| /* |
| * Copyright (c) 2021 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| #include "net/dcsctp/tx/outstanding_data.h" |
| |
| #include <algorithm> |
| #include <set> |
| #include <utility> |
| #include <vector> |
| |
| #include "net/dcsctp/common/math.h" |
| #include "net/dcsctp/common/sequence_numbers.h" |
| #include "net/dcsctp/public/types.h" |
| #include "rtc_base/logging.h" |
| |
| namespace dcsctp { |
| |
| // The number of times a packet must be NACKed before it's retransmitted. |
| // See https://tools.ietf.org/html/rfc4960#section-7.2.4 |
| constexpr uint8_t kNumberOfNacksForRetransmission = 3; |
| |
| // Returns how large a chunk will be, serialized, carrying the data |
| size_t OutstandingData::GetSerializedChunkSize(const Data& data) const { |
| return RoundUpTo4(data_chunk_header_size_ + data.size()); |
| } |
| |
| void OutstandingData::Item::Ack() { |
| if (lifecycle_ != Lifecycle::kAbandoned) { |
| lifecycle_ = Lifecycle::kActive; |
| } |
| ack_state_ = AckState::kAcked; |
| } |
| |
| OutstandingData::Item::NackAction OutstandingData::Item::Nack( |
| bool retransmit_now) { |
| ack_state_ = AckState::kNacked; |
| ++nack_count_; |
| if (!should_be_retransmitted() && !is_abandoned() && |
| (retransmit_now || nack_count_ >= kNumberOfNacksForRetransmission)) { |
| // Nacked enough times - it's considered lost. |
| if (num_retransmissions_ < *max_retransmissions_) { |
| lifecycle_ = Lifecycle::kToBeRetransmitted; |
| return NackAction::kRetransmit; |
| } |
| Abandon(); |
| return NackAction::kAbandon; |
| } |
| return NackAction::kNothing; |
| } |
| |
| void OutstandingData::Item::MarkAsRetransmitted() { |
| lifecycle_ = Lifecycle::kActive; |
| ack_state_ = AckState::kUnacked; |
| |
| nack_count_ = 0; |
| ++num_retransmissions_; |
| } |
| |
| void OutstandingData::Item::Abandon() { |
| lifecycle_ = Lifecycle::kAbandoned; |
| } |
| |
| bool OutstandingData::Item::has_expired(TimeMs now) const { |
| return expires_at_ <= now; |
| } |
| |
| bool OutstandingData::IsConsistent() const { |
| size_t actual_outstanding_bytes = 0; |
| size_t actual_outstanding_items = 0; |
| |
| std::set<UnwrappedTSN> combined_to_be_retransmitted; |
| combined_to_be_retransmitted.insert(to_be_retransmitted_.begin(), |
| to_be_retransmitted_.end()); |
| combined_to_be_retransmitted.insert(to_be_fast_retransmitted_.begin(), |
| to_be_fast_retransmitted_.end()); |
| |
| std::set<UnwrappedTSN> actual_combined_to_be_retransmitted; |
| for (const auto& [tsn, item] : outstanding_data_) { |
| if (item.is_outstanding()) { |
| actual_outstanding_bytes += GetSerializedChunkSize(item.data()); |
| ++actual_outstanding_items; |
| } |
| |
| if (item.should_be_retransmitted()) { |
| actual_combined_to_be_retransmitted.insert(tsn); |
| } |
| } |
| |
| if (outstanding_data_.empty() && |
| next_tsn_ != last_cumulative_tsn_ack_.next_value()) { |
| return false; |
| } |
| |
| return actual_outstanding_bytes == outstanding_bytes_ && |
| actual_outstanding_items == outstanding_items_ && |
| actual_combined_to_be_retransmitted == combined_to_be_retransmitted; |
| } |
| |
| void OutstandingData::AckChunk(AckInfo& ack_info, |
| std::map<UnwrappedTSN, Item>::iterator iter) { |
| if (!iter->second.is_acked()) { |
| size_t serialized_size = GetSerializedChunkSize(iter->second.data()); |
| ack_info.bytes_acked += serialized_size; |
| if (iter->second.is_outstanding()) { |
| outstanding_bytes_ -= serialized_size; |
| --outstanding_items_; |
| } |
| if (iter->second.should_be_retransmitted()) { |
| RTC_DCHECK(to_be_fast_retransmitted_.find(iter->first) == |
| to_be_fast_retransmitted_.end()); |
| to_be_retransmitted_.erase(iter->first); |
| } |
| iter->second.Ack(); |
| ack_info.highest_tsn_acked = |
| std::max(ack_info.highest_tsn_acked, iter->first); |
| } |
| } |
| |
| OutstandingData::AckInfo OutstandingData::HandleSack( |
| UnwrappedTSN cumulative_tsn_ack, |
| rtc::ArrayView<const SackChunk::GapAckBlock> gap_ack_blocks, |
| bool is_in_fast_recovery) { |
| OutstandingData::AckInfo ack_info(cumulative_tsn_ack); |
| // Erase all items up to cumulative_tsn_ack. |
| RemoveAcked(cumulative_tsn_ack, ack_info); |
| |
| // ACK packets reported in the gap ack blocks |
| AckGapBlocks(cumulative_tsn_ack, gap_ack_blocks, ack_info); |
| |
| // NACK and possibly mark for retransmit chunks that weren't acked. |
| NackBetweenAckBlocks(cumulative_tsn_ack, gap_ack_blocks, is_in_fast_recovery, |
| ack_info); |
| |
| RTC_DCHECK(IsConsistent()); |
| return ack_info; |
| } |
| |
| void OutstandingData::RemoveAcked(UnwrappedTSN cumulative_tsn_ack, |
| AckInfo& ack_info) { |
| auto first_unacked = outstanding_data_.upper_bound(cumulative_tsn_ack); |
| |
| for (auto iter = outstanding_data_.begin(); iter != first_unacked; ++iter) { |
| AckChunk(ack_info, iter); |
| if (iter->second.lifecycle_id().IsSet()) { |
| RTC_DCHECK(iter->second.data().is_end); |
| if (iter->second.is_abandoned()) { |
| ack_info.abandoned_lifecycle_ids.push_back(iter->second.lifecycle_id()); |
| } else { |
| ack_info.acked_lifecycle_ids.push_back(iter->second.lifecycle_id()); |
| } |
| } |
| } |
| |
| outstanding_data_.erase(outstanding_data_.begin(), first_unacked); |
| last_cumulative_tsn_ack_ = cumulative_tsn_ack; |
| } |
| |
| void OutstandingData::AckGapBlocks( |
| UnwrappedTSN cumulative_tsn_ack, |
| rtc::ArrayView<const SackChunk::GapAckBlock> gap_ack_blocks, |
| AckInfo& ack_info) { |
| // Mark all non-gaps as ACKED (but they can't be removed) as (from RFC) |
| // "SCTP considers the information carried in the Gap Ack Blocks in the |
| // SACK chunk as advisory.". Note that when NR-SACK is supported, this can be |
| // handled differently. |
| |
| for (auto& block : gap_ack_blocks) { |
| auto start = outstanding_data_.lower_bound( |
| UnwrappedTSN::AddTo(cumulative_tsn_ack, block.start)); |
| auto end = outstanding_data_.upper_bound( |
| UnwrappedTSN::AddTo(cumulative_tsn_ack, block.end)); |
| for (auto iter = start; iter != end; ++iter) { |
| AckChunk(ack_info, iter); |
| } |
| } |
| } |
| |
| void OutstandingData::NackBetweenAckBlocks( |
| UnwrappedTSN cumulative_tsn_ack, |
| rtc::ArrayView<const SackChunk::GapAckBlock> gap_ack_blocks, |
| bool is_in_fast_recovery, |
| OutstandingData::AckInfo& ack_info) { |
| // Mark everything between the blocks as NACKED/TO_BE_RETRANSMITTED. |
| // https://tools.ietf.org/html/rfc4960#section-7.2.4 |
| // "Mark the DATA chunk(s) with three miss indications for retransmission." |
| // "For each incoming SACK, miss indications are incremented only for |
| // missing TSNs prior to the highest TSN newly acknowledged in the SACK." |
| // |
| // What this means is that only when there is a increasing stream of data |
| // received and there are new packets seen (since last time), packets that are |
| // in-flight and between gaps should be nacked. This means that SCTP relies on |
| // the T3-RTX-timer to re-send packets otherwise. |
| UnwrappedTSN max_tsn_to_nack = ack_info.highest_tsn_acked; |
| if (is_in_fast_recovery && cumulative_tsn_ack > last_cumulative_tsn_ack_) { |
| // https://tools.ietf.org/html/rfc4960#section-7.2.4 |
| // "If an endpoint is in Fast Recovery and a SACK arrives that advances |
| // the Cumulative TSN Ack Point, the miss indications are incremented for |
| // all TSNs reported missing in the SACK." |
| max_tsn_to_nack = UnwrappedTSN::AddTo( |
| cumulative_tsn_ack, |
| gap_ack_blocks.empty() ? 0 : gap_ack_blocks.rbegin()->end); |
| } |
| |
| UnwrappedTSN prev_block_last_acked = cumulative_tsn_ack; |
| for (auto& block : gap_ack_blocks) { |
| UnwrappedTSN cur_block_first_acked = |
| UnwrappedTSN::AddTo(cumulative_tsn_ack, block.start); |
| for (auto iter = outstanding_data_.upper_bound(prev_block_last_acked); |
| iter != outstanding_data_.lower_bound(cur_block_first_acked); ++iter) { |
| if (iter->first <= max_tsn_to_nack) { |
| ack_info.has_packet_loss |= |
| NackItem(iter->first, iter->second, /*retransmit_now=*/false, |
| /*do_fast_retransmit=*/!is_in_fast_recovery); |
| } |
| } |
| prev_block_last_acked = UnwrappedTSN::AddTo(cumulative_tsn_ack, block.end); |
| } |
| |
| // Note that packets are not NACKED which are above the highest gap-ack-block |
| // (or above the cumulative ack TSN if no gap-ack-blocks) as only packets |
| // up until the highest_tsn_acked (see above) should be considered when |
| // NACKing. |
| } |
| |
| bool OutstandingData::NackItem(UnwrappedTSN tsn, |
| Item& item, |
| bool retransmit_now, |
| bool do_fast_retransmit) { |
| if (item.is_outstanding()) { |
| outstanding_bytes_ -= GetSerializedChunkSize(item.data()); |
| --outstanding_items_; |
| } |
| |
| switch (item.Nack(retransmit_now)) { |
| case Item::NackAction::kNothing: |
| return false; |
| case Item::NackAction::kRetransmit: |
| if (do_fast_retransmit) { |
| to_be_fast_retransmitted_.insert(tsn); |
| } else { |
| to_be_retransmitted_.insert(tsn); |
| } |
| RTC_DLOG(LS_VERBOSE) << *tsn.Wrap() << " marked for retransmission"; |
| break; |
| case Item::NackAction::kAbandon: |
| AbandonAllFor(item); |
| break; |
| } |
| return true; |
| } |
| |
| void OutstandingData::AbandonAllFor(const Item& item) { |
| // Erase all remaining chunks from the producer, if any. |
| if (discard_from_send_queue_(item.data().is_unordered, item.data().stream_id, |
| item.data().message_id)) { |
| // There were remaining chunks to be produced for this message. Since the |
| // receiver may have already received all chunks (up till now) for this |
| // message, we can't just FORWARD-TSN to the last fragment in this |
| // (abandoned) message and start sending a new message, as the receiver will |
| // then see a new message before the end of the previous one was seen (or |
| // skipped over). So create a new fragment, representing the end, that the |
| // received will never see as it is abandoned immediately and used as cum |
| // TSN in the sent FORWARD-TSN. |
| UnwrappedTSN tsn = next_tsn_; |
| next_tsn_.Increment(); |
| Data message_end(item.data().stream_id, item.data().ssn, |
| item.data().message_id, item.data().fsn, item.data().ppid, |
| std::vector<uint8_t>(), Data::IsBeginning(false), |
| Data::IsEnd(true), item.data().is_unordered); |
| Item& added_item = |
| outstanding_data_ |
| .emplace(std::piecewise_construct, std::forward_as_tuple(tsn), |
| std::forward_as_tuple(std::move(message_end), TimeMs(0), |
| MaxRetransmits::NoLimit(), |
| TimeMs::InfiniteFuture(), |
| LifecycleId::NotSet())) |
| .first->second; |
| // The added chunk shouldn't be included in `outstanding_bytes`, so set it |
| // as acked. |
| added_item.Ack(); |
| RTC_DLOG(LS_VERBOSE) << "Adding unsent end placeholder for message at tsn=" |
| << *tsn.Wrap(); |
| } |
| |
| for (auto& [tsn, other] : outstanding_data_) { |
| if (!other.is_abandoned() && |
| other.data().stream_id == item.data().stream_id && |
| other.data().is_unordered == item.data().is_unordered && |
| other.data().message_id == item.data().message_id) { |
| RTC_DLOG(LS_VERBOSE) << "Marking chunk " << *tsn.Wrap() |
| << " as abandoned"; |
| if (other.should_be_retransmitted()) { |
| to_be_fast_retransmitted_.erase(tsn); |
| to_be_retransmitted_.erase(tsn); |
| } |
| other.Abandon(); |
| } |
| } |
| } |
| |
| std::vector<std::pair<TSN, Data>> OutstandingData::ExtractChunksThatCanFit( |
| std::set<UnwrappedTSN>& chunks, |
| size_t max_size) { |
| std::vector<std::pair<TSN, Data>> result; |
| |
| for (auto it = chunks.begin(); it != chunks.end();) { |
| UnwrappedTSN tsn = *it; |
| auto elem = outstanding_data_.find(tsn); |
| RTC_DCHECK(elem != outstanding_data_.end()); |
| Item& item = elem->second; |
| RTC_DCHECK(item.should_be_retransmitted()); |
| RTC_DCHECK(!item.is_outstanding()); |
| RTC_DCHECK(!item.is_abandoned()); |
| RTC_DCHECK(!item.is_acked()); |
| |
| size_t serialized_size = GetSerializedChunkSize(item.data()); |
| if (serialized_size <= max_size) { |
| item.MarkAsRetransmitted(); |
| result.emplace_back(tsn.Wrap(), item.data().Clone()); |
| max_size -= serialized_size; |
| outstanding_bytes_ += serialized_size; |
| ++outstanding_items_; |
| it = chunks.erase(it); |
| } else { |
| ++it; |
| } |
| // No point in continuing if the packet is full. |
| if (max_size <= data_chunk_header_size_) { |
| break; |
| } |
| } |
| return result; |
| } |
| |
| std::vector<std::pair<TSN, Data>> |
| OutstandingData::GetChunksToBeFastRetransmitted(size_t max_size) { |
| std::vector<std::pair<TSN, Data>> result = |
| ExtractChunksThatCanFit(to_be_fast_retransmitted_, max_size); |
| |
| // https://datatracker.ietf.org/doc/html/rfc4960#section-7.2.4 |
| // "Those TSNs marked for retransmission due to the Fast-Retransmit algorithm |
| // that did not fit in the sent datagram carrying K other TSNs are also marked |
| // as ineligible for a subsequent Fast Retransmit. However, as they are |
| // marked for retransmission they will be retransmitted later on as soon as |
| // cwnd allows." |
| if (!to_be_fast_retransmitted_.empty()) { |
| to_be_retransmitted_.insert(to_be_fast_retransmitted_.begin(), |
| to_be_fast_retransmitted_.end()); |
| to_be_fast_retransmitted_.clear(); |
| } |
| |
| RTC_DCHECK(IsConsistent()); |
| return result; |
| } |
| |
| std::vector<std::pair<TSN, Data>> OutstandingData::GetChunksToBeRetransmitted( |
| size_t max_size) { |
| // Chunks scheduled for fast retransmission must be sent first. |
| RTC_DCHECK(to_be_fast_retransmitted_.empty()); |
| return ExtractChunksThatCanFit(to_be_retransmitted_, max_size); |
| } |
| |
| void OutstandingData::ExpireOutstandingChunks(TimeMs now) { |
| for (const auto& [tsn, item] : outstanding_data_) { |
| // Chunks that are nacked can be expired. Care should be taken not to expire |
| // unacked (in-flight) chunks as they might have been received, but the SACK |
| // is either delayed or in-flight and may be received later. |
| if (item.is_abandoned()) { |
| // Already abandoned. |
| } else if (item.is_nacked() && item.has_expired(now)) { |
| RTC_DLOG(LS_VERBOSE) << "Marking nacked chunk " << *tsn.Wrap() |
| << " and message " << *item.data().message_id |
| << " as expired"; |
| AbandonAllFor(item); |
| } else { |
| // A non-expired chunk. No need to iterate any further. |
| break; |
| } |
| } |
| RTC_DCHECK(IsConsistent()); |
| } |
| |
| UnwrappedTSN OutstandingData::highest_outstanding_tsn() const { |
| return outstanding_data_.empty() ? last_cumulative_tsn_ack_ |
| : outstanding_data_.rbegin()->first; |
| } |
| |
| absl::optional<UnwrappedTSN> OutstandingData::Insert( |
| const Data& data, |
| TimeMs time_sent, |
| MaxRetransmits max_retransmissions, |
| TimeMs expires_at, |
| LifecycleId lifecycle_id) { |
| UnwrappedTSN tsn = next_tsn_; |
| next_tsn_.Increment(); |
| |
| // All chunks are always padded to be even divisible by 4. |
| size_t chunk_size = GetSerializedChunkSize(data); |
| outstanding_bytes_ += chunk_size; |
| ++outstanding_items_; |
| auto it = outstanding_data_ |
| .emplace(std::piecewise_construct, std::forward_as_tuple(tsn), |
| std::forward_as_tuple(data.Clone(), time_sent, |
| max_retransmissions, expires_at, |
| lifecycle_id)) |
| .first; |
| |
| if (it->second.has_expired(time_sent)) { |
| // No need to send it - it was expired when it was in the send |
| // queue. |
| RTC_DLOG(LS_VERBOSE) << "Marking freshly produced chunk " |
| << *it->first.Wrap() << " and message " |
| << *it->second.data().message_id << " as expired"; |
| AbandonAllFor(it->second); |
| RTC_DCHECK(IsConsistent()); |
| return absl::nullopt; |
| } |
| |
| RTC_DCHECK(IsConsistent()); |
| return tsn; |
| } |
| |
| void OutstandingData::NackAll() { |
| for (auto& [tsn, item] : outstanding_data_) { |
| if (!item.is_acked()) { |
| NackItem(tsn, item, /*retransmit_now=*/true, |
| /*do_fast_retransmit=*/false); |
| } |
| } |
| RTC_DCHECK(IsConsistent()); |
| } |
| |
| absl::optional<DurationMs> OutstandingData::MeasureRTT(TimeMs now, |
| UnwrappedTSN tsn) const { |
| auto it = outstanding_data_.find(tsn); |
| if (it != outstanding_data_.end() && !it->second.has_been_retransmitted()) { |
| // https://tools.ietf.org/html/rfc4960#section-6.3.1 |
| // "Karn's algorithm: RTT measurements MUST NOT be made using |
| // packets that were retransmitted (and thus for which it is ambiguous |
| // whether the reply was for the first instance of the chunk or for a |
| // later instance)" |
| return now - it->second.time_sent(); |
| } |
| return absl::nullopt; |
| } |
| |
| std::vector<std::pair<TSN, OutstandingData::State>> |
| OutstandingData::GetChunkStatesForTesting() const { |
| std::vector<std::pair<TSN, State>> states; |
| states.emplace_back(last_cumulative_tsn_ack_.Wrap(), State::kAcked); |
| for (const auto& [tsn, item] : outstanding_data_) { |
| State state; |
| if (item.is_abandoned()) { |
| state = State::kAbandoned; |
| } else if (item.should_be_retransmitted()) { |
| state = State::kToBeRetransmitted; |
| } else if (item.is_acked()) { |
| state = State::kAcked; |
| } else if (item.is_outstanding()) { |
| state = State::kInFlight; |
| } else { |
| state = State::kNacked; |
| } |
| |
| states.emplace_back(tsn.Wrap(), state); |
| } |
| return states; |
| } |
| |
| bool OutstandingData::ShouldSendForwardTsn() const { |
| if (!outstanding_data_.empty()) { |
| auto it = outstanding_data_.begin(); |
| return it->first == last_cumulative_tsn_ack_.next_value() && |
| it->second.is_abandoned(); |
| } |
| return false; |
| } |
| |
| ForwardTsnChunk OutstandingData::CreateForwardTsn() const { |
| std::map<StreamID, SSN> skipped_per_ordered_stream; |
| UnwrappedTSN new_cumulative_ack = last_cumulative_tsn_ack_; |
| |
| for (const auto& [tsn, item] : outstanding_data_) { |
| if ((tsn != new_cumulative_ack.next_value()) || !item.is_abandoned()) { |
| break; |
| } |
| new_cumulative_ack = tsn; |
| if (!item.data().is_unordered && |
| item.data().ssn > skipped_per_ordered_stream[item.data().stream_id]) { |
| skipped_per_ordered_stream[item.data().stream_id] = item.data().ssn; |
| } |
| } |
| |
| std::vector<ForwardTsnChunk::SkippedStream> skipped_streams; |
| skipped_streams.reserve(skipped_per_ordered_stream.size()); |
| for (const auto& [stream_id, ssn] : skipped_per_ordered_stream) { |
| skipped_streams.emplace_back(stream_id, ssn); |
| } |
| return ForwardTsnChunk(new_cumulative_ack.Wrap(), std::move(skipped_streams)); |
| } |
| |
| IForwardTsnChunk OutstandingData::CreateIForwardTsn() const { |
| std::map<std::pair<IsUnordered, StreamID>, MID> skipped_per_stream; |
| UnwrappedTSN new_cumulative_ack = last_cumulative_tsn_ack_; |
| |
| for (const auto& [tsn, item] : outstanding_data_) { |
| if ((tsn != new_cumulative_ack.next_value()) || !item.is_abandoned()) { |
| break; |
| } |
| new_cumulative_ack = tsn; |
| std::pair<IsUnordered, StreamID> stream_id = |
| std::make_pair(item.data().is_unordered, item.data().stream_id); |
| |
| if (item.data().message_id > skipped_per_stream[stream_id]) { |
| skipped_per_stream[stream_id] = item.data().message_id; |
| } |
| } |
| |
| std::vector<IForwardTsnChunk::SkippedStream> skipped_streams; |
| skipped_streams.reserve(skipped_per_stream.size()); |
| for (const auto& [stream, message_id] : skipped_per_stream) { |
| skipped_streams.emplace_back(stream.first, stream.second, message_id); |
| } |
| |
| return IForwardTsnChunk(new_cumulative_ack.Wrap(), |
| std::move(skipped_streams)); |
| } |
| |
| void OutstandingData::ResetSequenceNumbers(UnwrappedTSN next_tsn, |
| UnwrappedTSN last_cumulative_tsn) { |
| RTC_DCHECK(outstanding_data_.empty()); |
| RTC_DCHECK(next_tsn_ == last_cumulative_tsn_ack_.next_value()); |
| RTC_DCHECK(next_tsn == last_cumulative_tsn.next_value()); |
| next_tsn_ = next_tsn; |
| last_cumulative_tsn_ack_ = last_cumulative_tsn; |
| } |
| } // namespace dcsctp |