| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <array> |
| |
| #include "common_audio/resampler/include/resampler.h" |
| #include "test/gtest.h" |
| |
| // TODO(andrew): this is a work-in-progress. Many more tests are needed. |
| |
| namespace webrtc { |
| namespace { |
| |
| const int kNumChannels[] = {1, 2}; |
| const size_t kNumChannelsSize = sizeof(kNumChannels) / sizeof(*kNumChannels); |
| |
| // Rates we must support. |
| const int kMaxRate = 96000; |
| const int kRates[] = {8000, 16000, 32000, 44000, 48000, kMaxRate}; |
| const size_t kRatesSize = sizeof(kRates) / sizeof(*kRates); |
| const int kMaxChannels = 2; |
| const size_t kDataSize = static_cast<size_t>(kMaxChannels * kMaxRate / 100); |
| |
| // TODO(andrew): should we be supporting these combinations? |
| bool ValidRates(int in_rate, int out_rate) { |
| // Not the most compact notation, for clarity. |
| if ((in_rate == 44000 && (out_rate == 48000 || out_rate == 96000)) || |
| (out_rate == 44000 && (in_rate == 48000 || in_rate == 96000))) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| class ResamplerTest : public testing::Test { |
| protected: |
| ResamplerTest(); |
| virtual void SetUp(); |
| virtual void TearDown(); |
| |
| void ResetIfNeededAndPush(int in_rate, int out_rate, int num_channels); |
| |
| Resampler rs_; |
| int16_t data_in_[kDataSize]; |
| int16_t data_out_[kDataSize]; |
| }; |
| |
| ResamplerTest::ResamplerTest() {} |
| |
| void ResamplerTest::SetUp() { |
| // Initialize input data with anything. The tests are content independent. |
| memset(data_in_, 1, sizeof(data_in_)); |
| } |
| |
| void ResamplerTest::TearDown() {} |
| |
| void ResamplerTest::ResetIfNeededAndPush(int in_rate, |
| int out_rate, |
| int num_channels) { |
| std::ostringstream ss; |
| ss << "Input rate: " << in_rate << ", output rate: " << out_rate |
| << ", channel count: " << num_channels; |
| SCOPED_TRACE(ss.str()); |
| |
| if (ValidRates(in_rate, out_rate)) { |
| size_t in_length = static_cast<size_t>(in_rate / 100); |
| size_t out_length = 0; |
| EXPECT_EQ(0, rs_.ResetIfNeeded(in_rate, out_rate, num_channels)); |
| EXPECT_EQ(0, |
| rs_.Push(data_in_, in_length, data_out_, kDataSize, out_length)); |
| EXPECT_EQ(static_cast<size_t>(out_rate / 100), out_length); |
| } else { |
| EXPECT_EQ(-1, rs_.ResetIfNeeded(in_rate, out_rate, num_channels)); |
| } |
| } |
| |
| TEST_F(ResamplerTest, Reset) { |
| // The only failure mode for the constructor is if Reset() fails. For the |
| // time being then (until an Init function is added), we rely on Reset() |
| // to test the constructor. |
| |
| // Check that all required combinations are supported. |
| for (size_t i = 0; i < kRatesSize; ++i) { |
| for (size_t j = 0; j < kRatesSize; ++j) { |
| for (size_t k = 0; k < kNumChannelsSize; ++k) { |
| std::ostringstream ss; |
| ss << "Input rate: " << kRates[i] << ", output rate: " << kRates[j] |
| << ", channels: " << kNumChannels[k]; |
| SCOPED_TRACE(ss.str()); |
| if (ValidRates(kRates[i], kRates[j])) |
| EXPECT_EQ(0, rs_.Reset(kRates[i], kRates[j], kNumChannels[k])); |
| else |
| EXPECT_EQ(-1, rs_.Reset(kRates[i], kRates[j], kNumChannels[k])); |
| } |
| } |
| } |
| } |
| |
| // TODO(tlegrand): Replace code inside the two tests below with a function |
| // with number of channels and ResamplerType as input. |
| TEST_F(ResamplerTest, Mono) { |
| const int kChannels = 1; |
| for (size_t i = 0; i < kRatesSize; ++i) { |
| for (size_t j = 0; j < kRatesSize; ++j) { |
| std::ostringstream ss; |
| ss << "Input rate: " << kRates[i] << ", output rate: " << kRates[j]; |
| SCOPED_TRACE(ss.str()); |
| |
| if (ValidRates(kRates[i], kRates[j])) { |
| size_t in_length = static_cast<size_t>(kRates[i] / 100); |
| size_t out_length = 0; |
| EXPECT_EQ(0, rs_.Reset(kRates[i], kRates[j], kChannels)); |
| EXPECT_EQ( |
| 0, rs_.Push(data_in_, in_length, data_out_, kDataSize, out_length)); |
| EXPECT_EQ(static_cast<size_t>(kRates[j] / 100), out_length); |
| } else { |
| EXPECT_EQ(-1, rs_.Reset(kRates[i], kRates[j], kChannels)); |
| } |
| } |
| } |
| } |
| |
| TEST_F(ResamplerTest, Stereo) { |
| const int kChannels = 2; |
| for (size_t i = 0; i < kRatesSize; ++i) { |
| for (size_t j = 0; j < kRatesSize; ++j) { |
| std::ostringstream ss; |
| ss << "Input rate: " << kRates[i] << ", output rate: " << kRates[j]; |
| SCOPED_TRACE(ss.str()); |
| |
| if (ValidRates(kRates[i], kRates[j])) { |
| size_t in_length = static_cast<size_t>(kChannels * kRates[i] / 100); |
| size_t out_length = 0; |
| EXPECT_EQ(0, rs_.Reset(kRates[i], kRates[j], kChannels)); |
| EXPECT_EQ( |
| 0, rs_.Push(data_in_, in_length, data_out_, kDataSize, out_length)); |
| EXPECT_EQ(static_cast<size_t>(kChannels * kRates[j] / 100), out_length); |
| } else { |
| EXPECT_EQ(-1, rs_.Reset(kRates[i], kRates[j], kChannels)); |
| } |
| } |
| } |
| } |
| |
| // Try multiple resets between a few supported and unsupported rates. |
| TEST_F(ResamplerTest, MultipleResets) { |
| constexpr size_t kNumChanges = 5; |
| constexpr std::array<int, kNumChanges> kInRates = { |
| {8000, 44000, 44000, 32000, 32000}}; |
| constexpr std::array<int, kNumChanges> kOutRates = { |
| {16000, 48000, 48000, 16000, 16000}}; |
| constexpr std::array<int, kNumChanges> kNumChannels = {{2, 2, 2, 2, 1}}; |
| for (size_t i = 0; i < kNumChanges; ++i) { |
| ResetIfNeededAndPush(kInRates[i], kOutRates[i], kNumChannels[i]); |
| } |
| } |
| |
| } // namespace |
| } // namespace webrtc |