| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/video_coding/frame_buffer2.h" |
| |
| #include <algorithm> |
| |
| #include "webrtc/base/checks.h" |
| #include "webrtc/modules/video_coding/frame_object.h" |
| #include "webrtc/modules/video_coding/jitter_estimator.h" |
| #include "webrtc/modules/video_coding/sequence_number_util.h" |
| #include "webrtc/modules/video_coding/timing.h" |
| #include "webrtc/system_wrappers/include/clock.h" |
| |
| namespace webrtc { |
| namespace video_coding { |
| |
| namespace { |
| // The maximum age of decoded frames tracked by frame buffer, compared to |
| // |newest_picture_id_|. |
| constexpr int kMaxFrameAge = 4096; |
| |
| // The maximum number of decoded frames being tracked by the frame buffer. |
| constexpr int kMaxNumHistoryFrames = 256; |
| } // namespace |
| |
| bool FrameBuffer::FrameComp::operator()(const FrameKey& f1, |
| const FrameKey& f2) const { |
| // first = picture id |
| // second = spatial layer |
| if (f1.first == f2.first) |
| return f1.second < f2.second; |
| return AheadOf(f2.first, f1.first); |
| } |
| |
| FrameBuffer::FrameBuffer(Clock* clock, |
| VCMJitterEstimator* jitter_estimator, |
| VCMTiming* timing) |
| : clock_(clock), |
| frame_inserted_event_(false, false), |
| jitter_estimator_(jitter_estimator), |
| timing_(timing), |
| inter_frame_delay_(clock_->TimeInMilliseconds()), |
| newest_picture_id_(-1), |
| stopped_(false), |
| protection_mode_(kProtectionNack) {} |
| |
| FrameBuffer::ReturnReason FrameBuffer::NextFrame( |
| int64_t max_wait_time_ms, |
| std::unique_ptr<FrameObject>* frame_out) { |
| int64_t latest_return_time = clock_->TimeInMilliseconds() + max_wait_time_ms; |
| int64_t now = clock_->TimeInMilliseconds(); |
| int64_t wait_ms = max_wait_time_ms; |
| while (true) { |
| std::map<FrameKey, std::unique_ptr<FrameObject>, FrameComp>::iterator |
| next_frame_it; |
| { |
| rtc::CritScope lock(&crit_); |
| frame_inserted_event_.Reset(); |
| if (stopped_) |
| return kStopped; |
| |
| now = clock_->TimeInMilliseconds(); |
| wait_ms = max_wait_time_ms; |
| next_frame_it = frames_.end(); |
| for (auto frame_it = frames_.begin(); frame_it != frames_.end(); |
| ++frame_it) { |
| const FrameObject& frame = *frame_it->second; |
| if (IsContinuous(frame)) { |
| next_frame_it = frame_it; |
| int64_t render_time = |
| next_frame_it->second->RenderTime() == -1 |
| ? timing_->RenderTimeMs(frame.timestamp, now) |
| : next_frame_it->second->RenderTime(); |
| wait_ms = timing_->MaxWaitingTime(render_time, now); |
| frame_it->second->SetRenderTime(render_time); |
| |
| // This will cause the frame buffer to prefer high framerate rather |
| // than high resolution in the case of the decoder not decoding fast |
| // enough and the stream has multiple spatial and temporal layers. |
| if (wait_ms == 0) |
| continue; |
| |
| break; |
| } |
| } |
| } |
| |
| wait_ms = std::min<int64_t>(wait_ms, latest_return_time - now); |
| wait_ms = std::max<int64_t>(wait_ms, 0); |
| // If the timeout occurs, return. Otherwise a new frame has been inserted |
| // and the best frame to decode next will be selected again. |
| if (!frame_inserted_event_.Wait(wait_ms)) { |
| rtc::CritScope lock(&crit_); |
| if (next_frame_it != frames_.end()) { |
| int64_t received_timestamp = next_frame_it->second->ReceivedTime(); |
| uint32_t timestamp = next_frame_it->second->Timestamp(); |
| |
| int64_t frame_delay; |
| if (inter_frame_delay_.CalculateDelay(timestamp, &frame_delay, |
| received_timestamp)) { |
| jitter_estimator_->UpdateEstimate(frame_delay, |
| next_frame_it->second->size); |
| } |
| float rtt_mult = protection_mode_ == kProtectionNackFEC ? 0.0 : 1.0; |
| timing_->SetJitterDelay(jitter_estimator_->GetJitterEstimate(rtt_mult)); |
| timing_->UpdateCurrentDelay(next_frame_it->second->RenderTime(), |
| clock_->TimeInMilliseconds()); |
| |
| decoded_frames_.insert(next_frame_it->first); |
| std::unique_ptr<FrameObject> frame = std::move(next_frame_it->second); |
| frames_.erase(frames_.begin(), ++next_frame_it); |
| *frame_out = std::move(frame); |
| return kFrameFound; |
| } else { |
| return kTimeout; |
| } |
| } |
| } |
| } |
| |
| void FrameBuffer::SetProtectionMode(VCMVideoProtection mode) { |
| rtc::CritScope lock(&crit_); |
| protection_mode_ = mode; |
| } |
| |
| void FrameBuffer::Start() { |
| rtc::CritScope lock(&crit_); |
| stopped_ = false; |
| } |
| |
| void FrameBuffer::Stop() { |
| rtc::CritScope lock(&crit_); |
| stopped_ = true; |
| frame_inserted_event_.Set(); |
| } |
| |
| void FrameBuffer::InsertFrame(std::unique_ptr<FrameObject> frame) { |
| rtc::CritScope lock(&crit_); |
| // If |newest_picture_id_| is -1 then this is the first frame we received. |
| if (newest_picture_id_ == -1) |
| newest_picture_id_ = frame->picture_id; |
| |
| if (AheadOf<uint16_t>(frame->picture_id, newest_picture_id_)) |
| newest_picture_id_ = frame->picture_id; |
| |
| // Remove frames as long as we have too many, |kMaxNumHistoryFrames|. |
| while (decoded_frames_.size() > kMaxNumHistoryFrames) |
| decoded_frames_.erase(decoded_frames_.begin()); |
| |
| // Remove frames that are too old. |
| uint16_t old_picture_id = Subtract<1 << 16>(newest_picture_id_, kMaxFrameAge); |
| auto old_decoded_it = |
| decoded_frames_.lower_bound(FrameKey(old_picture_id, 0)); |
| decoded_frames_.erase(decoded_frames_.begin(), old_decoded_it); |
| |
| FrameKey key(frame->picture_id, frame->spatial_layer); |
| frames_[key] = std::move(frame); |
| frame_inserted_event_.Set(); |
| } |
| |
| bool FrameBuffer::IsContinuous(const FrameObject& frame) const { |
| // If a frame with an earlier picture id was inserted compared to the last |
| // decoded frames picture id then that frame arrived too late. |
| if (!decoded_frames_.empty() && |
| AheadOf(decoded_frames_.rbegin()->first, frame.picture_id)) { |
| return false; |
| } |
| |
| // Have we decoded all frames that this frame depend on? |
| for (size_t r = 0; r < frame.num_references; ++r) { |
| FrameKey ref_key(frame.references[r], frame.spatial_layer); |
| if (decoded_frames_.find(ref_key) == decoded_frames_.end()) |
| return false; |
| } |
| |
| // If this is a layer frame, have we decoded the lower layer of this |
| // super frame. |
| if (frame.inter_layer_predicted) { |
| RTC_DCHECK_GT(frame.spatial_layer, 0); |
| FrameKey ref_key(frame.picture_id, frame.spatial_layer - 1); |
| if (decoded_frames_.find(ref_key) == decoded_frames_.end()) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| } // namespace video_coding |
| } // namespace webrtc |