blob: 85c08bb75070f69e43fa585f79542639cc1756d2 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/gain_controller2.h"
#include <algorithm>
#include <cmath>
#include <memory>
#include "api/array_view.h"
#include "modules/audio_processing/agc2/agc2_testing_common.h"
#include "modules/audio_processing/audio_buffer.h"
#include "modules/audio_processing/test/audio_buffer_tools.h"
#include "modules/audio_processing/test/bitexactness_tools.h"
#include "rtc_base/checks.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
namespace {
void SetAudioBufferSamples(float value, AudioBuffer* ab) {
// Sets all the samples in |ab| to |value|.
for (size_t k = 0; k < ab->num_channels(); ++k) {
std::fill(ab->channels()[k], ab->channels()[k] + ab->num_frames(), value);
}
}
float RunAgc2WithConstantInput(GainController2* agc2,
float input_level,
size_t num_frames,
int sample_rate) {
const int num_samples = rtc::CheckedDivExact(sample_rate, 100);
AudioBuffer ab(sample_rate, 1, sample_rate, 1, sample_rate, 1);
// Give time to the level estimator to converge.
for (size_t i = 0; i < num_frames + 1; ++i) {
SetAudioBufferSamples(input_level, &ab);
agc2->Process(&ab);
}
// Return the last sample from the last processed frame.
return ab.channels()[0][num_samples - 1];
}
AudioProcessing::Config::GainController2 CreateAgc2FixedDigitalModeConfig(
float fixed_gain_db) {
AudioProcessing::Config::GainController2 config;
config.adaptive_digital.enabled = false;
config.fixed_digital.gain_db = fixed_gain_db;
// TODO(alessiob): Check why ASSERT_TRUE() below does not compile.
EXPECT_TRUE(GainController2::Validate(config));
return config;
}
std::unique_ptr<GainController2> CreateAgc2FixedDigitalMode(
float fixed_gain_db,
size_t sample_rate_hz) {
auto agc2 = std::make_unique<GainController2>();
agc2->ApplyConfig(CreateAgc2FixedDigitalModeConfig(fixed_gain_db));
agc2->Initialize(sample_rate_hz, /*num_channels=*/1);
return agc2;
}
float GainDbAfterProcessingFile(GainController2& gain_controller,
int max_duration_ms) {
// Set up an AudioBuffer to be filled from the speech file.
constexpr size_t kStereo = 2u;
const StreamConfig capture_config(AudioProcessing::kSampleRate48kHz, kStereo,
false);
AudioBuffer ab(capture_config.sample_rate_hz(), capture_config.num_channels(),
capture_config.sample_rate_hz(), capture_config.num_channels(),
capture_config.sample_rate_hz(),
capture_config.num_channels());
test::InputAudioFile capture_file(
test::GetApmCaptureTestVectorFileName(AudioProcessing::kSampleRate48kHz));
std::vector<float> capture_input(capture_config.num_frames() *
capture_config.num_channels());
// Process the input file which must be long enough to cover
// `max_duration_ms`.
RTC_DCHECK_GT(max_duration_ms, 0);
const int num_frames = rtc::CheckedDivExact(max_duration_ms, 10);
for (int i = 0; i < num_frames; ++i) {
ReadFloatSamplesFromStereoFile(capture_config.num_frames(),
capture_config.num_channels(), &capture_file,
capture_input);
test::CopyVectorToAudioBuffer(capture_config, capture_input, &ab);
gain_controller.Process(&ab);
}
// Send in a last frame with minimum dBFS level.
constexpr float sample_value = 1.f;
SetAudioBufferSamples(sample_value, &ab);
gain_controller.Process(&ab);
// Measure the RMS level after processing.
float rms = 0.0f;
for (size_t i = 0; i < capture_config.num_frames(); ++i) {
rms += ab.channels()[0][i] * ab.channels()[0][i];
}
// Return the applied gain in dB.
return 20.0f * std::log10(std::sqrt(rms / capture_config.num_frames()));
}
} // namespace
TEST(GainController2, CheckDefaultConfig) {
AudioProcessing::Config::GainController2 config;
EXPECT_TRUE(GainController2::Validate(config));
}
TEST(GainController2, CheckFixedDigitalConfig) {
AudioProcessing::Config::GainController2 config;
// Attenuation is not allowed.
config.fixed_digital.gain_db = -5.f;
EXPECT_FALSE(GainController2::Validate(config));
// No gain is allowed.
config.fixed_digital.gain_db = 0.f;
EXPECT_TRUE(GainController2::Validate(config));
// Positive gain is allowed.
config.fixed_digital.gain_db = 15.f;
EXPECT_TRUE(GainController2::Validate(config));
}
TEST(GainController2, CheckAdaptiveDigitalVadProbabilityAttackConfig) {
AudioProcessing::Config::GainController2 config;
// Reject invalid attack.
config.adaptive_digital.vad_probability_attack = -123.f;
EXPECT_FALSE(GainController2::Validate(config));
config.adaptive_digital.vad_probability_attack = 0.f;
EXPECT_FALSE(GainController2::Validate(config));
config.adaptive_digital.vad_probability_attack = 42.f;
EXPECT_FALSE(GainController2::Validate(config));
// Accept valid attack.
config.adaptive_digital.vad_probability_attack = 0.1f;
EXPECT_TRUE(GainController2::Validate(config));
config.adaptive_digital.vad_probability_attack = 1.f;
EXPECT_TRUE(GainController2::Validate(config));
}
TEST(GainController2,
CheckAdaptiveDigitalLevelEstimatorSpeechFramesThresholdConfig) {
AudioProcessing::Config::GainController2 config;
config.adaptive_digital.level_estimator_adjacent_speech_frames_threshold = 0;
EXPECT_FALSE(GainController2::Validate(config));
config.adaptive_digital.level_estimator_adjacent_speech_frames_threshold = 1;
EXPECT_TRUE(GainController2::Validate(config));
config.adaptive_digital.level_estimator_adjacent_speech_frames_threshold = 7;
EXPECT_TRUE(GainController2::Validate(config));
}
TEST(GainController2, CheckAdaptiveDigitalInitialSaturationMarginConfig) {
AudioProcessing::Config::GainController2 config;
config.adaptive_digital.initial_saturation_margin_db = -1.f;
EXPECT_FALSE(GainController2::Validate(config));
config.adaptive_digital.initial_saturation_margin_db = 0.f;
EXPECT_TRUE(GainController2::Validate(config));
config.adaptive_digital.initial_saturation_margin_db = 50.f;
EXPECT_TRUE(GainController2::Validate(config));
}
TEST(GainController2, CheckAdaptiveDigitalExtraSaturationMarginConfig) {
AudioProcessing::Config::GainController2 config;
config.adaptive_digital.extra_saturation_margin_db = -1.f;
EXPECT_FALSE(GainController2::Validate(config));
config.adaptive_digital.extra_saturation_margin_db = 0.f;
EXPECT_TRUE(GainController2::Validate(config));
config.adaptive_digital.extra_saturation_margin_db = 50.f;
EXPECT_TRUE(GainController2::Validate(config));
}
TEST(GainController2,
CheckAdaptiveDigitalGainApplierSpeechFramesThresholdConfig) {
AudioProcessing::Config::GainController2 config;
config.adaptive_digital.gain_applier_adjacent_speech_frames_threshold = 0;
EXPECT_FALSE(GainController2::Validate(config));
config.adaptive_digital.gain_applier_adjacent_speech_frames_threshold = 1;
EXPECT_TRUE(GainController2::Validate(config));
config.adaptive_digital.gain_applier_adjacent_speech_frames_threshold = 7;
EXPECT_TRUE(GainController2::Validate(config));
}
TEST(GainController2, CheckAdaptiveDigitalMaxGainChangeSpeedConfig) {
AudioProcessing::Config::GainController2 config;
config.adaptive_digital.max_gain_change_db_per_second = -1.f;
EXPECT_FALSE(GainController2::Validate(config));
config.adaptive_digital.max_gain_change_db_per_second = 0.f;
EXPECT_FALSE(GainController2::Validate(config));
config.adaptive_digital.max_gain_change_db_per_second = 5.f;
EXPECT_TRUE(GainController2::Validate(config));
}
TEST(GainController2, CheckAdaptiveDigitalMaxOutputNoiseLevelConfig) {
AudioProcessing::Config::GainController2 config;
config.adaptive_digital.max_output_noise_level_dbfs = 5.f;
EXPECT_FALSE(GainController2::Validate(config));
config.adaptive_digital.max_output_noise_level_dbfs = 0.f;
EXPECT_TRUE(GainController2::Validate(config));
config.adaptive_digital.max_output_noise_level_dbfs = -5.f;
EXPECT_TRUE(GainController2::Validate(config));
}
// Checks that the default config is applied.
TEST(GainController2, ApplyDefaultConfig) {
auto gain_controller2 = std::make_unique<GainController2>();
AudioProcessing::Config::GainController2 config;
gain_controller2->ApplyConfig(config);
}
TEST(GainController2FixedDigital, GainShouldChangeOnSetGain) {
constexpr float kInputLevel = 1000.f;
constexpr size_t kNumFrames = 5;
constexpr size_t kSampleRateHz = 8000;
constexpr float kGain0Db = 0.f;
constexpr float kGain20Db = 20.f;
auto agc2_fixed = CreateAgc2FixedDigitalMode(kGain0Db, kSampleRateHz);
// Signal level is unchanged with 0 db gain.
EXPECT_FLOAT_EQ(RunAgc2WithConstantInput(agc2_fixed.get(), kInputLevel,
kNumFrames, kSampleRateHz),
kInputLevel);
// +20 db should increase signal by a factor of 10.
agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGain20Db));
EXPECT_FLOAT_EQ(RunAgc2WithConstantInput(agc2_fixed.get(), kInputLevel,
kNumFrames, kSampleRateHz),
kInputLevel * 10);
}
TEST(GainController2FixedDigital, ChangeFixedGainShouldBeFastAndTimeInvariant) {
// Number of frames required for the fixed gain controller to adapt on the
// input signal when the gain changes.
constexpr size_t kNumFrames = 5;
constexpr float kInputLevel = 1000.f;
constexpr size_t kSampleRateHz = 8000;
constexpr float kGainDbLow = 0.f;
constexpr float kGainDbHigh = 25.f;
static_assert(kGainDbLow < kGainDbHigh, "");
auto agc2_fixed = CreateAgc2FixedDigitalMode(kGainDbLow, kSampleRateHz);
// Start with a lower gain.
const float output_level_pre = RunAgc2WithConstantInput(
agc2_fixed.get(), kInputLevel, kNumFrames, kSampleRateHz);
// Increase gain.
agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGainDbHigh));
static_cast<void>(RunAgc2WithConstantInput(agc2_fixed.get(), kInputLevel,
kNumFrames, kSampleRateHz));
// Back to the lower gain.
agc2_fixed->ApplyConfig(CreateAgc2FixedDigitalModeConfig(kGainDbLow));
const float output_level_post = RunAgc2WithConstantInput(
agc2_fixed.get(), kInputLevel, kNumFrames, kSampleRateHz);
EXPECT_EQ(output_level_pre, output_level_post);
}
struct FixedDigitalTestParams {
FixedDigitalTestParams(float gain_db_min,
float gain_db_max,
size_t sample_rate,
bool saturation_expected)
: gain_db_min(gain_db_min),
gain_db_max(gain_db_max),
sample_rate(sample_rate),
saturation_expected(saturation_expected) {}
float gain_db_min;
float gain_db_max;
size_t sample_rate;
bool saturation_expected;
};
class FixedDigitalTest
: public ::testing::Test,
public ::testing::WithParamInterface<FixedDigitalTestParams> {};
TEST_P(FixedDigitalTest, CheckSaturationBehaviorWithLimiter) {
const float kInputLevel = 32767.f;
const size_t kNumFrames = 5;
const auto params = GetParam();
const auto gains_db =
test::LinSpace(params.gain_db_min, params.gain_db_max, 10);
for (const auto gain_db : gains_db) {
SCOPED_TRACE(std::to_string(gain_db));
auto agc2_fixed = CreateAgc2FixedDigitalMode(gain_db, params.sample_rate);
const float processed_sample = RunAgc2WithConstantInput(
agc2_fixed.get(), kInputLevel, kNumFrames, params.sample_rate);
if (params.saturation_expected) {
EXPECT_FLOAT_EQ(processed_sample, 32767.f);
} else {
EXPECT_LT(processed_sample, 32767.f);
}
}
}
static_assert(test::kLimiterMaxInputLevelDbFs < 10, "");
INSTANTIATE_TEST_SUITE_P(
GainController2,
FixedDigitalTest,
::testing::Values(
// When gain < |test::kLimiterMaxInputLevelDbFs|, the limiter will not
// saturate the signal (at any sample rate).
FixedDigitalTestParams(0.1f,
test::kLimiterMaxInputLevelDbFs - 0.01f,
8000,
false),
FixedDigitalTestParams(0.1,
test::kLimiterMaxInputLevelDbFs - 0.01f,
48000,
false),
// When gain > |test::kLimiterMaxInputLevelDbFs|, the limiter will
// saturate the signal (at any sample rate).
FixedDigitalTestParams(test::kLimiterMaxInputLevelDbFs + 0.01f,
10.f,
8000,
true),
FixedDigitalTestParams(test::kLimiterMaxInputLevelDbFs + 0.01f,
10.f,
48000,
true)));
// Checks that the gain applied at the end of a PCM samples file is close to the
// expected value.
TEST(GainController2, CheckGainAdaptiveDigital) {
constexpr float kExpectedGainDb = 4.3f;
constexpr float kToleranceDb = 0.5f;
GainController2 gain_controller2;
gain_controller2.Initialize(AudioProcessing::kSampleRate48kHz,
/*num_channels=*/1);
AudioProcessing::Config::GainController2 config;
config.fixed_digital.gain_db = 0.0f;
config.adaptive_digital.enabled = true;
gain_controller2.ApplyConfig(config);
EXPECT_NEAR(
GainDbAfterProcessingFile(gain_controller2, /*max_duration_ms=*/2000),
kExpectedGainDb, kToleranceDb);
}
} // namespace test
} // namespace webrtc