blob: 911a751cbeeb76719174ec082c9bbdcc65ba0602 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/openssl_key_pair.h"
#include <memory>
#include <utility>
#if defined(WEBRTC_WIN)
// Must be included first before openssl headers.
#include "rtc_base/win32.h" // NOLINT
#endif // WEBRTC_WIN
#include <openssl/bio.h>
#include <openssl/bn.h>
#include <openssl/pem.h>
#include <openssl/rsa.h>
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/openssl.h"
#include "rtc_base/openssl_utility.h"
namespace rtc {
// We could have exposed a myriad of parameters for the crypto stuff,
// but keeping it simple seems best.
// Generate a key pair. Caller is responsible for freeing the returned object.
static EVP_PKEY* MakeKey(const KeyParams& key_params) {
RTC_LOG(LS_INFO) << "Making key pair";
EVP_PKEY* pkey = EVP_PKEY_new();
if (key_params.type() == KT_RSA) {
int key_length = key_params.rsa_params().mod_size;
BIGNUM* exponent = BN_new();
RSA* rsa = RSA_new();
if (!pkey || !exponent || !rsa ||
!BN_set_word(exponent, key_params.rsa_params().pub_exp) ||
!RSA_generate_key_ex(rsa, key_length, exponent, nullptr) ||
!EVP_PKEY_assign_RSA(pkey, rsa)) {
EVP_PKEY_free(pkey);
BN_free(exponent);
RSA_free(rsa);
RTC_LOG(LS_ERROR) << "Failed to make RSA key pair";
return nullptr;
}
// ownership of rsa struct was assigned, don't free it.
BN_free(exponent);
} else if (key_params.type() == KT_ECDSA) {
if (key_params.ec_curve() == EC_NIST_P256) {
EC_KEY* ec_key = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1);
if (!ec_key) {
EVP_PKEY_free(pkey);
RTC_LOG(LS_ERROR) << "Failed to allocate EC key";
return nullptr;
}
// Ensure curve name is included when EC key is serialized.
// Without this call, OpenSSL versions before 1.1.0 will create
// certificates that don't work for TLS.
// This is a no-op for BoringSSL and OpenSSL 1.1.0+
EC_KEY_set_asn1_flag(ec_key, OPENSSL_EC_NAMED_CURVE);
if (!pkey || !ec_key || !EC_KEY_generate_key(ec_key) ||
!EVP_PKEY_assign_EC_KEY(pkey, ec_key)) {
EVP_PKEY_free(pkey);
EC_KEY_free(ec_key);
RTC_LOG(LS_ERROR) << "Failed to make EC key pair";
return nullptr;
}
// ownership of ec_key struct was assigned, don't free it.
} else {
// Add generation of any other curves here.
EVP_PKEY_free(pkey);
RTC_LOG(LS_ERROR) << "ECDSA key requested for unknown curve";
return nullptr;
}
} else {
EVP_PKEY_free(pkey);
RTC_LOG(LS_ERROR) << "Key type requested not understood";
return nullptr;
}
RTC_LOG(LS_INFO) << "Returning key pair";
return pkey;
}
std::unique_ptr<OpenSSLKeyPair> OpenSSLKeyPair::Generate(
const KeyParams& key_params) {
EVP_PKEY* pkey = MakeKey(key_params);
if (!pkey) {
openssl::LogSSLErrors("Generating key pair");
return nullptr;
}
return std::make_unique<OpenSSLKeyPair>(pkey);
}
std::unique_ptr<OpenSSLKeyPair> OpenSSLKeyPair::FromPrivateKeyPEMString(
const std::string& pem_string) {
BIO* bio =
BIO_new_mem_buf(const_cast<char*>(pem_string.data()), pem_string.size());
if (!bio) {
RTC_LOG(LS_ERROR) << "Failed to create a new BIO buffer.";
return nullptr;
}
BIO_set_mem_eof_return(bio, 0);
EVP_PKEY* pkey = PEM_read_bio_PrivateKey(bio, nullptr, nullptr, nullptr);
BIO_free(bio); // Frees the BIO, but not the pointed-to string.
if (!pkey) {
RTC_LOG(LS_ERROR) << "Failed to create the private key from PEM string.";
return nullptr;
}
if (EVP_PKEY_missing_parameters(pkey) != 0) {
RTC_LOG(LS_ERROR)
<< "The resulting key pair is missing public key parameters.";
EVP_PKEY_free(pkey);
return nullptr;
}
return std::make_unique<OpenSSLKeyPair>(pkey);
}
OpenSSLKeyPair::~OpenSSLKeyPair() {
EVP_PKEY_free(pkey_);
}
std::unique_ptr<OpenSSLKeyPair> OpenSSLKeyPair::Clone() {
AddReference();
return std::make_unique<OpenSSLKeyPair>(pkey_);
}
void OpenSSLKeyPair::AddReference() {
EVP_PKEY_up_ref(pkey_);
}
std::string OpenSSLKeyPair::PrivateKeyToPEMString() const {
BIO* temp_memory_bio = BIO_new(BIO_s_mem());
if (!temp_memory_bio) {
RTC_LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio";
RTC_NOTREACHED();
return "";
}
if (!PEM_write_bio_PrivateKey(temp_memory_bio, pkey_, nullptr, nullptr, 0,
nullptr, nullptr)) {
RTC_LOG_F(LS_ERROR) << "Failed to write private key";
BIO_free(temp_memory_bio);
RTC_NOTREACHED();
return "";
}
char* buffer;
size_t len = BIO_get_mem_data(temp_memory_bio, &buffer);
std::string priv_key_str(buffer, len);
BIO_free(temp_memory_bio);
return priv_key_str;
}
std::string OpenSSLKeyPair::PublicKeyToPEMString() const {
BIO* temp_memory_bio = BIO_new(BIO_s_mem());
if (!temp_memory_bio) {
RTC_LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio";
RTC_NOTREACHED();
return "";
}
if (!PEM_write_bio_PUBKEY(temp_memory_bio, pkey_)) {
RTC_LOG_F(LS_ERROR) << "Failed to write public key";
BIO_free(temp_memory_bio);
RTC_NOTREACHED();
return "";
}
BIO_write(temp_memory_bio, "\0", 1);
char* buffer;
BIO_get_mem_data(temp_memory_bio, &buffer);
std::string pub_key_str = buffer;
BIO_free(temp_memory_bio);
return pub_key_str;
}
bool OpenSSLKeyPair::operator==(const OpenSSLKeyPair& other) const {
return EVP_PKEY_cmp(this->pkey_, other.pkey_) == 1;
}
bool OpenSSLKeyPair::operator!=(const OpenSSLKeyPair& other) const {
return !(*this == other);
}
} // namespace rtc