| // Copyright 2017 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // The implementation of the absl::Time class, which is declared in |
| // //absl/time.h. |
| // |
| // The representation for an absl::Time is an absl::Duration offset from the |
| // epoch. We use the traditional Unix epoch (1970-01-01 00:00:00 +0000) |
| // for convenience, but this is not exposed in the API and could be changed. |
| // |
| // NOTE: To keep type verbosity to a minimum, the following variable naming |
| // conventions are used throughout this file. |
| // |
| // cz: A cctz::time_zone |
| // tz: An absl::TimeZone |
| // cl: A cctz::time_zone::civil_lookup |
| // al: A cctz::time_zone::absolute_lookup |
| // cd: A cctz::civil_day |
| // cs: A cctz::civil_second |
| // bd: An absl::Time::Breakdown |
| |
| #include "absl/time/time.h" |
| |
| #include <cstring> |
| #include <ctime> |
| #include <limits> |
| |
| #include "absl/time/internal/cctz/include/cctz/civil_time.h" |
| #include "absl/time/internal/cctz/include/cctz/time_zone.h" |
| |
| namespace cctz = absl::time_internal::cctz; |
| namespace absl { |
| |
| namespace { |
| |
| inline cctz::time_point<cctz::sys_seconds> unix_epoch() { |
| return std::chrono::time_point_cast<cctz::sys_seconds>( |
| std::chrono::system_clock::from_time_t(0)); |
| } |
| |
| // Floors d to the next unit boundary closer to negative infinity. |
| inline int64_t FloorToUnit(absl::Duration d, absl::Duration unit) { |
| absl::Duration rem; |
| int64_t q = absl::IDivDuration(d, unit, &rem); |
| return (q > 0 || |
| rem >= ZeroDuration() || |
| q == std::numeric_limits<int64_t>::min()) ? q : q - 1; |
| } |
| |
| inline absl::Time::Breakdown InfiniteFutureBreakdown() { |
| absl::Time::Breakdown bd; |
| bd.year = std::numeric_limits<int64_t>::max(); |
| bd.month = 12; |
| bd.day = 31; |
| bd.hour = 23; |
| bd.minute = 59; |
| bd.second = 59; |
| bd.subsecond = absl::InfiniteDuration(); |
| bd.weekday = 4; |
| bd.yearday = 365; |
| bd.offset = 0; |
| bd.is_dst = false; |
| bd.zone_abbr = "-00"; |
| return bd; |
| } |
| |
| inline Time::Breakdown InfinitePastBreakdown() { |
| Time::Breakdown bd; |
| bd.year = std::numeric_limits<int64_t>::min(); |
| bd.month = 1; |
| bd.day = 1; |
| bd.hour = 0; |
| bd.minute = 0; |
| bd.second = 0; |
| bd.subsecond = -absl::InfiniteDuration(); |
| bd.weekday = 7; |
| bd.yearday = 1; |
| bd.offset = 0; |
| bd.is_dst = false; |
| bd.zone_abbr = "-00"; |
| return bd; |
| } |
| |
| inline absl::TimeConversion InfiniteFutureTimeConversion() { |
| absl::TimeConversion tc; |
| tc.pre = tc.trans = tc.post = absl::InfiniteFuture(); |
| tc.kind = absl::TimeConversion::UNIQUE; |
| tc.normalized = true; |
| return tc; |
| } |
| |
| inline TimeConversion InfinitePastTimeConversion() { |
| absl::TimeConversion tc; |
| tc.pre = tc.trans = tc.post = absl::InfinitePast(); |
| tc.kind = absl::TimeConversion::UNIQUE; |
| tc.normalized = true; |
| return tc; |
| } |
| |
| // Makes a Time from sec, overflowing to InfiniteFuture/InfinitePast as |
| // necessary. If sec is min/max, then consult cs+tz to check for overlow. |
| Time MakeTimeWithOverflow(const cctz::time_point<cctz::sys_seconds>& sec, |
| const cctz::civil_second& cs, |
| const cctz::time_zone& tz, |
| bool* normalized = nullptr) { |
| const auto max = cctz::time_point<cctz::sys_seconds>::max(); |
| const auto min = cctz::time_point<cctz::sys_seconds>::min(); |
| if (sec == max) { |
| const auto al = tz.lookup(max); |
| if (cs > al.cs) { |
| if (normalized) *normalized = true; |
| return absl::InfiniteFuture(); |
| } |
| } |
| if (sec == min) { |
| const auto al = tz.lookup(min); |
| if (cs < al.cs) { |
| if (normalized) *normalized = true; |
| return absl::InfinitePast(); |
| } |
| } |
| const auto hi = (sec - unix_epoch()).count(); |
| return time_internal::FromUnixDuration(time_internal::MakeDuration(hi)); |
| } |
| |
| inline absl::TimeConversion::Kind MapKind( |
| const cctz::time_zone::civil_lookup::civil_kind& kind) { |
| switch (kind) { |
| case cctz::time_zone::civil_lookup::UNIQUE: |
| return absl::TimeConversion::UNIQUE; |
| case cctz::time_zone::civil_lookup::SKIPPED: |
| return absl::TimeConversion::SKIPPED; |
| case cctz::time_zone::civil_lookup::REPEATED: |
| return absl::TimeConversion::REPEATED; |
| } |
| return absl::TimeConversion::UNIQUE; |
| } |
| |
| // Returns Mon=1..Sun=7. |
| inline int MapWeekday(const cctz::weekday& wd) { |
| switch (wd) { |
| case cctz::weekday::monday: |
| return 1; |
| case cctz::weekday::tuesday: |
| return 2; |
| case cctz::weekday::wednesday: |
| return 3; |
| case cctz::weekday::thursday: |
| return 4; |
| case cctz::weekday::friday: |
| return 5; |
| case cctz::weekday::saturday: |
| return 6; |
| case cctz::weekday::sunday: |
| return 7; |
| } |
| return 1; |
| } |
| |
| } // namespace |
| |
| absl::Time::Breakdown Time::In(absl::TimeZone tz) const { |
| if (*this == absl::InfiniteFuture()) return absl::InfiniteFutureBreakdown(); |
| if (*this == absl::InfinitePast()) return absl::InfinitePastBreakdown(); |
| |
| const auto tp = |
| unix_epoch() + cctz::sys_seconds(time_internal::GetRepHi(rep_)); |
| const auto al = cctz::time_zone(tz).lookup(tp); |
| const auto cs = al.cs; |
| const auto cd = cctz::civil_day(cs); |
| |
| absl::Time::Breakdown bd; |
| bd.year = cs.year(); |
| bd.month = cs.month(); |
| bd.day = cs.day(); |
| bd.hour = cs.hour(); |
| bd.minute = cs.minute(); |
| bd.second = cs.second(); |
| bd.subsecond = time_internal::MakeDuration(0, time_internal::GetRepLo(rep_)); |
| bd.weekday = MapWeekday(get_weekday(cd)); |
| bd.yearday = get_yearday(cd); |
| bd.offset = al.offset; |
| bd.is_dst = al.is_dst; |
| bd.zone_abbr = al.abbr; |
| return bd; |
| } |
| |
| absl::Time FromTM(const struct tm& tm, absl::TimeZone tz) { |
| const auto cz = cctz::time_zone(tz); |
| const auto cs = |
| cctz::civil_second(tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, |
| tm.tm_hour, tm.tm_min, tm.tm_sec); |
| const auto cl = cz.lookup(cs); |
| const auto tp = tm.tm_isdst == 0 ? cl.post : cl.pre; |
| return MakeTimeWithOverflow(tp, cs, cz); |
| } |
| |
| struct tm ToTM(absl::Time t, absl::TimeZone tz) { |
| const absl::Time::Breakdown bd = t.In(tz); |
| struct tm tm; |
| std::memset(&tm, 0, sizeof(tm)); |
| tm.tm_sec = bd.second; |
| tm.tm_min = bd.minute; |
| tm.tm_hour = bd.hour; |
| tm.tm_mday = bd.day; |
| tm.tm_mon = bd.month - 1; |
| |
| // Saturates tm.tm_year in cases of over/underflow, accounting for the fact |
| // that tm.tm_year is years since 1900. |
| if (bd.year < std::numeric_limits<int>::min() + 1900) { |
| tm.tm_year = std::numeric_limits<int>::min(); |
| } else if (bd.year > std::numeric_limits<int>::max()) { |
| tm.tm_year = std::numeric_limits<int>::max() - 1900; |
| } else { |
| tm.tm_year = static_cast<int>(bd.year - 1900); |
| } |
| |
| tm.tm_wday = bd.weekday % 7; |
| tm.tm_yday = bd.yearday - 1; |
| tm.tm_isdst = bd.is_dst ? 1 : 0; |
| |
| return tm; |
| } |
| |
| // |
| // Factory functions. |
| // |
| |
| absl::TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour, |
| int min, int sec, TimeZone tz) { |
| // Avoids years that are too extreme for civil_second to normalize. |
| if (year > 300000000000) return InfiniteFutureTimeConversion(); |
| if (year < -300000000000) return InfinitePastTimeConversion(); |
| const auto cz = cctz::time_zone(tz); |
| const auto cs = cctz::civil_second(year, mon, day, hour, min, sec); |
| absl::TimeConversion tc; |
| tc.normalized = year != cs.year() || mon != cs.month() || day != cs.day() || |
| hour != cs.hour() || min != cs.minute() || sec != cs.second(); |
| const auto cl = cz.lookup(cs); |
| // Converts the civil_lookup struct to a TimeConversion. |
| tc.pre = MakeTimeWithOverflow(cl.pre, cs, cz, &tc.normalized); |
| tc.trans = MakeTimeWithOverflow(cl.trans, cs, cz, &tc.normalized); |
| tc.post = MakeTimeWithOverflow(cl.post, cs, cz, &tc.normalized); |
| tc.kind = MapKind(cl.kind); |
| return tc; |
| } |
| |
| absl::Time FromDateTime(int64_t year, int mon, int day, int hour, int min, |
| int sec, TimeZone tz) { |
| if (year > 300000000000) return InfiniteFuture(); |
| if (year < -300000000000) return InfinitePast(); |
| const auto cz = cctz::time_zone(tz); |
| const auto cs = cctz::civil_second(year, mon, day, hour, min, sec); |
| const auto cl = cz.lookup(cs); |
| return MakeTimeWithOverflow(cl.pre, cs, cz); |
| } |
| |
| absl::Time TimeFromTimespec(timespec ts) { |
| return time_internal::FromUnixDuration(absl::DurationFromTimespec(ts)); |
| } |
| |
| absl::Time TimeFromTimeval(timeval tv) { |
| return time_internal::FromUnixDuration(absl::DurationFromTimeval(tv)); |
| } |
| |
| absl::Time FromUDate(double udate) { |
| return time_internal::FromUnixDuration(absl::Milliseconds(udate)); |
| } |
| |
| absl::Time FromUniversal(int64_t universal) { |
| return absl::UniversalEpoch() + 100 * absl::Nanoseconds(universal); |
| } |
| |
| // |
| // Conversion to other time types. |
| // |
| |
| int64_t ToUnixNanos(Time t) { |
| if (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >= 0 && |
| time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >> 33 == 0) { |
| return (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) * |
| 1000 * 1000 * 1000) + |
| (time_internal::GetRepLo(time_internal::ToUnixDuration(t)) / 4); |
| } |
| return FloorToUnit(time_internal::ToUnixDuration(t), absl::Nanoseconds(1)); |
| } |
| |
| int64_t ToUnixMicros(Time t) { |
| if (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >= 0 && |
| time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >> 43 == 0) { |
| return (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) * |
| 1000 * 1000) + |
| (time_internal::GetRepLo(time_internal::ToUnixDuration(t)) / 4000); |
| } |
| return FloorToUnit(time_internal::ToUnixDuration(t), absl::Microseconds(1)); |
| } |
| |
| int64_t ToUnixMillis(Time t) { |
| if (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >= 0 && |
| time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >> 53 == 0) { |
| return (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) * 1000) + |
| (time_internal::GetRepLo(time_internal::ToUnixDuration(t)) / |
| (4000 * 1000)); |
| } |
| return FloorToUnit(time_internal::ToUnixDuration(t), absl::Milliseconds(1)); |
| } |
| |
| int64_t ToUnixSeconds(Time t) { |
| return time_internal::GetRepHi(time_internal::ToUnixDuration(t)); |
| } |
| |
| time_t ToTimeT(Time t) { return absl::ToTimespec(t).tv_sec; } |
| |
| timespec ToTimespec(Time t) { |
| timespec ts; |
| absl::Duration d = time_internal::ToUnixDuration(t); |
| if (!time_internal::IsInfiniteDuration(d)) { |
| ts.tv_sec = time_internal::GetRepHi(d); |
| if (ts.tv_sec == time_internal::GetRepHi(d)) { // no time_t narrowing |
| ts.tv_nsec = time_internal::GetRepLo(d) / 4; // floor |
| return ts; |
| } |
| } |
| if (d >= absl::ZeroDuration()) { |
| ts.tv_sec = std::numeric_limits<time_t>::max(); |
| ts.tv_nsec = 1000 * 1000 * 1000 - 1; |
| } else { |
| ts.tv_sec = std::numeric_limits<time_t>::min(); |
| ts.tv_nsec = 0; |
| } |
| return ts; |
| } |
| |
| timeval ToTimeval(Time t) { |
| timeval tv; |
| timespec ts = absl::ToTimespec(t); |
| tv.tv_sec = ts.tv_sec; |
| if (tv.tv_sec != ts.tv_sec) { // narrowing |
| if (ts.tv_sec < 0) { |
| tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min(); |
| tv.tv_usec = 0; |
| } else { |
| tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max(); |
| tv.tv_usec = 1000 * 1000 - 1; |
| } |
| return tv; |
| } |
| tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000); // suseconds_t |
| return tv; |
| } |
| |
| double ToUDate(Time t) { |
| return absl::FDivDuration(time_internal::ToUnixDuration(t), |
| absl::Milliseconds(1)); |
| } |
| |
| int64_t ToUniversal(absl::Time t) { |
| return absl::FloorToUnit(t - absl::UniversalEpoch(), absl::Nanoseconds(100)); |
| } |
| |
| Time FromChrono(const std::chrono::system_clock::time_point& tp) { |
| return time_internal::FromUnixDuration(time_internal::FromChrono( |
| tp - std::chrono::system_clock::from_time_t(0))); |
| } |
| |
| std::chrono::system_clock::time_point ToChronoTime(absl::Time t) { |
| using D = std::chrono::system_clock::duration; |
| auto d = time_internal::ToUnixDuration(t); |
| if (d < ZeroDuration()) d = Floor(d, FromChrono(D{1})); |
| return std::chrono::system_clock::from_time_t(0) + |
| time_internal::ToChronoDuration<D>(d); |
| } |
| |
| } // namespace absl |