blob: 62171b32e6046f9c4ee56714715771361fccc95a [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/signal_classifier.h"
#include <array>
#include <functional>
#include <limits>
#include "modules/audio_processing/agc2/agc2_testing_common.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/gunit.h"
#include "rtc_base/random.h"
namespace webrtc {
namespace {
Random rand_gen(42);
ApmDataDumper data_dumper(0);
constexpr int kNumIterations = 100;
// Runs the signal classifier on audio generated by 'sample_generator'
// for kNumIterations. Returns the number of frames classified as noise.
int RunClassifier(std::function<float()> sample_generator, int rate) {
SignalClassifier classifier(&data_dumper);
std::array<float, 480> signal;
classifier.Initialize(rate);
const size_t samples_per_channel = rtc::CheckedDivExact(rate, 100);
int number_of_noise_frames = 0;
for (int i = 0; i < kNumIterations; ++i) {
for (size_t j = 0; j < samples_per_channel; ++j) {
signal[j] = sample_generator();
}
number_of_noise_frames +=
classifier.Analyze({&signal[0], samples_per_channel}) ==
SignalClassifier::SignalType::kStationary;
}
return number_of_noise_frames;
}
float WhiteNoiseGenerator() {
return static_cast<float>(rand_gen.Rand(std::numeric_limits<int16_t>::min(),
std::numeric_limits<int16_t>::max()));
}
} // namespace
// White random noise is stationary, but does not trigger the detector
// every frame due to the randomness.
TEST(AutomaticGainController2SignalClassifier, WhiteNoise) {
for (const auto rate : {8000, 16000, 32000, 48000}) {
const int number_of_noise_frames = RunClassifier(WhiteNoiseGenerator, rate);
EXPECT_GT(number_of_noise_frames, kNumIterations / 2);
}
}
// Sine curves are (very) stationary. They trigger the detector all
// the time. Except for a few initial frames.
TEST(AutomaticGainController2SignalClassifier, SineTone) {
for (const auto rate : {8000, 16000, 32000, 48000}) {
test::SineGenerator gen(600.f, rate);
const int number_of_noise_frames = RunClassifier(gen, rate);
EXPECT_GE(number_of_noise_frames, kNumIterations - 5);
}
}
// Pulses are transient if they are far enough apart. They shouldn't
// trigger the noise detector.
TEST(AutomaticGainController2SignalClassifier, PulseTone) {
for (const auto rate : {8000, 16000, 32000, 48000}) {
test::PulseGenerator gen(30.f, rate);
const int number_of_noise_frames = RunClassifier(gen, rate);
EXPECT_EQ(number_of_noise_frames, 0);
}
}
} // namespace webrtc