value of the lowest VideoStream.
// TODO(bugs.webrtc.org/8630): The web specification describes being able to
// control relative bitrate for each individual simulcast layer, but this
// is currently just implemented per rtp sender.
layers[0].bitrate_priority = bitrate_priority;
return layers;
}
std::vector<webrtc::VideoStream> GetScreenshareLayers(
size_t max_layers,
int width,
int height,
int max_bitrate_bps,
double bitrate_priority,
int max_qp,
int max_framerate,
bool screenshare_simulcast_enabled) {
auto max_screenshare_layers =
screenshare_simulcast_enabled ? kMaxScreenshareSimulcastLayers : 1;
size_t num_simulcast_layers =
std::min<int>(max_layers, max_screenshare_layers);
std::vector<webrtc::VideoStream> layers(num_simulcast_layers);
// For legacy screenshare in conference mode, tl0 and tl1 bitrates are
// piggybacked on the VideoCodec struct as target and max bitrates,
// respectively. See eg. webrtc::LibvpxVp8Encoder::SetRates().
layers[0].width = width;
layers[0].height = height;
layers[0].max_qp = max_qp;
layers[0].max_framerate = 5;
layers[0].min_bitrate_bps = kMinVideoBitrateBps;
layers[0].target_bitrate_bps = kScreenshareDefaultTl0BitrateKbps * 1000;
layers[0].max_bitrate_bps = kScreenshareDefaultTl1BitrateKbps * 1000;
layers[0].num_temporal_layers = 2;
// With simulcast enabled, add another spatial layer. This one will have a
// more normal layout, with the regular 3 temporal layer pattern and no fps
// restrictions. The base simulcast layer will still use legacy setup.
if (num_simulcast_layers == kMaxScreenshareSimulcastLayers) {
// Add optional upper simulcast layer.
// Lowest temporal layers of a 3 layer setup will have 40% of the total
// bitrate allocation for that simulcast layer. Make sure the gap between
// the target of the lower simulcast layer and first temporal layer of the
// higher one is at most 2x the bitrate, so that upswitching is not hampered
// by stalled bitrate estimates.
int max_bitrate_bps = 2 * ((layers[0].target_bitrate_bps * 10) / 4);
// Cap max bitrate so it isn't overly high for the given resolution.
max_bitrate_bps = std::min<int>(max_bitrate_bps,
FindSimulcastMaxBitrateBps(width, height));
layers[1].width = width;
layers[1].height = height;
layers[1].max_qp = max_qp;
layers[1].max_framerate = max_framerate;
layers[1].num_temporal_layers = 3;
layers[1].min_bitrate_bps = layers[0].target_bitrate_bps * 2;
layers[1].target_bitrate_bps = max_bitrate_bps;
layers[1].max_bitrate_bps = max_bitrate_bps;
}
// The bitrate priority currently implemented on a per-sender level, so we
// just set it for the first simulcast layer.
layers[0].bitrate_priority = bitrate_priority;
return layers;
}
bool ScreenshareSimulcastFieldTrialEnabled() {
return webrtc::field_trial::IsEnabled(kSimulcastScreenshareFieldTrialName);
}
} // namespace cricket