blob: a7bd5e2040d131dd03c462d7b1b47a511bea6fdf [file] [log] [blame]
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#include "webrtc/modules/video_coding/codecs/h264/h264_video_toolbox_encoder.h"
#if defined(WEBRTC_VIDEO_TOOLBOX_SUPPORTED)
#include <memory>
#include <string>
#include <vector>
#if defined(WEBRTC_IOS)
#include "RTCUIApplication.h"
#endif
#include "libyuv/convert_from.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/modules/video_coding/codecs/h264/h264_video_toolbox_nalu.h"
#include "webrtc/system_wrappers/include/clock.h"
namespace internal {
// Convenience function for creating a dictionary.
inline CFDictionaryRef CreateCFDictionary(CFTypeRef* keys,
CFTypeRef* values,
size_t size) {
return CFDictionaryCreate(kCFAllocatorDefault, keys, values, size,
&kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks);
}
// Copies characters from a CFStringRef into a std::string.
std::string CFStringToString(const CFStringRef cf_string) {
RTC_DCHECK(cf_string);
std::string std_string;
// Get the size needed for UTF8 plus terminating character.
size_t buffer_size =
CFStringGetMaximumSizeForEncoding(CFStringGetLength(cf_string),
kCFStringEncodingUTF8) +
1;
std::unique_ptr<char[]> buffer(new char[buffer_size]);
if (CFStringGetCString(cf_string, buffer.get(), buffer_size,
kCFStringEncodingUTF8)) {
// Copy over the characters.
std_string.assign(buffer.get());
}
return std_string;
}
// Convenience function for setting a VT property.
void SetVTSessionProperty(VTSessionRef session,
CFStringRef key,
int32_t value) {
CFNumberRef cfNum =
CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt32Type, &value);
OSStatus status = VTSessionSetProperty(session, key, cfNum);
CFRelease(cfNum);
if (status != noErr) {
std::string key_string = CFStringToString(key);
LOG(LS_ERROR) << "VTSessionSetProperty failed to set: " << key_string
<< " to " << value << ": " << status;
}
}
// Convenience function for setting a VT property.
void SetVTSessionProperty(VTSessionRef session,
CFStringRef key,
uint32_t value) {
int64_t value_64 = value;
CFNumberRef cfNum =
CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt64Type, &value_64);
OSStatus status = VTSessionSetProperty(session, key, cfNum);
CFRelease(cfNum);
if (status != noErr) {
std::string key_string = CFStringToString(key);
LOG(LS_ERROR) << "VTSessionSetProperty failed to set: " << key_string
<< " to " << value << ": " << status;
}
}
// Convenience function for setting a VT property.
void SetVTSessionProperty(VTSessionRef session, CFStringRef key, bool value) {
CFBooleanRef cf_bool = (value) ? kCFBooleanTrue : kCFBooleanFalse;
OSStatus status = VTSessionSetProperty(session, key, cf_bool);
if (status != noErr) {
std::string key_string = CFStringToString(key);
LOG(LS_ERROR) << "VTSessionSetProperty failed to set: " << key_string
<< " to " << value << ": " << status;
}
}
// Convenience function for setting a VT property.
void SetVTSessionProperty(VTSessionRef session,
CFStringRef key,
CFStringRef value) {
OSStatus status = VTSessionSetProperty(session, key, value);
if (status != noErr) {
std::string key_string = CFStringToString(key);
std::string val_string = CFStringToString(value);
LOG(LS_ERROR) << "VTSessionSetProperty failed to set: " << key_string
<< " to " << val_string << ": " << status;
}
}
// Struct that we pass to the encoder per frame to encode. We receive it again
// in the encoder callback.
struct FrameEncodeParams {
FrameEncodeParams(webrtc::H264VideoToolboxEncoder* e,
const webrtc::CodecSpecificInfo* csi,
int32_t w,
int32_t h,
int64_t rtms,
uint32_t ts,
webrtc::VideoRotation r)
: encoder(e),
width(w),
height(h),
render_time_ms(rtms),
timestamp(ts),
rotation(r) {
if (csi) {
codec_specific_info = *csi;
} else {
codec_specific_info.codecType = webrtc::kVideoCodecH264;
}
}
webrtc::H264VideoToolboxEncoder* encoder;
webrtc::CodecSpecificInfo codec_specific_info;
int32_t width;
int32_t height;
int64_t render_time_ms;
uint32_t timestamp;
webrtc::VideoRotation rotation;
};
// We receive I420Frames as input, but we need to feed CVPixelBuffers into the
// encoder. This performs the copy and format conversion.
// TODO(tkchin): See if encoder will accept i420 frames and compare performance.
bool CopyVideoFrameToPixelBuffer(
const rtc::scoped_refptr<webrtc::VideoFrameBuffer>& frame,
CVPixelBufferRef pixel_buffer) {
RTC_DCHECK(pixel_buffer);
RTC_DCHECK(CVPixelBufferGetPixelFormatType(pixel_buffer) ==
kCVPixelFormatType_420YpCbCr8BiPlanarFullRange);
RTC_DCHECK(CVPixelBufferGetHeightOfPlane(pixel_buffer, 0) ==
static_cast<size_t>(frame->height()));
RTC_DCHECK(CVPixelBufferGetWidthOfPlane(pixel_buffer, 0) ==
static_cast<size_t>(frame->width()));
CVReturn cvRet = CVPixelBufferLockBaseAddress(pixel_buffer, 0);
if (cvRet != kCVReturnSuccess) {
LOG(LS_ERROR) << "Failed to lock base address: " << cvRet;
return false;
}
uint8_t* dst_y = reinterpret_cast<uint8_t*>(
CVPixelBufferGetBaseAddressOfPlane(pixel_buffer, 0));
int dst_stride_y = CVPixelBufferGetBytesPerRowOfPlane(pixel_buffer, 0);
uint8_t* dst_uv = reinterpret_cast<uint8_t*>(
CVPixelBufferGetBaseAddressOfPlane(pixel_buffer, 1));
int dst_stride_uv = CVPixelBufferGetBytesPerRowOfPlane(pixel_buffer, 1);
// Convert I420 to NV12.
int ret = libyuv::I420ToNV12(
frame->DataY(), frame->StrideY(),
frame->DataU(), frame->StrideU(),
frame->DataV(), frame->StrideV(),
dst_y, dst_stride_y, dst_uv, dst_stride_uv,
frame->width(), frame->height());
CVPixelBufferUnlockBaseAddress(pixel_buffer, 0);
if (ret) {
LOG(LS_ERROR) << "Error converting I420 VideoFrame to NV12 :" << ret;
return false;
}
return true;
}
// This is the callback function that VideoToolbox calls when encode is
// complete. From inspection this happens on its own queue.
void VTCompressionOutputCallback(void* encoder,
void* params,
OSStatus status,
VTEncodeInfoFlags info_flags,
CMSampleBufferRef sample_buffer) {
std::unique_ptr<FrameEncodeParams> encode_params(
reinterpret_cast<FrameEncodeParams*>(params));
encode_params->encoder->OnEncodedFrame(
status, info_flags, sample_buffer, encode_params->codec_specific_info,
encode_params->width, encode_params->height,
encode_params->render_time_ms, encode_params->timestamp,
encode_params->rotation);
}
} // namespace internal
namespace webrtc {
// .5 is set as a mininum to prevent overcompensating for large temporary
// overshoots. We don't want to degrade video quality too badly.
// .95 is set to prevent oscillations. When a lower bitrate is set on the
// encoder than previously set, its output seems to have a brief period of
// drastically reduced bitrate, so we want to avoid that. In steady state
// conditions, 0.95 seems to give us better overall bitrate over long periods
// of time.
H264VideoToolboxEncoder::H264VideoToolboxEncoder()
: callback_(nullptr),
compression_session_(nullptr),
bitrate_adjuster_(Clock::GetRealTimeClock(), .5, .95) {}
H264VideoToolboxEncoder::~H264VideoToolboxEncoder() {
DestroyCompressionSession();
}
int H264VideoToolboxEncoder::InitEncode(const VideoCodec* codec_settings,
int number_of_cores,
size_t max_payload_size) {
RTC_DCHECK(codec_settings);
RTC_DCHECK_EQ(codec_settings->codecType, kVideoCodecH264);
{
rtc::CritScope lock(&quality_scaler_crit_);
quality_scaler_.Init(QualityScaler::kLowH264QpThreshold,
QualityScaler::kBadH264QpThreshold,
codec_settings->startBitrate, codec_settings->width,
codec_settings->height, codec_settings->maxFramerate);
QualityScaler::Resolution res = quality_scaler_.GetScaledResolution();
// TODO(tkchin): We may need to enforce width/height dimension restrictions
// to match what the encoder supports.
width_ = res.width;
height_ = res.height;
}
// We can only set average bitrate on the HW encoder.
target_bitrate_bps_ = codec_settings->startBitrate;
bitrate_adjuster_.SetTargetBitrateBps(target_bitrate_bps_);
// TODO(tkchin): Try setting payload size via
// kVTCompressionPropertyKey_MaxH264SliceBytes.
return ResetCompressionSession();
}
rtc::scoped_refptr<VideoFrameBuffer>
H264VideoToolboxEncoder::GetScaledBufferOnEncode(
const rtc::scoped_refptr<VideoFrameBuffer>& frame) {
rtc::CritScope lock(&quality_scaler_crit_);
quality_scaler_.OnEncodeFrame(frame->width(), frame->height());
return quality_scaler_.GetScaledBuffer(frame);
}
int H264VideoToolboxEncoder::Encode(
const VideoFrame& frame,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
RTC_DCHECK(!frame.IsZeroSize());
if (!callback_ || !compression_session_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
#if defined(WEBRTC_IOS)
if (!RTCIsUIApplicationActive()) {
// Ignore all encode requests when app isn't active. In this state, the
// hardware encoder has been invalidated by the OS.
return WEBRTC_VIDEO_CODEC_OK;
}
#endif
bool is_keyframe_required = false;
rtc::scoped_refptr<VideoFrameBuffer> input_image(
GetScaledBufferOnEncode(frame.video_frame_buffer()));
if (input_image->width() != width_ || input_image->height() != height_) {
width_ = input_image->width();
height_ = input_image->height();
int ret = ResetCompressionSession();
if (ret < 0)
return ret;
}
// Get a pixel buffer from the pool and copy frame data over.
CVPixelBufferPoolRef pixel_buffer_pool =
VTCompressionSessionGetPixelBufferPool(compression_session_);
#if defined(WEBRTC_IOS)
if (!pixel_buffer_pool) {
// Kind of a hack. On backgrounding, the compression session seems to get
// invalidated, which causes this pool call to fail when the application
// is foregrounded and frames are being sent for encoding again.
// Resetting the session when this happens fixes the issue.
// In addition we request a keyframe so video can recover quickly.
ResetCompressionSession();
pixel_buffer_pool =
VTCompressionSessionGetPixelBufferPool(compression_session_);
is_keyframe_required = true;
}
#endif
if (!pixel_buffer_pool) {
LOG(LS_ERROR) << "Failed to get pixel buffer pool.";
return WEBRTC_VIDEO_CODEC_ERROR;
}
CVPixelBufferRef pixel_buffer = nullptr;
CVReturn ret = CVPixelBufferPoolCreatePixelBuffer(nullptr, pixel_buffer_pool,
&pixel_buffer);
if (ret != kCVReturnSuccess) {
LOG(LS_ERROR) << "Failed to create pixel buffer: " << ret;
// We probably want to drop frames here, since failure probably means
// that the pool is empty.
return WEBRTC_VIDEO_CODEC_ERROR;
}
RTC_DCHECK(pixel_buffer);
if (!internal::CopyVideoFrameToPixelBuffer(input_image, pixel_buffer)) {
LOG(LS_ERROR) << "Failed to copy frame data.";
CVBufferRelease(pixel_buffer);
return WEBRTC_VIDEO_CODEC_ERROR;
}
// Check if we need a keyframe.
if (!is_keyframe_required && frame_types) {
for (auto frame_type : *frame_types) {
if (frame_type == kVideoFrameKey) {
is_keyframe_required = true;
break;
}
}
}
CMTime presentation_time_stamp =
CMTimeMake(frame.render_time_ms(), 1000);
CFDictionaryRef frame_properties = nullptr;
if (is_keyframe_required) {
CFTypeRef keys[] = {kVTEncodeFrameOptionKey_ForceKeyFrame};
CFTypeRef values[] = {kCFBooleanTrue};
frame_properties = internal::CreateCFDictionary(keys, values, 1);
}
std::unique_ptr<internal::FrameEncodeParams> encode_params;
encode_params.reset(new internal::FrameEncodeParams(
this, codec_specific_info, width_, height_, frame.render_time_ms(),
frame.timestamp(), frame.rotation()));
// Update the bitrate if needed.
SetBitrateBps(bitrate_adjuster_.GetAdjustedBitrateBps());
OSStatus status = VTCompressionSessionEncodeFrame(
compression_session_, pixel_buffer, presentation_time_stamp,
kCMTimeInvalid, frame_properties, encode_params.release(), nullptr);
if (frame_properties) {
CFRelease(frame_properties);
}
if (pixel_buffer) {
CVBufferRelease(pixel_buffer);
}
if (status != noErr) {
LOG(LS_ERROR) << "Failed to encode frame with code: " << status;
return WEBRTC_VIDEO_CODEC_ERROR;
}
return WEBRTC_VIDEO_CODEC_OK;
}
int H264VideoToolboxEncoder::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
void H264VideoToolboxEncoder::OnDroppedFrame() {
rtc::CritScope lock(&quality_scaler_crit_);
quality_scaler_.ReportDroppedFrame();
}
int H264VideoToolboxEncoder::SetChannelParameters(uint32_t packet_loss,
int64_t rtt) {
// Encoder doesn't know anything about packet loss or rtt so just return.
return WEBRTC_VIDEO_CODEC_OK;
}
int H264VideoToolboxEncoder::SetRates(uint32_t new_bitrate_kbit,
uint32_t frame_rate) {
target_bitrate_bps_ = 1000 * new_bitrate_kbit;
bitrate_adjuster_.SetTargetBitrateBps(target_bitrate_bps_);
SetBitrateBps(bitrate_adjuster_.GetAdjustedBitrateBps());
rtc::CritScope lock(&quality_scaler_crit_);
quality_scaler_.ReportFramerate(frame_rate);
return WEBRTC_VIDEO_CODEC_OK;
}
int H264VideoToolboxEncoder::Release() {
// Need to reset so that the session is invalidated and won't use the
// callback anymore. Do not remove callback until the session is invalidated
// since async encoder callbacks can occur until invalidation.
int ret = ResetCompressionSession();
callback_ = nullptr;
return ret;
}
int H264VideoToolboxEncoder::ResetCompressionSession() {
DestroyCompressionSession();
// Set source image buffer attributes. These attributes will be present on
// buffers retrieved from the encoder's pixel buffer pool.
const size_t attributes_size = 3;
CFTypeRef keys[attributes_size] = {
#if defined(WEBRTC_IOS)
kCVPixelBufferOpenGLESCompatibilityKey,
#elif defined(WEBRTC_MAC)
kCVPixelBufferOpenGLCompatibilityKey,
#endif
kCVPixelBufferIOSurfacePropertiesKey,
kCVPixelBufferPixelFormatTypeKey
};
CFDictionaryRef io_surface_value =
internal::CreateCFDictionary(nullptr, nullptr, 0);
int64_t nv12type = kCVPixelFormatType_420YpCbCr8BiPlanarFullRange;
CFNumberRef pixel_format =
CFNumberCreate(nullptr, kCFNumberLongType, &nv12type);
CFTypeRef values[attributes_size] = {kCFBooleanTrue, io_surface_value,
pixel_format};
CFDictionaryRef source_attributes =
internal::CreateCFDictionary(keys, values, attributes_size);
if (io_surface_value) {
CFRelease(io_surface_value);
io_surface_value = nullptr;
}
if (pixel_format) {
CFRelease(pixel_format);
pixel_format = nullptr;
}
OSStatus status = VTCompressionSessionCreate(
nullptr, // use default allocator
width_, height_, kCMVideoCodecType_H264,
nullptr, // use default encoder
source_attributes,
nullptr, // use default compressed data allocator
internal::VTCompressionOutputCallback, this, &compression_session_);
if (source_attributes) {
CFRelease(source_attributes);
source_attributes = nullptr;
}
if (status != noErr) {
LOG(LS_ERROR) << "Failed to create compression session: " << status;
return WEBRTC_VIDEO_CODEC_ERROR;
}
ConfigureCompressionSession();
return WEBRTC_VIDEO_CODEC_OK;
}
void H264VideoToolboxEncoder::ConfigureCompressionSession() {
RTC_DCHECK(compression_session_);
internal::SetVTSessionProperty(compression_session_,
kVTCompressionPropertyKey_RealTime, true);
internal::SetVTSessionProperty(compression_session_,
kVTCompressionPropertyKey_ProfileLevel,
kVTProfileLevel_H264_Baseline_AutoLevel);
internal::SetVTSessionProperty(compression_session_,
kVTCompressionPropertyKey_AllowFrameReordering,
false);
SetEncoderBitrateBps(target_bitrate_bps_);
// TODO(tkchin): Look at entropy mode and colorspace matrices.
// TODO(tkchin): Investigate to see if there's any way to make this work.
// May need it to interop with Android. Currently this call just fails.
// On inspecting encoder output on iOS8, this value is set to 6.
// internal::SetVTSessionProperty(compression_session_,
// kVTCompressionPropertyKey_MaxFrameDelayCount,
// 1);
// Set a relatively large value for keyframe emission (7200 frames or
// 4 minutes).
internal::SetVTSessionProperty(
compression_session_,
kVTCompressionPropertyKey_MaxKeyFrameInterval, 7200);
internal::SetVTSessionProperty(
compression_session_,
kVTCompressionPropertyKey_MaxKeyFrameIntervalDuration, 240);
}
void H264VideoToolboxEncoder::DestroyCompressionSession() {
if (compression_session_) {
VTCompressionSessionInvalidate(compression_session_);
CFRelease(compression_session_);
compression_session_ = nullptr;
}
}
const char* H264VideoToolboxEncoder::ImplementationName() const {
return "VideoToolbox";
}
void H264VideoToolboxEncoder::SetBitrateBps(uint32_t bitrate_bps) {
if (encoder_bitrate_bps_ != bitrate_bps) {
SetEncoderBitrateBps(bitrate_bps);
}
}
void H264VideoToolboxEncoder::SetEncoderBitrateBps(uint32_t bitrate_bps) {
if (compression_session_) {
internal::SetVTSessionProperty(compression_session_,
kVTCompressionPropertyKey_AverageBitRate,
bitrate_bps);
// TODO(tkchin): Add a helper method to set array value.
int64_t bytes_per_second_value = bitrate_bps / 8;
CFNumberRef bytes_per_second =
CFNumberCreate(kCFAllocatorDefault,
kCFNumberSInt64Type,
&bytes_per_second_value);
int64_t one_second_value = 1;
CFNumberRef one_second =
CFNumberCreate(kCFAllocatorDefault,
kCFNumberSInt64Type,
&one_second_value);
const void* nums[2] = { bytes_per_second, one_second };
CFArrayRef data_rate_limits =
CFArrayCreate(nullptr, nums, 2, &kCFTypeArrayCallBacks);
OSStatus status =
VTSessionSetProperty(compression_session_,
kVTCompressionPropertyKey_DataRateLimits,
data_rate_limits);
if (bytes_per_second) {
CFRelease(bytes_per_second);
}
if (one_second) {
CFRelease(one_second);
}
if (data_rate_limits) {
CFRelease(data_rate_limits);
}
if (status != noErr) {
LOG(LS_ERROR) << "Failed to set data rate limit";
}
encoder_bitrate_bps_ = bitrate_bps;
}
}
void H264VideoToolboxEncoder::OnEncodedFrame(
OSStatus status,
VTEncodeInfoFlags info_flags,
CMSampleBufferRef sample_buffer,
CodecSpecificInfo codec_specific_info,
int32_t width,
int32_t height,
int64_t render_time_ms,
uint32_t timestamp,
VideoRotation rotation) {
if (status != noErr) {
LOG(LS_ERROR) << "H264 encode failed.";
return;
}
if (info_flags & kVTEncodeInfo_FrameDropped) {
LOG(LS_INFO) << "H264 encode dropped frame.";
rtc::CritScope lock(&quality_scaler_crit_);
quality_scaler_.ReportDroppedFrame();
return;
}
bool is_keyframe = false;
CFArrayRef attachments =
CMSampleBufferGetSampleAttachmentsArray(sample_buffer, 0);
if (attachments != nullptr && CFArrayGetCount(attachments)) {
CFDictionaryRef attachment =
static_cast<CFDictionaryRef>(CFArrayGetValueAtIndex(attachments, 0));
is_keyframe =
!CFDictionaryContainsKey(attachment, kCMSampleAttachmentKey_NotSync);
}
if (is_keyframe) {
LOG(LS_INFO) << "Generated keyframe";
}
// Convert the sample buffer into a buffer suitable for RTP packetization.
// TODO(tkchin): Allocate buffers through a pool.
std::unique_ptr<rtc::Buffer> buffer(new rtc::Buffer());
std::unique_ptr<webrtc::RTPFragmentationHeader> header;
{
webrtc::RTPFragmentationHeader* header_raw;
bool result = H264CMSampleBufferToAnnexBBuffer(sample_buffer, is_keyframe,
buffer.get(), &header_raw);
header.reset(header_raw);
if (!result) {
return;
}
}
webrtc::EncodedImage frame(buffer->data(), buffer->size(), buffer->size());
frame._encodedWidth = width;
frame._encodedHeight = height;
frame._completeFrame = true;
frame._frameType =
is_keyframe ? webrtc::kVideoFrameKey : webrtc::kVideoFrameDelta;
frame.capture_time_ms_ = render_time_ms;
frame._timeStamp = timestamp;
frame.rotation_ = rotation;
h264_bitstream_parser_.ParseBitstream(buffer->data(), buffer->size());
int qp;
if (h264_bitstream_parser_.GetLastSliceQp(&qp)) {
rtc::CritScope lock(&quality_scaler_crit_);
quality_scaler_.ReportQP(qp);
}
int result = callback_->Encoded(frame, &codec_specific_info, header.get());
if (result != 0) {
LOG(LS_ERROR) << "Encode callback failed: " << result;
return;
}
bitrate_adjuster_.Update(frame._size);
}
} // namespace webrtc
#endif // defined(WEBRTC_VIDEO_TOOLBOX_SUPPORTED)