blob: a9c37e33cfec39e9411e7b7f29626cbd19ae4b64 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/vector_math.h"
#include <math.h>
#include "rtc_base/system/arch.h"
#include "system_wrappers/include/cpu_features_wrapper.h"
#include "test/gtest.h"
namespace webrtc {
#if defined(WEBRTC_HAS_NEON)
TEST(VectorMath, Sqrt) {
std::array<float, kFftLengthBy2Plus1> x;
std::array<float, kFftLengthBy2Plus1> z;
std::array<float, kFftLengthBy2Plus1> z_neon;
for (size_t k = 0; k < x.size(); ++k) {
x[k] = (2.f / 3.f) * k;
}
std::copy(x.begin(), x.end(), z.begin());
aec3::VectorMath(Aec3Optimization::kNone).Sqrt(z);
std::copy(x.begin(), x.end(), z_neon.begin());
aec3::VectorMath(Aec3Optimization::kNeon).Sqrt(z_neon);
for (size_t k = 0; k < z.size(); ++k) {
EXPECT_NEAR(z[k], z_neon[k], 0.0001f);
EXPECT_NEAR(sqrtf(x[k]), z_neon[k], 0.0001f);
}
}
TEST(VectorMath, Multiply) {
std::array<float, kFftLengthBy2Plus1> x;
std::array<float, kFftLengthBy2Plus1> y;
std::array<float, kFftLengthBy2Plus1> z;
std::array<float, kFftLengthBy2Plus1> z_neon;
for (size_t k = 0; k < x.size(); ++k) {
x[k] = k;
y[k] = (2.f / 3.f) * k;
}
aec3::VectorMath(Aec3Optimization::kNone).Multiply(x, y, z);
aec3::VectorMath(Aec3Optimization::kNeon).Multiply(x, y, z_neon);
for (size_t k = 0; k < z.size(); ++k) {
EXPECT_FLOAT_EQ(z[k], z_neon[k]);
EXPECT_FLOAT_EQ(x[k] * y[k], z_neon[k]);
}
}
TEST(VectorMath, Accumulate) {
std::array<float, kFftLengthBy2Plus1> x;
std::array<float, kFftLengthBy2Plus1> z;
std::array<float, kFftLengthBy2Plus1> z_neon;
for (size_t k = 0; k < x.size(); ++k) {
x[k] = k;
z[k] = z_neon[k] = 2.f * k;
}
aec3::VectorMath(Aec3Optimization::kNone).Accumulate(x, z);
aec3::VectorMath(Aec3Optimization::kNeon).Accumulate(x, z_neon);
for (size_t k = 0; k < z.size(); ++k) {
EXPECT_FLOAT_EQ(z[k], z_neon[k]);
EXPECT_FLOAT_EQ(x[k] + 2.f * x[k], z_neon[k]);
}
}
#endif
#if defined(WEBRTC_ARCH_X86_FAMILY)
TEST(VectorMath, Sse2Sqrt) {
if (GetCPUInfo(kSSE2) != 0) {
std::array<float, kFftLengthBy2Plus1> x;
std::array<float, kFftLengthBy2Plus1> z;
std::array<float, kFftLengthBy2Plus1> z_sse2;
for (size_t k = 0; k < x.size(); ++k) {
x[k] = (2.f / 3.f) * k;
}
std::copy(x.begin(), x.end(), z.begin());
aec3::VectorMath(Aec3Optimization::kNone).Sqrt(z);
std::copy(x.begin(), x.end(), z_sse2.begin());
aec3::VectorMath(Aec3Optimization::kSse2).Sqrt(z_sse2);
EXPECT_EQ(z, z_sse2);
for (size_t k = 0; k < z.size(); ++k) {
EXPECT_FLOAT_EQ(z[k], z_sse2[k]);
EXPECT_FLOAT_EQ(sqrtf(x[k]), z_sse2[k]);
}
}
}
TEST(VectorMath, Avx2Sqrt) {
if (GetCPUInfo(kAVX2) != 0) {
std::array<float, kFftLengthBy2Plus1> x;
std::array<float, kFftLengthBy2Plus1> z;
std::array<float, kFftLengthBy2Plus1> z_avx2;
for (size_t k = 0; k < x.size(); ++k) {
x[k] = (2.f / 3.f) * k;
}
std::copy(x.begin(), x.end(), z.begin());
aec3::VectorMath(Aec3Optimization::kNone).Sqrt(z);
std::copy(x.begin(), x.end(), z_avx2.begin());
aec3::VectorMath(Aec3Optimization::kAvx2).Sqrt(z_avx2);
EXPECT_EQ(z, z_avx2);
for (size_t k = 0; k < z.size(); ++k) {
EXPECT_FLOAT_EQ(z[k], z_avx2[k]);
EXPECT_FLOAT_EQ(sqrtf(x[k]), z_avx2[k]);
}
}
}
TEST(VectorMath, Sse2Multiply) {
if (GetCPUInfo(kSSE2) != 0) {
std::array<float, kFftLengthBy2Plus1> x;
std::array<float, kFftLengthBy2Plus1> y;
std::array<float, kFftLengthBy2Plus1> z;
std::array<float, kFftLengthBy2Plus1> z_sse2;
for (size_t k = 0; k < x.size(); ++k) {
x[k] = k;
y[k] = (2.f / 3.f) * k;
}
aec3::VectorMath(Aec3Optimization::kNone).Multiply(x, y, z);
aec3::VectorMath(Aec3Optimization::kSse2).Multiply(x, y, z_sse2);
for (size_t k = 0; k < z.size(); ++k) {
EXPECT_FLOAT_EQ(z[k], z_sse2[k]);
EXPECT_FLOAT_EQ(x[k] * y[k], z_sse2[k]);
}
}
}
TEST(VectorMath, Avx2Multiply) {
if (GetCPUInfo(kAVX2) != 0) {
std::array<float, kFftLengthBy2Plus1> x;
std::array<float, kFftLengthBy2Plus1> y;
std::array<float, kFftLengthBy2Plus1> z;
std::array<float, kFftLengthBy2Plus1> z_avx2;
for (size_t k = 0; k < x.size(); ++k) {
x[k] = k;
y[k] = (2.f / 3.f) * k;
}
aec3::VectorMath(Aec3Optimization::kNone).Multiply(x, y, z);
aec3::VectorMath(Aec3Optimization::kAvx2).Multiply(x, y, z_avx2);
for (size_t k = 0; k < z.size(); ++k) {
EXPECT_FLOAT_EQ(z[k], z_avx2[k]);
EXPECT_FLOAT_EQ(x[k] * y[k], z_avx2[k]);
}
}
}
TEST(VectorMath, Sse2Accumulate) {
if (GetCPUInfo(kSSE2) != 0) {
std::array<float, kFftLengthBy2Plus1> x;
std::array<float, kFftLengthBy2Plus1> z;
std::array<float, kFftLengthBy2Plus1> z_sse2;
for (size_t k = 0; k < x.size(); ++k) {
x[k] = k;
z[k] = z_sse2[k] = 2.f * k;
}
aec3::VectorMath(Aec3Optimization::kNone).Accumulate(x, z);
aec3::VectorMath(Aec3Optimization::kSse2).Accumulate(x, z_sse2);
for (size_t k = 0; k < z.size(); ++k) {
EXPECT_FLOAT_EQ(z[k], z_sse2[k]);
EXPECT_FLOAT_EQ(x[k] + 2.f * x[k], z_sse2[k]);
}
}
}
TEST(VectorMath, Avx2Accumulate) {
if (GetCPUInfo(kAVX2) != 0) {
std::array<float, kFftLengthBy2Plus1> x;
std::array<float, kFftLengthBy2Plus1> z;
std::array<float, kFftLengthBy2Plus1> z_avx2;
for (size_t k = 0; k < x.size(); ++k) {
x[k] = k;
z[k] = z_avx2[k] = 2.f * k;
}
aec3::VectorMath(Aec3Optimization::kNone).Accumulate(x, z);
aec3::VectorMath(Aec3Optimization::kAvx2).Accumulate(x, z_avx2);
for (size_t k = 0; k < z.size(); ++k) {
EXPECT_FLOAT_EQ(z[k], z_avx2[k]);
EXPECT_FLOAT_EQ(x[k] + 2.f * x[k], z_avx2[k]);
}
}
}
#endif
} // namespace webrtc