| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/aec3/subtractor.h" |
| |
| #include <algorithm> |
| #include <utility> |
| |
| #include "api/array_view.h" |
| #include "modules/audio_processing/aec3/adaptive_fir_filter_erl.h" |
| #include "modules/audio_processing/aec3/fft_data.h" |
| #include "modules/audio_processing/logging/apm_data_dumper.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/numerics/safe_minmax.h" |
| #include "system_wrappers/include/field_trial.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| |
| bool UseCoarseFilterResetHangover() { |
| return !field_trial::IsEnabled( |
| "WebRTC-Aec3CoarseFilterResetHangoverKillSwitch"); |
| } |
| |
| void PredictionError(const Aec3Fft& fft, |
| const FftData& S, |
| rtc::ArrayView<const float> y, |
| std::array<float, kBlockSize>* e, |
| std::array<float, kBlockSize>* s) { |
| std::array<float, kFftLength> tmp; |
| fft.Ifft(S, &tmp); |
| constexpr float kScale = 1.0f / kFftLengthBy2; |
| std::transform(y.begin(), y.end(), tmp.begin() + kFftLengthBy2, e->begin(), |
| [&](float a, float b) { return a - b * kScale; }); |
| |
| if (s) { |
| for (size_t k = 0; k < s->size(); ++k) { |
| (*s)[k] = kScale * tmp[k + kFftLengthBy2]; |
| } |
| } |
| } |
| |
| void ScaleFilterOutput(rtc::ArrayView<const float> y, |
| float factor, |
| rtc::ArrayView<float> e, |
| rtc::ArrayView<float> s) { |
| RTC_DCHECK_EQ(y.size(), e.size()); |
| RTC_DCHECK_EQ(y.size(), s.size()); |
| for (size_t k = 0; k < y.size(); ++k) { |
| s[k] *= factor; |
| e[k] = y[k] - s[k]; |
| } |
| } |
| |
| } // namespace |
| |
| Subtractor::Subtractor(const EchoCanceller3Config& config, |
| size_t num_render_channels, |
| size_t num_capture_channels, |
| ApmDataDumper* data_dumper, |
| Aec3Optimization optimization) |
| : fft_(), |
| data_dumper_(data_dumper), |
| optimization_(optimization), |
| config_(config), |
| num_capture_channels_(num_capture_channels), |
| use_coarse_filter_reset_hangover_(UseCoarseFilterResetHangover()), |
| refined_filters_(num_capture_channels_), |
| coarse_filter_(num_capture_channels_), |
| refined_gains_(num_capture_channels_), |
| coarse_gains_(num_capture_channels_), |
| filter_misadjustment_estimators_(num_capture_channels_), |
| poor_coarse_filter_counters_(num_capture_channels_, 0), |
| coarse_filter_reset_hangover_(num_capture_channels_, 0), |
| refined_frequency_responses_( |
| num_capture_channels_, |
| std::vector<std::array<float, kFftLengthBy2Plus1>>( |
| std::max(config_.filter.refined_initial.length_blocks, |
| config_.filter.refined.length_blocks), |
| std::array<float, kFftLengthBy2Plus1>())), |
| refined_impulse_responses_( |
| num_capture_channels_, |
| std::vector<float>(GetTimeDomainLength(std::max( |
| config_.filter.refined_initial.length_blocks, |
| config_.filter.refined.length_blocks)), |
| 0.f)), |
| coarse_impulse_responses_(0) { |
| // Set up the storing of coarse impulse responses if data dumping is |
| // available. |
| if (ApmDataDumper::IsAvailable()) { |
| coarse_impulse_responses_.resize(num_capture_channels_); |
| const size_t filter_size = GetTimeDomainLength( |
| std::max(config_.filter.coarse_initial.length_blocks, |
| config_.filter.coarse.length_blocks)); |
| for (std::vector<float>& impulse_response : coarse_impulse_responses_) { |
| impulse_response.resize(filter_size, 0.f); |
| } |
| } |
| |
| for (size_t ch = 0; ch < num_capture_channels_; ++ch) { |
| refined_filters_[ch] = std::make_unique<AdaptiveFirFilter>( |
| config_.filter.refined.length_blocks, |
| config_.filter.refined_initial.length_blocks, |
| config.filter.config_change_duration_blocks, num_render_channels, |
| optimization, data_dumper_); |
| |
| coarse_filter_[ch] = std::make_unique<AdaptiveFirFilter>( |
| config_.filter.coarse.length_blocks, |
| config_.filter.coarse_initial.length_blocks, |
| config.filter.config_change_duration_blocks, num_render_channels, |
| optimization, data_dumper_); |
| refined_gains_[ch] = std::make_unique<RefinedFilterUpdateGain>( |
| config_.filter.refined_initial, |
| config_.filter.config_change_duration_blocks); |
| coarse_gains_[ch] = std::make_unique<CoarseFilterUpdateGain>( |
| config_.filter.coarse_initial, |
| config.filter.config_change_duration_blocks); |
| } |
| |
| RTC_DCHECK(data_dumper_); |
| for (size_t ch = 0; ch < num_capture_channels_; ++ch) { |
| for (auto& H2_k : refined_frequency_responses_[ch]) { |
| H2_k.fill(0.f); |
| } |
| } |
| } |
| |
| Subtractor::~Subtractor() = default; |
| |
| void Subtractor::HandleEchoPathChange( |
| const EchoPathVariability& echo_path_variability) { |
| const auto full_reset = [&]() { |
| for (size_t ch = 0; ch < num_capture_channels_; ++ch) { |
| refined_filters_[ch]->HandleEchoPathChange(); |
| coarse_filter_[ch]->HandleEchoPathChange(); |
| refined_gains_[ch]->HandleEchoPathChange(echo_path_variability); |
| coarse_gains_[ch]->HandleEchoPathChange(); |
| refined_gains_[ch]->SetConfig(config_.filter.refined_initial, true); |
| coarse_gains_[ch]->SetConfig(config_.filter.coarse_initial, true); |
| refined_filters_[ch]->SetSizePartitions( |
| config_.filter.refined_initial.length_blocks, true); |
| coarse_filter_[ch]->SetSizePartitions( |
| config_.filter.coarse_initial.length_blocks, true); |
| } |
| }; |
| |
| if (echo_path_variability.delay_change != |
| EchoPathVariability::DelayAdjustment::kNone) { |
| full_reset(); |
| } |
| |
| if (echo_path_variability.gain_change) { |
| for (size_t ch = 0; ch < num_capture_channels_; ++ch) { |
| refined_gains_[ch]->HandleEchoPathChange(echo_path_variability); |
| } |
| } |
| } |
| |
| void Subtractor::ExitInitialState() { |
| for (size_t ch = 0; ch < num_capture_channels_; ++ch) { |
| refined_gains_[ch]->SetConfig(config_.filter.refined, false); |
| coarse_gains_[ch]->SetConfig(config_.filter.coarse, false); |
| refined_filters_[ch]->SetSizePartitions( |
| config_.filter.refined.length_blocks, false); |
| coarse_filter_[ch]->SetSizePartitions(config_.filter.coarse.length_blocks, |
| false); |
| } |
| } |
| |
| void Subtractor::Process(const RenderBuffer& render_buffer, |
| const Block& capture, |
| const RenderSignalAnalyzer& render_signal_analyzer, |
| const AecState& aec_state, |
| rtc::ArrayView<SubtractorOutput> outputs) { |
| RTC_DCHECK_EQ(num_capture_channels_, capture.NumChannels()); |
| |
| // Compute the render powers. |
| const bool same_filter_sizes = refined_filters_[0]->SizePartitions() == |
| coarse_filter_[0]->SizePartitions(); |
| std::array<float, kFftLengthBy2Plus1> X2_refined; |
| std::array<float, kFftLengthBy2Plus1> X2_coarse_data; |
| auto& X2_coarse = same_filter_sizes ? X2_refined : X2_coarse_data; |
| if (same_filter_sizes) { |
| render_buffer.SpectralSum(refined_filters_[0]->SizePartitions(), |
| &X2_refined); |
| } else if (refined_filters_[0]->SizePartitions() > |
| coarse_filter_[0]->SizePartitions()) { |
| render_buffer.SpectralSums(coarse_filter_[0]->SizePartitions(), |
| refined_filters_[0]->SizePartitions(), |
| &X2_coarse, &X2_refined); |
| } else { |
| render_buffer.SpectralSums(refined_filters_[0]->SizePartitions(), |
| coarse_filter_[0]->SizePartitions(), &X2_refined, |
| &X2_coarse); |
| } |
| |
| // Process all capture channels |
| for (size_t ch = 0; ch < num_capture_channels_; ++ch) { |
| SubtractorOutput& output = outputs[ch]; |
| rtc::ArrayView<const float> y = capture.View(/*band=*/0, ch); |
| FftData& E_refined = output.E_refined; |
| FftData E_coarse; |
| std::array<float, kBlockSize>& e_refined = output.e_refined; |
| std::array<float, kBlockSize>& e_coarse = output.e_coarse; |
| |
| FftData S; |
| FftData& G = S; |
| |
| // Form the outputs of the refined and coarse filters. |
| refined_filters_[ch]->Filter(render_buffer, &S); |
| PredictionError(fft_, S, y, &e_refined, &output.s_refined); |
| |
| coarse_filter_[ch]->Filter(render_buffer, &S); |
| PredictionError(fft_, S, y, &e_coarse, &output.s_coarse); |
| |
| // Compute the signal powers in the subtractor output. |
| output.ComputeMetrics(y); |
| |
| // Adjust the filter if needed. |
| bool refined_filters_adjusted = false; |
| filter_misadjustment_estimators_[ch].Update(output); |
| if (filter_misadjustment_estimators_[ch].IsAdjustmentNeeded()) { |
| float scale = filter_misadjustment_estimators_[ch].GetMisadjustment(); |
| refined_filters_[ch]->ScaleFilter(scale); |
| for (auto& h_k : refined_impulse_responses_[ch]) { |
| h_k *= scale; |
| } |
| ScaleFilterOutput(y, scale, e_refined, output.s_refined); |
| filter_misadjustment_estimators_[ch].Reset(); |
| refined_filters_adjusted = true; |
| } |
| |
| // Compute the FFts of the refined and coarse filter outputs. |
| fft_.ZeroPaddedFft(e_refined, Aec3Fft::Window::kHanning, &E_refined); |
| fft_.ZeroPaddedFft(e_coarse, Aec3Fft::Window::kHanning, &E_coarse); |
| |
| // Compute spectra for future use. |
| E_coarse.Spectrum(optimization_, output.E2_coarse); |
| E_refined.Spectrum(optimization_, output.E2_refined); |
| |
| // Update the refined filter. |
| if (!refined_filters_adjusted) { |
| // Do not allow the performance of the coarse filter to affect the |
| // adaptation speed of the refined filter just after the coarse filter has |
| // been reset. |
| const bool disallow_leakage_diverged = |
| coarse_filter_reset_hangover_[ch] > 0 && |
| use_coarse_filter_reset_hangover_; |
| |
| std::array<float, kFftLengthBy2Plus1> erl; |
| ComputeErl(optimization_, refined_frequency_responses_[ch], erl); |
| refined_gains_[ch]->Compute(X2_refined, render_signal_analyzer, output, |
| erl, refined_filters_[ch]->SizePartitions(), |
| aec_state.SaturatedCapture(), |
| disallow_leakage_diverged, &G); |
| } else { |
| G.re.fill(0.f); |
| G.im.fill(0.f); |
| } |
| refined_filters_[ch]->Adapt(render_buffer, G, |
| &refined_impulse_responses_[ch]); |
| refined_filters_[ch]->ComputeFrequencyResponse( |
| &refined_frequency_responses_[ch]); |
| |
| if (ch == 0) { |
| data_dumper_->DumpRaw("aec3_subtractor_G_refined", G.re); |
| data_dumper_->DumpRaw("aec3_subtractor_G_refined", G.im); |
| } |
| |
| // Update the coarse filter. |
| poor_coarse_filter_counters_[ch] = |
| output.e2_refined < output.e2_coarse |
| ? poor_coarse_filter_counters_[ch] + 1 |
| : 0; |
| if (poor_coarse_filter_counters_[ch] < 5) { |
| coarse_gains_[ch]->Compute(X2_coarse, render_signal_analyzer, E_coarse, |
| coarse_filter_[ch]->SizePartitions(), |
| aec_state.SaturatedCapture(), &G); |
| coarse_filter_reset_hangover_[ch] = |
| std::max(coarse_filter_reset_hangover_[ch] - 1, 0); |
| } else { |
| poor_coarse_filter_counters_[ch] = 0; |
| coarse_filter_[ch]->SetFilter(refined_filters_[ch]->SizePartitions(), |
| refined_filters_[ch]->GetFilter()); |
| coarse_gains_[ch]->Compute(X2_coarse, render_signal_analyzer, E_refined, |
| coarse_filter_[ch]->SizePartitions(), |
| aec_state.SaturatedCapture(), &G); |
| coarse_filter_reset_hangover_[ch] = |
| config_.filter.coarse_reset_hangover_blocks; |
| } |
| |
| if (ApmDataDumper::IsAvailable()) { |
| RTC_DCHECK_LT(ch, coarse_impulse_responses_.size()); |
| coarse_filter_[ch]->Adapt(render_buffer, G, |
| &coarse_impulse_responses_[ch]); |
| } else { |
| coarse_filter_[ch]->Adapt(render_buffer, G); |
| } |
| |
| if (ch == 0) { |
| data_dumper_->DumpRaw("aec3_subtractor_G_coarse", G.re); |
| data_dumper_->DumpRaw("aec3_subtractor_G_coarse", G.im); |
| filter_misadjustment_estimators_[ch].Dump(data_dumper_); |
| DumpFilters(); |
| } |
| |
| std::for_each(e_refined.begin(), e_refined.end(), |
| [](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); }); |
| |
| if (ch == 0) { |
| data_dumper_->DumpWav("aec3_refined_filters_output", kBlockSize, |
| &e_refined[0], 16000, 1); |
| data_dumper_->DumpWav("aec3_coarse_filter_output", kBlockSize, |
| &e_coarse[0], 16000, 1); |
| } |
| } |
| } |
| |
| void Subtractor::FilterMisadjustmentEstimator::Update( |
| const SubtractorOutput& output) { |
| e2_acum_ += output.e2_refined; |
| y2_acum_ += output.y2; |
| if (++n_blocks_acum_ == n_blocks_) { |
| if (y2_acum_ > n_blocks_ * 200.f * 200.f * kBlockSize) { |
| float update = (e2_acum_ / y2_acum_); |
| if (e2_acum_ > n_blocks_ * 7500.f * 7500.f * kBlockSize) { |
| // Duration equal to blockSizeMs * n_blocks_ * 4. |
| overhang_ = 4; |
| } else { |
| overhang_ = std::max(overhang_ - 1, 0); |
| } |
| |
| if ((update < inv_misadjustment_) || (overhang_ > 0)) { |
| inv_misadjustment_ += 0.1f * (update - inv_misadjustment_); |
| } |
| } |
| e2_acum_ = 0.f; |
| y2_acum_ = 0.f; |
| n_blocks_acum_ = 0; |
| } |
| } |
| |
| void Subtractor::FilterMisadjustmentEstimator::Reset() { |
| e2_acum_ = 0.f; |
| y2_acum_ = 0.f; |
| n_blocks_acum_ = 0; |
| inv_misadjustment_ = 0.f; |
| overhang_ = 0.f; |
| } |
| |
| void Subtractor::FilterMisadjustmentEstimator::Dump( |
| ApmDataDumper* data_dumper) const { |
| data_dumper->DumpRaw("aec3_inv_misadjustment_factor", inv_misadjustment_); |
| } |
| |
| } // namespace webrtc |