blob: e41637cd8dc1cb317c4c26229ad84f16837be14d [file] [log] [blame]
# Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
"""Signal processing utility module.
"""
import array
import logging
import os
import sys
import enum
try:
import numpy as np
except ImportError:
logging.critical('Cannot import the third-party Python package numpy')
sys.exit(1)
try:
import pydub
import pydub.generators
except ImportError:
logging.critical('Cannot import the third-party Python package pydub')
sys.exit(1)
try:
import scipy.signal
import scipy.fftpack
except ImportError:
logging.critical('Cannot import the third-party Python package scipy')
sys.exit(1)
from . import exceptions
class SignalProcessingUtils(object):
"""Collection of signal processing utilities.
"""
@enum.unique
class MixPadding(enum.Enum):
NO_PADDING = 0
ZERO_PADDING = 1
LOOP = 2
def __init__(self):
pass
@classmethod
def LoadWav(cls, filepath, channels=1):
"""Loads wav file.
Args:
filepath: path to the wav audio track file to load.
channels: number of channels (downmixing to mono by default).
Returns:
AudioSegment instance.
"""
if not os.path.exists(filepath):
logging.error('cannot find the <%s> audio track file', filepath)
raise exceptions.FileNotFoundError()
return pydub.AudioSegment.from_file(filepath,
format='wav',
channels=channels)
@classmethod
def SaveWav(cls, output_filepath, signal):
"""Saves wav file.
Args:
output_filepath: path to the wav audio track file to save.
signal: AudioSegment instance.
"""
return signal.export(output_filepath, format='wav')
@classmethod
def CountSamples(cls, signal):
"""Number of samples per channel.
Args:
signal: AudioSegment instance.
Returns:
An integer.
"""
number_of_samples = len(signal.get_array_of_samples())
assert signal.channels > 0
assert number_of_samples % signal.channels == 0
return number_of_samples / signal.channels
@classmethod
def GenerateSilence(cls, duration=1000, sample_rate=48000):
"""Generates silence.
This method can also be used to create a template AudioSegment instance.
A template can then be used with other Generate*() methods accepting an
AudioSegment instance as argument.
Args:
duration: duration in ms.
sample_rate: sample rate.
Returns:
AudioSegment instance.
"""
return pydub.AudioSegment.silent(duration, sample_rate)
@classmethod
def GeneratePureTone(cls, template, frequency=440.0):
"""Generates a pure tone.
The pure tone is generated with the same duration and in the same format of
the given template signal.
Args:
template: AudioSegment instance.
frequency: Frequency of the pure tone in Hz.
Return:
AudioSegment instance.
"""
if frequency > template.frame_rate >> 1:
raise exceptions.SignalProcessingException('Invalid frequency')
generator = pydub.generators.Sine(sample_rate=template.frame_rate,
bit_depth=template.sample_width * 8,
freq=frequency)
return generator.to_audio_segment(duration=len(template), volume=0.0)
@classmethod
def GenerateWhiteNoise(cls, template):
"""Generates white noise.
The white noise is generated with the same duration and in the same format
of the given template signal.
Args:
template: AudioSegment instance.
Return:
AudioSegment instance.
"""
generator = pydub.generators.WhiteNoise(
sample_rate=template.frame_rate,
bit_depth=template.sample_width * 8)
return generator.to_audio_segment(duration=len(template), volume=0.0)
@classmethod
def AudioSegmentToRawData(cls, signal):
samples = signal.get_array_of_samples()
if samples.typecode != 'h':
raise exceptions.SignalProcessingException(
'Unsupported samples type')
return np.array(signal.get_array_of_samples(), np.int16)
@classmethod
def Fft(cls, signal, normalize=True):
if signal.channels != 1:
raise NotImplementedError('multiple-channel FFT not implemented')
x = cls.AudioSegmentToRawData(signal).astype(np.float32)
if normalize:
x /= max(abs(np.max(x)), 1.0)
y = scipy.fftpack.fft(x)
return y[:len(y) / 2]
@classmethod
def DetectHardClipping(cls, signal, threshold=2):
"""Detects hard clipping.
Hard clipping is simply detected by counting samples that touch either the
lower or upper bound too many times in a row (according to |threshold|).
The presence of a single sequence of samples meeting such property is enough
to label the signal as hard clipped.
Args:
signal: AudioSegment instance.
threshold: minimum number of samples at full-scale in a row.
Returns:
True if hard clipping is detect, False otherwise.
"""
if signal.channels != 1:
raise NotImplementedError(
'multiple-channel clipping not implemented')
if signal.sample_width != 2: # Note that signal.sample_width is in bytes.
raise exceptions.SignalProcessingException(
'hard-clipping detection only supported for 16 bit samples')
samples = cls.AudioSegmentToRawData(signal)
# Detect adjacent clipped samples.
samples_type_info = np.iinfo(samples.dtype)
mask_min = samples == samples_type_info.min
mask_max = samples == samples_type_info.max
def HasLongSequence(vector, min_legth=threshold):
"""Returns True if there are one or more long sequences of True flags."""
seq_length = 0
for b in vector:
seq_length = seq_length + 1 if b else 0
if seq_length >= min_legth:
return True
return False
return HasLongSequence(mask_min) or HasLongSequence(mask_max)
@classmethod
def ApplyImpulseResponse(cls, signal, impulse_response):
"""Applies an impulse response to a signal.
Args:
signal: AudioSegment instance.
impulse_response: list or numpy vector of float values.
Returns:
AudioSegment instance.
"""
# Get samples.
assert signal.channels == 1, (
'multiple-channel recordings not supported')
samples = signal.get_array_of_samples()
# Convolve.
logging.info(
'applying %d order impulse response to a signal lasting %d ms',
len(impulse_response), len(signal))
convolved_samples = scipy.signal.fftconvolve(in1=samples,
in2=impulse_response,
mode='full').astype(
np.int16)
logging.info('convolution computed')
# Cast.
convolved_samples = array.array(signal.array_type, convolved_samples)
# Verify.
logging.debug('signal length: %d samples', len(samples))
logging.debug('convolved signal length: %d samples',
len(convolved_samples))
assert len(convolved_samples) > len(samples)
# Generate convolved signal AudioSegment instance.
convolved_signal = pydub.AudioSegment(data=convolved_samples,
metadata={
'sample_width':
signal.sample_width,
'frame_rate':
signal.frame_rate,
'frame_width':
signal.frame_width,
'channels': signal.channels,
})
assert len(convolved_signal) > len(signal)
return convolved_signal
@classmethod
def Normalize(cls, signal):
"""Normalizes a signal.
Args:
signal: AudioSegment instance.
Returns:
An AudioSegment instance.
"""
return signal.apply_gain(-signal.max_dBFS)
@classmethod
def Copy(cls, signal):
"""Makes a copy os a signal.
Args:
signal: AudioSegment instance.
Returns:
An AudioSegment instance.
"""
return pydub.AudioSegment(data=signal.get_array_of_samples(),
metadata={
'sample_width': signal.sample_width,
'frame_rate': signal.frame_rate,
'frame_width': signal.frame_width,
'channels': signal.channels,
})
@classmethod
def MixSignals(cls,
signal,
noise,
target_snr=0.0,
pad_noise=MixPadding.NO_PADDING):
"""Mixes |signal| and |noise| with a target SNR.
Mix |signal| and |noise| with a desired SNR by scaling |noise|.
If the target SNR is +/- infinite, a copy of signal/noise is returned.
If |signal| is shorter than |noise|, the length of the mix equals that of
|signal|. Otherwise, the mix length depends on whether padding is applied.
When padding is not applied, that is |pad_noise| is set to NO_PADDING
(default), the mix length equals that of |noise| - i.e., |signal| is
truncated. Otherwise, |noise| is extended and the resulting mix has the same
length of |signal|.
Args:
signal: AudioSegment instance (signal).
noise: AudioSegment instance (noise).
target_snr: float, numpy.Inf or -numpy.Inf (dB).
pad_noise: SignalProcessingUtils.MixPadding, default: NO_PADDING.
Returns:
An AudioSegment instance.
"""
# Handle infinite target SNR.
if target_snr == -np.Inf:
# Return a copy of noise.
logging.warning('SNR = -Inf, returning noise')
return cls.Copy(noise)
elif target_snr == np.Inf:
# Return a copy of signal.
logging.warning('SNR = +Inf, returning signal')
return cls.Copy(signal)
# Check signal and noise power.
signal_power = float(signal.dBFS)
noise_power = float(noise.dBFS)
if signal_power == -np.Inf:
logging.error('signal has -Inf power, cannot mix')
raise exceptions.SignalProcessingException(
'cannot mix a signal with -Inf power')
if noise_power == -np.Inf:
logging.error('noise has -Inf power, cannot mix')
raise exceptions.SignalProcessingException(
'cannot mix a signal with -Inf power')
# Mix.
gain_db = signal_power - noise_power - target_snr
signal_duration = len(signal)
noise_duration = len(noise)
if signal_duration <= noise_duration:
# Ignore |pad_noise|, |noise| is truncated if longer that |signal|, the
# mix will have the same length of |signal|.
return signal.overlay(noise.apply_gain(gain_db))
elif pad_noise == cls.MixPadding.NO_PADDING:
# |signal| is longer than |noise|, but no padding is applied to |noise|.
# Truncate |signal|.
return noise.overlay(signal, gain_during_overlay=gain_db)
elif pad_noise == cls.MixPadding.ZERO_PADDING:
# TODO(alessiob): Check that this works as expected.
return signal.overlay(noise.apply_gain(gain_db))
elif pad_noise == cls.MixPadding.LOOP:
# |signal| is longer than |noise|, extend |noise| by looping.
return signal.overlay(noise.apply_gain(gain_db), loop=True)
else:
raise exceptions.SignalProcessingException('invalid padding type')