| /* |
| * Copyright 2011 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "rtc_base/messagedigest.h" |
| |
| #include <memory> |
| |
| #include <string.h> |
| |
| #include "rtc_base/openssldigest.h" |
| #include "rtc_base/stringencode.h" |
| |
| namespace rtc { |
| |
| // From RFC 4572. |
| const char DIGEST_MD5[] = "md5"; |
| const char DIGEST_SHA_1[] = "sha-1"; |
| const char DIGEST_SHA_224[] = "sha-224"; |
| const char DIGEST_SHA_256[] = "sha-256"; |
| const char DIGEST_SHA_384[] = "sha-384"; |
| const char DIGEST_SHA_512[] = "sha-512"; |
| |
| static const size_t kBlockSize = 64; // valid for SHA-256 and down |
| |
| MessageDigest* MessageDigestFactory::Create(const std::string& alg) { |
| MessageDigest* digest = new OpenSSLDigest(alg); |
| if (digest->Size() == 0) { // invalid algorithm |
| delete digest; |
| digest = nullptr; |
| } |
| return digest; |
| } |
| |
| bool IsFips180DigestAlgorithm(const std::string& alg) { |
| // These are the FIPS 180 algorithms. According to RFC 4572 Section 5, |
| // "Self-signed certificates (for which legacy certificates are not a |
| // consideration) MUST use one of the FIPS 180 algorithms (SHA-1, |
| // SHA-224, SHA-256, SHA-384, or SHA-512) as their signature algorithm, |
| // and thus also MUST use it to calculate certificate fingerprints." |
| return alg == DIGEST_SHA_1 || |
| alg == DIGEST_SHA_224 || |
| alg == DIGEST_SHA_256 || |
| alg == DIGEST_SHA_384 || |
| alg == DIGEST_SHA_512; |
| } |
| |
| size_t ComputeDigest(MessageDigest* digest, const void* input, size_t in_len, |
| void* output, size_t out_len) { |
| digest->Update(input, in_len); |
| return digest->Finish(output, out_len); |
| } |
| |
| size_t ComputeDigest(const std::string& alg, const void* input, size_t in_len, |
| void* output, size_t out_len) { |
| std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); |
| return (digest) ? |
| ComputeDigest(digest.get(), input, in_len, output, out_len) : |
| 0; |
| } |
| |
| std::string ComputeDigest(MessageDigest* digest, const std::string& input) { |
| std::unique_ptr<char[]> output(new char[digest->Size()]); |
| ComputeDigest(digest, input.data(), input.size(), |
| output.get(), digest->Size()); |
| return hex_encode(output.get(), digest->Size()); |
| } |
| |
| bool ComputeDigest(const std::string& alg, const std::string& input, |
| std::string* output) { |
| std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); |
| if (!digest) { |
| return false; |
| } |
| *output = ComputeDigest(digest.get(), input); |
| return true; |
| } |
| |
| std::string ComputeDigest(const std::string& alg, const std::string& input) { |
| std::string output; |
| ComputeDigest(alg, input, &output); |
| return output; |
| } |
| |
| // Compute a RFC 2104 HMAC: H(K XOR opad, H(K XOR ipad, text)) |
| size_t ComputeHmac(MessageDigest* digest, |
| const void* key, size_t key_len, |
| const void* input, size_t in_len, |
| void* output, size_t out_len) { |
| // We only handle algorithms with a 64-byte blocksize. |
| // TODO: Add BlockSize() method to MessageDigest. |
| size_t block_len = kBlockSize; |
| if (digest->Size() > 32) { |
| return 0; |
| } |
| // Copy the key to a block-sized buffer to simplify padding. |
| // If the key is longer than a block, hash it and use the result instead. |
| std::unique_ptr<uint8_t[]> new_key(new uint8_t[block_len]); |
| if (key_len > block_len) { |
| ComputeDigest(digest, key, key_len, new_key.get(), block_len); |
| memset(new_key.get() + digest->Size(), 0, block_len - digest->Size()); |
| } else { |
| memcpy(new_key.get(), key, key_len); |
| memset(new_key.get() + key_len, 0, block_len - key_len); |
| } |
| // Set up the padding from the key, salting appropriately for each padding. |
| std::unique_ptr<uint8_t[]> o_pad(new uint8_t[block_len]); |
| std::unique_ptr<uint8_t[]> i_pad(new uint8_t[block_len]); |
| for (size_t i = 0; i < block_len; ++i) { |
| o_pad[i] = 0x5c ^ new_key[i]; |
| i_pad[i] = 0x36 ^ new_key[i]; |
| } |
| // Inner hash; hash the inner padding, and then the input buffer. |
| std::unique_ptr<uint8_t[]> inner(new uint8_t[digest->Size()]); |
| digest->Update(i_pad.get(), block_len); |
| digest->Update(input, in_len); |
| digest->Finish(inner.get(), digest->Size()); |
| // Outer hash; hash the outer padding, and then the result of the inner hash. |
| digest->Update(o_pad.get(), block_len); |
| digest->Update(inner.get(), digest->Size()); |
| return digest->Finish(output, out_len); |
| } |
| |
| size_t ComputeHmac(const std::string& alg, const void* key, size_t key_len, |
| const void* input, size_t in_len, |
| void* output, size_t out_len) { |
| std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); |
| if (!digest) { |
| return 0; |
| } |
| return ComputeHmac(digest.get(), key, key_len, |
| input, in_len, output, out_len); |
| } |
| |
| std::string ComputeHmac(MessageDigest* digest, const std::string& key, |
| const std::string& input) { |
| std::unique_ptr<char[]> output(new char[digest->Size()]); |
| ComputeHmac(digest, key.data(), key.size(), |
| input.data(), input.size(), output.get(), digest->Size()); |
| return hex_encode(output.get(), digest->Size()); |
| } |
| |
| bool ComputeHmac(const std::string& alg, const std::string& key, |
| const std::string& input, std::string* output) { |
| std::unique_ptr<MessageDigest> digest(MessageDigestFactory::Create(alg)); |
| if (!digest) { |
| return false; |
| } |
| *output = ComputeHmac(digest.get(), key, input); |
| return true; |
| } |
| |
| std::string ComputeHmac(const std::string& alg, const std::string& key, |
| const std::string& input) { |
| std::string output; |
| ComputeHmac(alg, key, input, &output); |
| return output; |
| } |
| |
| } // namespace rtc |