blob: 1a07f8febf218735a5a6b7f5ecd57a1929631c14 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/p2p/base/relayport.h"
#include "webrtc/base/asyncpacketsocket.h"
#include "webrtc/base/helpers.h"
#include "webrtc/base/logging.h"
namespace cricket {
static const uint32 kMessageConnectTimeout = 1;
static const int kKeepAliveDelay = 10 * 60 * 1000;
static const int kRetryTimeout = 50 * 1000; // ICE says 50 secs
// How long to wait for a socket to connect to remote host in milliseconds
// before trying another connection.
static const int kSoftConnectTimeoutMs = 3 * 1000;
// Handles a connection to one address/port/protocol combination for a
// particular RelayEntry.
class RelayConnection : public sigslot::has_slots<> {
public:
RelayConnection(const ProtocolAddress* protocol_address,
rtc::AsyncPacketSocket* socket,
rtc::Thread* thread);
~RelayConnection();
rtc::AsyncPacketSocket* socket() const { return socket_; }
const ProtocolAddress* protocol_address() {
return protocol_address_;
}
rtc::SocketAddress GetAddress() const {
return protocol_address_->address;
}
ProtocolType GetProtocol() const {
return protocol_address_->proto;
}
int SetSocketOption(rtc::Socket::Option opt, int value);
// Validates a response to a STUN allocate request.
bool CheckResponse(StunMessage* msg);
// Sends data to the relay server.
int Send(const void* pv, size_t cb, const rtc::PacketOptions& options);
// Sends a STUN allocate request message to the relay server.
void SendAllocateRequest(RelayEntry* entry, int delay);
// Return the latest error generated by the socket.
int GetError() { return socket_->GetError(); }
// Called on behalf of a StunRequest to write data to the socket. This is
// already STUN intended for the server, so no wrapping is necessary.
void OnSendPacket(const void* data, size_t size, StunRequest* req);
private:
rtc::AsyncPacketSocket* socket_;
const ProtocolAddress* protocol_address_;
StunRequestManager *request_manager_;
};
// Manages a number of connections to the relayserver, one for each
// available protocol. We aim to use each connection for only a
// specific destination address so that we can avoid wrapping every
// packet in a STUN send / data indication.
class RelayEntry : public rtc::MessageHandler,
public sigslot::has_slots<> {
public:
RelayEntry(RelayPort* port, const rtc::SocketAddress& ext_addr);
~RelayEntry();
RelayPort* port() { return port_; }
const rtc::SocketAddress& address() const { return ext_addr_; }
void set_address(const rtc::SocketAddress& addr) { ext_addr_ = addr; }
bool connected() const { return connected_; }
bool locked() const { return locked_; }
// Returns the last error on the socket of this entry.
int GetError();
// Returns the most preferred connection of the given
// ones. Connections are rated based on protocol in the order of:
// UDP, TCP and SSLTCP, where UDP is the most preferred protocol
static RelayConnection* GetBestConnection(RelayConnection* conn1,
RelayConnection* conn2);
// Sends the STUN requests to the server to initiate this connection.
void Connect();
// Called when this entry becomes connected. The address given is the one
// exposed to the outside world on the relay server.
void OnConnect(const rtc::SocketAddress& mapped_addr,
RelayConnection* socket);
// Sends a packet to the given destination address using the socket of this
// entry. This will wrap the packet in STUN if necessary.
int SendTo(const void* data, size_t size,
const rtc::SocketAddress& addr,
const rtc::PacketOptions& options);
// Schedules a keep-alive allocate request.
void ScheduleKeepAlive();
void SetServerIndex(size_t sindex) { server_index_ = sindex; }
// Sets this option on the socket of each connection.
int SetSocketOption(rtc::Socket::Option opt, int value);
size_t ServerIndex() const { return server_index_; }
// Try a different server address
void HandleConnectFailure(rtc::AsyncPacketSocket* socket);
// Implementation of the MessageHandler Interface.
virtual void OnMessage(rtc::Message *pmsg);
private:
RelayPort* port_;
rtc::SocketAddress ext_addr_;
size_t server_index_;
bool connected_;
bool locked_;
RelayConnection* current_connection_;
// Called when a TCP connection is established or fails
void OnSocketConnect(rtc::AsyncPacketSocket* socket);
void OnSocketClose(rtc::AsyncPacketSocket* socket, int error);
// Called when a packet is received on this socket.
void OnReadPacket(
rtc::AsyncPacketSocket* socket,
const char* data, size_t size,
const rtc::SocketAddress& remote_addr,
const rtc::PacketTime& packet_time);
// Called when the socket is currently able to send.
void OnReadyToSend(rtc::AsyncPacketSocket* socket);
// Sends the given data on the socket to the server with no wrapping. This
// returns the number of bytes written or -1 if an error occurred.
int SendPacket(const void* data, size_t size,
const rtc::PacketOptions& options);
};
// Handles an allocate request for a particular RelayEntry.
class AllocateRequest : public StunRequest {
public:
AllocateRequest(RelayEntry* entry, RelayConnection* connection);
virtual ~AllocateRequest() {}
virtual void Prepare(StunMessage* request);
virtual int GetNextDelay();
virtual void OnResponse(StunMessage* response);
virtual void OnErrorResponse(StunMessage* response);
virtual void OnTimeout();
private:
RelayEntry* entry_;
RelayConnection* connection_;
uint32 start_time_;
};
RelayPort::RelayPort(rtc::Thread* thread,
rtc::PacketSocketFactory* factory,
rtc::Network* network,
const rtc::IPAddress& ip,
uint16 min_port,
uint16 max_port,
const std::string& username,
const std::string& password)
: Port(thread, RELAY_PORT_TYPE, factory, network, ip, min_port, max_port,
username, password),
ready_(false),
error_(0) {
entries_.push_back(
new RelayEntry(this, rtc::SocketAddress()));
// TODO: set local preference value for TCP based candidates.
}
RelayPort::~RelayPort() {
for (size_t i = 0; i < entries_.size(); ++i)
delete entries_[i];
thread()->Clear(this);
}
void RelayPort::AddServerAddress(const ProtocolAddress& addr) {
// Since HTTP proxies usually only allow 443,
// let's up the priority on PROTO_SSLTCP
if (addr.proto == PROTO_SSLTCP &&
(proxy().type == rtc::PROXY_HTTPS ||
proxy().type == rtc::PROXY_UNKNOWN)) {
server_addr_.push_front(addr);
} else {
server_addr_.push_back(addr);
}
}
void RelayPort::AddExternalAddress(const ProtocolAddress& addr) {
std::string proto_name = ProtoToString(addr.proto);
for (std::vector<ProtocolAddress>::iterator it = external_addr_.begin();
it != external_addr_.end(); ++it) {
if ((it->address == addr.address) && (it->proto == addr.proto)) {
LOG(INFO) << "Redundant relay address: " << proto_name
<< " @ " << addr.address.ToSensitiveString();
return;
}
}
external_addr_.push_back(addr);
}
void RelayPort::SetReady() {
if (!ready_) {
std::vector<ProtocolAddress>::iterator iter;
for (iter = external_addr_.begin();
iter != external_addr_.end(); ++iter) {
std::string proto_name = ProtoToString(iter->proto);
// In case of Gturn, related address is set to null socket address.
// This is due to as mapped address stun attribute is used for allocated
// address.
AddAddress(iter->address, iter->address, rtc::SocketAddress(),
proto_name, "", RELAY_PORT_TYPE,
ICE_TYPE_PREFERENCE_RELAY, 0, false);
}
ready_ = true;
SignalPortComplete(this);
}
}
const ProtocolAddress * RelayPort::ServerAddress(size_t index) const {
if (index < server_addr_.size())
return &server_addr_[index];
return NULL;
}
bool RelayPort::HasMagicCookie(const char* data, size_t size) {
if (size < 24 + sizeof(TURN_MAGIC_COOKIE_VALUE)) {
return false;
} else {
return memcmp(data + 24,
TURN_MAGIC_COOKIE_VALUE,
sizeof(TURN_MAGIC_COOKIE_VALUE)) == 0;
}
}
void RelayPort::PrepareAddress() {
// We initiate a connect on the first entry. If this completes, it will fill
// in the server address as the address of this port.
ASSERT(entries_.size() == 1);
entries_[0]->Connect();
ready_ = false;
}
Connection* RelayPort::CreateConnection(const Candidate& address,
CandidateOrigin origin) {
// We only create conns to non-udp sockets if they are incoming on this port
if ((address.protocol() != UDP_PROTOCOL_NAME) &&
(origin != ORIGIN_THIS_PORT)) {
return 0;
}
// We don't support loopback on relays
if (address.type() == Type()) {
return 0;
}
if (!IsCompatibleAddress(address.address())) {
return 0;
}
size_t index = 0;
for (size_t i = 0; i < Candidates().size(); ++i) {
const Candidate& local = Candidates()[i];
if (local.protocol() == address.protocol()) {
index = i;
break;
}
}
Connection * conn = new ProxyConnection(this, index, address);
AddConnection(conn);
return conn;
}
int RelayPort::SendTo(const void* data, size_t size,
const rtc::SocketAddress& addr,
const rtc::PacketOptions& options,
bool payload) {
// Try to find an entry for this specific address. Note that the first entry
// created was not given an address initially, so it can be set to the first
// address that comes along.
RelayEntry* entry = 0;
for (size_t i = 0; i < entries_.size(); ++i) {
if (entries_[i]->address().IsNil() && payload) {
entry = entries_[i];
entry->set_address(addr);
break;
} else if (entries_[i]->address() == addr) {
entry = entries_[i];
break;
}
}
// If we did not find one, then we make a new one. This will not be useable
// until it becomes connected, however.
if (!entry && payload) {
entry = new RelayEntry(this, addr);
if (!entries_.empty()) {
entry->SetServerIndex(entries_[0]->ServerIndex());
}
entry->Connect();
entries_.push_back(entry);
}
// If the entry is connected, then we can send on it (though wrapping may
// still be necessary). Otherwise, we can't yet use this connection, so we
// default to the first one.
if (!entry || !entry->connected()) {
ASSERT(!entries_.empty());
entry = entries_[0];
if (!entry->connected()) {
error_ = EWOULDBLOCK;
return SOCKET_ERROR;
}
}
// Send the actual contents to the server using the usual mechanism.
int sent = entry->SendTo(data, size, addr, options);
if (sent <= 0) {
ASSERT(sent < 0);
error_ = entry->GetError();
return SOCKET_ERROR;
}
// The caller of the function is expecting the number of user data bytes,
// rather than the size of the packet.
return static_cast<int>(size);
}
int RelayPort::SetOption(rtc::Socket::Option opt, int value) {
int result = 0;
for (size_t i = 0; i < entries_.size(); ++i) {
if (entries_[i]->SetSocketOption(opt, value) < 0) {
result = -1;
error_ = entries_[i]->GetError();
}
}
options_.push_back(OptionValue(opt, value));
return result;
}
int RelayPort::GetOption(rtc::Socket::Option opt, int* value) {
std::vector<OptionValue>::iterator it;
for (it = options_.begin(); it < options_.end(); ++it) {
if (it->first == opt) {
*value = it->second;
return 0;
}
}
return SOCKET_ERROR;
}
int RelayPort::GetError() {
return error_;
}
void RelayPort::OnReadPacket(
const char* data, size_t size,
const rtc::SocketAddress& remote_addr,
ProtocolType proto,
const rtc::PacketTime& packet_time) {
if (Connection* conn = GetConnection(remote_addr)) {
conn->OnReadPacket(data, size, packet_time);
} else {
Port::OnReadPacket(data, size, remote_addr, proto);
}
}
RelayConnection::RelayConnection(const ProtocolAddress* protocol_address,
rtc::AsyncPacketSocket* socket,
rtc::Thread* thread)
: socket_(socket),
protocol_address_(protocol_address) {
request_manager_ = new StunRequestManager(thread);
request_manager_->SignalSendPacket.connect(this,
&RelayConnection::OnSendPacket);
}
RelayConnection::~RelayConnection() {
delete request_manager_;
delete socket_;
}
int RelayConnection::SetSocketOption(rtc::Socket::Option opt,
int value) {
if (socket_) {
return socket_->SetOption(opt, value);
}
return 0;
}
bool RelayConnection::CheckResponse(StunMessage* msg) {
return request_manager_->CheckResponse(msg);
}
void RelayConnection::OnSendPacket(const void* data, size_t size,
StunRequest* req) {
// TODO(mallinath) Find a way to get DSCP value from Port.
rtc::PacketOptions options; // Default dscp set to NO_CHANGE.
int sent = socket_->SendTo(data, size, GetAddress(), options);
if (sent <= 0) {
LOG(LS_VERBOSE) << "OnSendPacket: failed sending to " << GetAddress() <<
strerror(socket_->GetError());
ASSERT(sent < 0);
}
}
int RelayConnection::Send(const void* pv, size_t cb,
const rtc::PacketOptions& options) {
return socket_->SendTo(pv, cb, GetAddress(), options);
}
void RelayConnection::SendAllocateRequest(RelayEntry* entry, int delay) {
request_manager_->SendDelayed(new AllocateRequest(entry, this), delay);
}
RelayEntry::RelayEntry(RelayPort* port,
const rtc::SocketAddress& ext_addr)
: port_(port), ext_addr_(ext_addr),
server_index_(0), connected_(false), locked_(false),
current_connection_(NULL) {
}
RelayEntry::~RelayEntry() {
// Remove all RelayConnections and dispose sockets.
delete current_connection_;
current_connection_ = NULL;
}
void RelayEntry::Connect() {
// If we're already connected, return.
if (connected_)
return;
// If we've exhausted all options, bail out.
const ProtocolAddress* ra = port()->ServerAddress(server_index_);
if (!ra) {
LOG(LS_WARNING) << "No more relay addresses left to try";
return;
}
// Remove any previous connection.
if (current_connection_) {
port()->thread()->Dispose(current_connection_);
current_connection_ = NULL;
}
// Try to set up our new socket.
LOG(LS_INFO) << "Connecting to relay via " << ProtoToString(ra->proto) <<
" @ " << ra->address.ToSensitiveString();
rtc::AsyncPacketSocket* socket = NULL;
if (ra->proto == PROTO_UDP) {
// UDP sockets are simple.
socket = port_->socket_factory()->CreateUdpSocket(
rtc::SocketAddress(port_->ip(), 0),
port_->min_port(), port_->max_port());
} else if (ra->proto == PROTO_TCP || ra->proto == PROTO_SSLTCP) {
int opts = (ra->proto == PROTO_SSLTCP) ?
rtc::PacketSocketFactory::OPT_SSLTCP : 0;
socket = port_->socket_factory()->CreateClientTcpSocket(
rtc::SocketAddress(port_->ip(), 0), ra->address,
port_->proxy(), port_->user_agent(), opts);
} else {
LOG(LS_WARNING) << "Unknown protocol (" << ra->proto << ")";
}
if (!socket) {
LOG(LS_WARNING) << "Socket creation failed";
}
// If we failed to get a socket, move on to the next protocol.
if (!socket) {
port()->thread()->Post(this, kMessageConnectTimeout);
return;
}
// Otherwise, create the new connection and configure any socket options.
socket->SignalReadPacket.connect(this, &RelayEntry::OnReadPacket);
socket->SignalReadyToSend.connect(this, &RelayEntry::OnReadyToSend);
current_connection_ = new RelayConnection(ra, socket, port()->thread());
for (size_t i = 0; i < port_->options().size(); ++i) {
current_connection_->SetSocketOption(port_->options()[i].first,
port_->options()[i].second);
}
// If we're trying UDP, start binding requests.
// If we're trying TCP, wait for connection with a fixed timeout.
if ((ra->proto == PROTO_TCP) || (ra->proto == PROTO_SSLTCP)) {
socket->SignalClose.connect(this, &RelayEntry::OnSocketClose);
socket->SignalConnect.connect(this, &RelayEntry::OnSocketConnect);
port()->thread()->PostDelayed(kSoftConnectTimeoutMs, this,
kMessageConnectTimeout);
} else {
current_connection_->SendAllocateRequest(this, 0);
}
}
int RelayEntry::GetError() {
if (current_connection_ != NULL) {
return current_connection_->GetError();
}
return 0;
}
RelayConnection* RelayEntry::GetBestConnection(RelayConnection* conn1,
RelayConnection* conn2) {
return conn1->GetProtocol() <= conn2->GetProtocol() ? conn1 : conn2;
}
void RelayEntry::OnConnect(const rtc::SocketAddress& mapped_addr,
RelayConnection* connection) {
// We are connected, notify our parent.
ProtocolType proto = PROTO_UDP;
LOG(INFO) << "Relay allocate succeeded: " << ProtoToString(proto)
<< " @ " << mapped_addr.ToSensitiveString();
connected_ = true;
port_->AddExternalAddress(ProtocolAddress(mapped_addr, proto));
port_->SetReady();
}
int RelayEntry::SendTo(const void* data, size_t size,
const rtc::SocketAddress& addr,
const rtc::PacketOptions& options) {
// If this connection is locked to the address given, then we can send the
// packet with no wrapper.
if (locked_ && (ext_addr_ == addr))
return SendPacket(data, size, options);
// Otherwise, we must wrap the given data in a STUN SEND request so that we
// can communicate the destination address to the server.
//
// Note that we do not use a StunRequest here. This is because there is
// likely no reason to resend this packet. If it is late, we just drop it.
// The next send to this address will try again.
RelayMessage request;
request.SetType(STUN_SEND_REQUEST);
StunByteStringAttribute* magic_cookie_attr =
StunAttribute::CreateByteString(STUN_ATTR_MAGIC_COOKIE);
magic_cookie_attr->CopyBytes(TURN_MAGIC_COOKIE_VALUE,
sizeof(TURN_MAGIC_COOKIE_VALUE));
VERIFY(request.AddAttribute(magic_cookie_attr));
StunByteStringAttribute* username_attr =
StunAttribute::CreateByteString(STUN_ATTR_USERNAME);
username_attr->CopyBytes(port_->username_fragment().c_str(),
port_->username_fragment().size());
VERIFY(request.AddAttribute(username_attr));
StunAddressAttribute* addr_attr =
StunAttribute::CreateAddress(STUN_ATTR_DESTINATION_ADDRESS);
addr_attr->SetIP(addr.ipaddr());
addr_attr->SetPort(addr.port());
VERIFY(request.AddAttribute(addr_attr));
// Attempt to lock
if (ext_addr_ == addr) {
StunUInt32Attribute* options_attr =
StunAttribute::CreateUInt32(STUN_ATTR_OPTIONS);
options_attr->SetValue(0x1);
VERIFY(request.AddAttribute(options_attr));
}
StunByteStringAttribute* data_attr =
StunAttribute::CreateByteString(STUN_ATTR_DATA);
data_attr->CopyBytes(data, size);
VERIFY(request.AddAttribute(data_attr));
// TODO: compute the HMAC.
rtc::ByteBuffer buf;
request.Write(&buf);
return SendPacket(buf.Data(), buf.Length(), options);
}
void RelayEntry::ScheduleKeepAlive() {
if (current_connection_) {
current_connection_->SendAllocateRequest(this, kKeepAliveDelay);
}
}
int RelayEntry::SetSocketOption(rtc::Socket::Option opt, int value) {
// Set the option on all available sockets.
int socket_error = 0;
if (current_connection_) {
socket_error = current_connection_->SetSocketOption(opt, value);
}
return socket_error;
}
void RelayEntry::HandleConnectFailure(
rtc::AsyncPacketSocket* socket) {
// Make sure it's the current connection that has failed, it might
// be an old socked that has not yet been disposed.
if (!socket ||
(current_connection_ && socket == current_connection_->socket())) {
if (current_connection_)
port()->SignalConnectFailure(current_connection_->protocol_address());
// Try to connect to the next server address.
server_index_ += 1;
Connect();
}
}
void RelayEntry::OnMessage(rtc::Message *pmsg) {
ASSERT(pmsg->message_id == kMessageConnectTimeout);
if (current_connection_) {
const ProtocolAddress* ra = current_connection_->protocol_address();
LOG(LS_WARNING) << "Relay " << ra->proto << " connection to " <<
ra->address << " timed out";
// Currently we connect to each server address in sequence. If we
// have more addresses to try, treat this is an error and move on to
// the next address, otherwise give this connection more time and
// await the real timeout.
//
// TODO: Connect to servers in parallel to speed up connect time
// and to avoid giving up too early.
port_->SignalSoftTimeout(ra);
HandleConnectFailure(current_connection_->socket());
} else {
HandleConnectFailure(NULL);
}
}
void RelayEntry::OnSocketConnect(rtc::AsyncPacketSocket* socket) {
LOG(INFO) << "relay tcp connected to " <<
socket->GetRemoteAddress().ToSensitiveString();
if (current_connection_ != NULL) {
current_connection_->SendAllocateRequest(this, 0);
}
}
void RelayEntry::OnSocketClose(rtc::AsyncPacketSocket* socket,
int error) {
PLOG(LERROR, error) << "Relay connection failed: socket closed";
HandleConnectFailure(socket);
}
void RelayEntry::OnReadPacket(
rtc::AsyncPacketSocket* socket,
const char* data, size_t size,
const rtc::SocketAddress& remote_addr,
const rtc::PacketTime& packet_time) {
// ASSERT(remote_addr == port_->server_addr());
// TODO: are we worried about this?
if (current_connection_ == NULL || socket != current_connection_->socket()) {
// This packet comes from an unknown address.
LOG(WARNING) << "Dropping packet: unknown address";
return;
}
// If the magic cookie is not present, then this is an unwrapped packet sent
// by the server, The actual remote address is the one we recorded.
if (!port_->HasMagicCookie(data, size)) {
if (locked_) {
port_->OnReadPacket(data, size, ext_addr_, PROTO_UDP, packet_time);
} else {
LOG(WARNING) << "Dropping packet: entry not locked";
}
return;
}
rtc::ByteBuffer buf(data, size);
RelayMessage msg;
if (!msg.Read(&buf)) {
LOG(INFO) << "Incoming packet was not STUN";
return;
}
// The incoming packet should be a STUN ALLOCATE response, SEND response, or
// DATA indication.
if (current_connection_->CheckResponse(&msg)) {
return;
} else if (msg.type() == STUN_SEND_RESPONSE) {
if (const StunUInt32Attribute* options_attr =
msg.GetUInt32(STUN_ATTR_OPTIONS)) {
if (options_attr->value() & 0x1) {
locked_ = true;
}
}
return;
} else if (msg.type() != STUN_DATA_INDICATION) {
LOG(INFO) << "Received BAD stun type from server: " << msg.type();
return;
}
// This must be a data indication.
const StunAddressAttribute* addr_attr =
msg.GetAddress(STUN_ATTR_SOURCE_ADDRESS2);
if (!addr_attr) {
LOG(INFO) << "Data indication has no source address";
return;
} else if (addr_attr->family() != 1) {
LOG(INFO) << "Source address has bad family";
return;
}
rtc::SocketAddress remote_addr2(addr_attr->ipaddr(), addr_attr->port());
const StunByteStringAttribute* data_attr = msg.GetByteString(STUN_ATTR_DATA);
if (!data_attr) {
LOG(INFO) << "Data indication has no data";
return;
}
// Process the actual data and remote address in the normal manner.
port_->OnReadPacket(data_attr->bytes(), data_attr->length(), remote_addr2,
PROTO_UDP, packet_time);
}
void RelayEntry::OnReadyToSend(rtc::AsyncPacketSocket* socket) {
if (connected()) {
port_->OnReadyToSend();
}
}
int RelayEntry::SendPacket(const void* data, size_t size,
const rtc::PacketOptions& options) {
int sent = 0;
if (current_connection_) {
// We are connected, no need to send packets anywere else than to
// the current connection.
sent = current_connection_->Send(data, size, options);
}
return sent;
}
AllocateRequest::AllocateRequest(RelayEntry* entry,
RelayConnection* connection)
: StunRequest(new RelayMessage()),
entry_(entry),
connection_(connection) {
start_time_ = rtc::Time();
}
void AllocateRequest::Prepare(StunMessage* request) {
request->SetType(STUN_ALLOCATE_REQUEST);
StunByteStringAttribute* username_attr =
StunAttribute::CreateByteString(STUN_ATTR_USERNAME);
username_attr->CopyBytes(
entry_->port()->username_fragment().c_str(),
entry_->port()->username_fragment().size());
VERIFY(request->AddAttribute(username_attr));
}
int AllocateRequest::GetNextDelay() {
int delay = 100 * rtc::_max(1 << count_, 2);
count_ += 1;
if (count_ == 5)
timeout_ = true;
return delay;
}
void AllocateRequest::OnResponse(StunMessage* response) {
const StunAddressAttribute* addr_attr =
response->GetAddress(STUN_ATTR_MAPPED_ADDRESS);
if (!addr_attr) {
LOG(INFO) << "Allocate response missing mapped address.";
} else if (addr_attr->family() != 1) {
LOG(INFO) << "Mapped address has bad family";
} else {
rtc::SocketAddress addr(addr_attr->ipaddr(), addr_attr->port());
entry_->OnConnect(addr, connection_);
}
// We will do a keep-alive regardless of whether this request suceeds.
// This should have almost no impact on network usage.
entry_->ScheduleKeepAlive();
}
void AllocateRequest::OnErrorResponse(StunMessage* response) {
const StunErrorCodeAttribute* attr = response->GetErrorCode();
if (!attr) {
LOG(INFO) << "Bad allocate response error code";
} else {
LOG(INFO) << "Allocate error response:"
<< " code=" << attr->code()
<< " reason='" << attr->reason() << "'";
}
if (rtc::TimeSince(start_time_) <= kRetryTimeout)
entry_->ScheduleKeepAlive();
}
void AllocateRequest::OnTimeout() {
LOG(INFO) << "Allocate request timed out";
entry_->HandleConnectFailure(connection_->socket());
}
} // namespace cricket