blob: bcfb1321101b016d0bd563adda2dd809a0fd1f70 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/test/videoprocessor_integrationtest.h"
#include <algorithm>
#include <utility>
#if defined(WEBRTC_ANDROID)
#include "modules/video_coding/codecs/test/android_test_initializer.h"
#include "sdk/android/src/jni/androidmediadecoder_jni.h"
#include "sdk/android/src/jni/androidmediaencoder_jni.h"
#elif defined(WEBRTC_IOS)
#include "modules/video_coding/codecs/test/objc_codec_h264_test.h"
#endif
#include "common_types.h" // NOLINT(build/include)
#include "media/base/h264_profile_level_id.h"
#include "media/engine/internaldecoderfactory.h"
#include "media/engine/internalencoderfactory.h"
#include "media/engine/videodecodersoftwarefallbackwrapper.h"
#include "media/engine/videoencodersoftwarefallbackwrapper.h"
#include "modules/video_coding/codecs/vp8/include/vp8_common_types.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "modules/video_coding/include/video_coding.h"
#include "rtc_base/checks.h"
#include "rtc_base/cpu_time.h"
#include "rtc_base/event.h"
#include "rtc_base/file.h"
#include "rtc_base/ptr_util.h"
#include "system_wrappers/include/sleep.h"
#include "test/testsupport/fileutils.h"
#include "test/testsupport/metrics/video_metrics.h"
namespace webrtc {
namespace test {
namespace {
const int kMaxBitrateMismatchPercent = 20;
// Parameters from VP8 wrapper, which control target size of key frames.
const float kInitialBufferSize = 0.5f;
const float kOptimalBufferSize = 0.6f;
const float kScaleKeyFrameSize = 0.5f;
bool RunEncodeInRealTime(const TestConfig& config) {
if (config.measure_cpu) {
return true;
}
#if defined(WEBRTC_ANDROID)
// In order to not overwhelm the OpenMAX buffers in the Android MediaCodec.
return (config.hw_encoder || config.hw_decoder);
#else
return false;
#endif
}
// An internal encoder factory in the old WebRtcVideoEncoderFactory format.
// TODO(magjed): Update these tests to use new webrtc::VideoEncoderFactory
// instead.
class LegacyInternalEncoderFactory : public cricket::WebRtcVideoEncoderFactory {
public:
LegacyInternalEncoderFactory() {
for (const SdpVideoFormat& format :
InternalEncoderFactory().GetSupportedFormats()) {
supported_codecs_.push_back(cricket::VideoCodec(format));
}
}
// WebRtcVideoEncoderFactory implementation.
VideoEncoder* CreateVideoEncoder(const cricket::VideoCodec& codec) override {
return InternalEncoderFactory()
.CreateVideoEncoder(SdpVideoFormat(codec.name, codec.params))
.release();
}
const std::vector<cricket::VideoCodec>& supported_codecs() const override {
return supported_codecs_;
}
bool EncoderTypeHasInternalSource(
webrtc::VideoCodecType type) const override {
return false;
}
void DestroyVideoEncoder(VideoEncoder* encoder) override { delete encoder; }
private:
std::vector<cricket::VideoCodec> supported_codecs_;
};
// An internal decoder factory in the old WebRtcVideoDecoderFactory format.
// TODO(magjed): Update these tests to use new webrtc::VideoDecoderFactory
// instead.
class LegacyInternalDecoderFactory : public cricket::WebRtcVideoDecoderFactory {
public:
// WebRtcVideoDecoderFactory implementation.
VideoDecoder* CreateVideoDecoderWithParams(
const cricket::VideoCodec& codec,
cricket::VideoDecoderParams params) override {
return InternalDecoderFactory()
.CreateVideoDecoder(SdpVideoFormat(codec.name, codec.params))
.release();
}
void DestroyVideoDecoder(VideoDecoder* decoder) override { delete decoder; }
};
} // namespace
void VideoProcessorIntegrationTest::H264KeyframeChecker::CheckEncodedFrame(
webrtc::VideoCodecType codec,
const EncodedImage& encoded_frame) const {
EXPECT_EQ(kVideoCodecH264, codec);
bool contains_sps = false;
bool contains_pps = false;
bool contains_idr = false;
const std::vector<webrtc::H264::NaluIndex> nalu_indices =
webrtc::H264::FindNaluIndices(encoded_frame._buffer,
encoded_frame._length);
for (const webrtc::H264::NaluIndex& index : nalu_indices) {
webrtc::H264::NaluType nalu_type = webrtc::H264::ParseNaluType(
encoded_frame._buffer[index.payload_start_offset]);
if (nalu_type == webrtc::H264::NaluType::kSps) {
contains_sps = true;
} else if (nalu_type == webrtc::H264::NaluType::kPps) {
contains_pps = true;
} else if (nalu_type == webrtc::H264::NaluType::kIdr) {
contains_idr = true;
}
}
if (encoded_frame._frameType == kVideoFrameKey) {
EXPECT_TRUE(contains_sps) << "Keyframe should contain SPS.";
EXPECT_TRUE(contains_pps) << "Keyframe should contain PPS.";
EXPECT_TRUE(contains_idr) << "Keyframe should contain IDR.";
} else if (encoded_frame._frameType == kVideoFrameDelta) {
EXPECT_FALSE(contains_sps) << "Delta frame should not contain SPS.";
EXPECT_FALSE(contains_pps) << "Delta frame should not contain PPS.";
EXPECT_FALSE(contains_idr) << "Delta frame should not contain IDR.";
} else {
RTC_NOTREACHED();
}
}
class VideoProcessorIntegrationTest::CpuProcessTime final {
public:
explicit CpuProcessTime(const TestConfig& config) : config_(config) {}
~CpuProcessTime() {}
void Start() {
if (config_.measure_cpu) {
cpu_time_ -= rtc::GetProcessCpuTimeNanos();
wallclock_time_ -= rtc::SystemTimeNanos();
}
}
void Stop() {
if (config_.measure_cpu) {
cpu_time_ += rtc::GetProcessCpuTimeNanos();
wallclock_time_ += rtc::SystemTimeNanos();
}
}
void Print() const {
if (config_.measure_cpu) {
printf("CPU usage %%: %f\n", GetUsagePercent() / config_.NumberOfCores());
printf("\n");
}
}
private:
double GetUsagePercent() const {
return static_cast<double>(cpu_time_) / wallclock_time_ * 100.0;
}
const TestConfig config_;
int64_t cpu_time_ = 0;
int64_t wallclock_time_ = 0;
};
VideoProcessorIntegrationTest::VideoProcessorIntegrationTest() {
#if defined(WEBRTC_ANDROID)
InitializeAndroidObjects();
#endif
}
VideoProcessorIntegrationTest::~VideoProcessorIntegrationTest() = default;
// Processes all frames in the clip and verifies the result.
void VideoProcessorIntegrationTest::ProcessFramesAndMaybeVerify(
const std::vector<RateProfile>& rate_profiles,
const std::vector<RateControlThresholds>* rc_thresholds,
const QualityThresholds* quality_thresholds,
const BitstreamThresholds* bs_thresholds,
const VisualizationParams* visualization_params) {
RTC_DCHECK(!rate_profiles.empty());
// The Android HW codec needs to be run on a task queue, so we simply always
// run the test on a task queue.
rtc::TaskQueue task_queue("VidProc TQ");
rtc::Event sync_event(false, false);
SetUpAndInitObjects(&task_queue, rate_profiles[0].target_kbps,
rate_profiles[0].input_fps, visualization_params);
PrintSettings();
// Set initial rates.
int rate_update_index = 0;
task_queue.PostTask([this, &rate_profiles, rate_update_index] {
processor_->SetRates(rate_profiles[rate_update_index].target_kbps,
rate_profiles[rate_update_index].input_fps);
});
cpu_process_time_->Start();
// Process all frames.
int frame_number = 0;
const int num_frames = config_.num_frames;
RTC_DCHECK_GE(num_frames, 1);
while (frame_number < num_frames) {
if (RunEncodeInRealTime(config_)) {
// Roughly pace the frames.
SleepMs(rtc::kNumMillisecsPerSec /
rate_profiles[rate_update_index].input_fps);
}
task_queue.PostTask([this] { processor_->ProcessFrame(); });
++frame_number;
if (frame_number ==
rate_profiles[rate_update_index].frame_index_rate_update) {
++rate_update_index;
RTC_DCHECK_GT(rate_profiles.size(), rate_update_index);
task_queue.PostTask([this, &rate_profiles, rate_update_index] {
processor_->SetRates(rate_profiles[rate_update_index].target_kbps,
rate_profiles[rate_update_index].input_fps);
});
}
}
// Give the VideoProcessor pipeline some time to process the last frame,
// and then release the codecs.
if (config_.hw_encoder || config_.hw_decoder) {
SleepMs(1 * rtc::kNumMillisecsPerSec);
}
cpu_process_time_->Stop();
std::vector<int> num_dropped_frames;
std::vector<int> num_spatial_resizes;
sync_event.Reset();
task_queue.PostTask(
[this, &num_dropped_frames, &num_spatial_resizes, &sync_event]() {
num_dropped_frames = processor_->NumberDroppedFramesPerRateUpdate();
num_spatial_resizes = processor_->NumberSpatialResizesPerRateUpdate();
sync_event.Set();
});
sync_event.Wait(rtc::Event::kForever);
ReleaseAndCloseObjects(&task_queue);
// Calculate and print rate control statistics.
rate_update_index = 0;
frame_number = 0;
quality_ = QualityMetrics();
ResetRateControlMetrics(rate_update_index, rate_profiles);
while (frame_number < num_frames) {
UpdateRateControlMetrics(frame_number);
if (quality_thresholds) {
UpdateQualityMetrics(frame_number);
}
if (bs_thresholds) {
VerifyBitstream(frame_number, *bs_thresholds);
}
++frame_number;
if (frame_number ==
rate_profiles[rate_update_index].frame_index_rate_update) {
PrintRateControlMetrics(rate_update_index, num_dropped_frames,
num_spatial_resizes);
VerifyRateControlMetrics(rate_update_index, rc_thresholds,
num_dropped_frames, num_spatial_resizes);
++rate_update_index;
ResetRateControlMetrics(rate_update_index, rate_profiles);
}
}
PrintRateControlMetrics(rate_update_index, num_dropped_frames,
num_spatial_resizes);
VerifyRateControlMetrics(rate_update_index, rc_thresholds, num_dropped_frames,
num_spatial_resizes);
if (quality_thresholds) {
VerifyQualityMetrics(*quality_thresholds);
}
// Calculate and print other statistics.
EXPECT_EQ(num_frames, static_cast<int>(stats_.size()));
stats_.PrintSummary();
cpu_process_time_->Print();
}
void VideoProcessorIntegrationTest::CreateEncoderAndDecoder() {
std::unique_ptr<cricket::WebRtcVideoEncoderFactory> encoder_factory;
if (config_.hw_encoder) {
#if defined(WEBRTC_ANDROID)
encoder_factory.reset(new jni::MediaCodecVideoEncoderFactory());
#elif defined(WEBRTC_IOS)
EXPECT_EQ(kVideoCodecH264, config_.codec_settings.codecType)
<< "iOS HW codecs only support H264.";
encoder_factory = CreateObjCEncoderFactory();
#else
RTC_NOTREACHED() << "Only support HW encoder on Android and iOS.";
#endif
} else {
encoder_factory.reset(new LegacyInternalEncoderFactory());
}
std::unique_ptr<cricket::WebRtcVideoDecoderFactory> decoder_factory;
if (config_.hw_decoder) {
#if defined(WEBRTC_ANDROID)
decoder_factory.reset(new jni::MediaCodecVideoDecoderFactory());
#elif defined(WEBRTC_IOS)
EXPECT_EQ(kVideoCodecH264, config_.codec_settings.codecType)
<< "iOS HW codecs only support H264.";
decoder_factory = CreateObjCDecoderFactory();
#else
RTC_NOTREACHED() << "Only support HW decoder on Android and iOS.";
#endif
} else {
decoder_factory.reset(new LegacyInternalDecoderFactory());
}
cricket::VideoCodec codec;
cricket::VideoDecoderParams decoder_params; // Empty.
switch (config_.codec_settings.codecType) {
case kVideoCodecVP8:
codec = cricket::VideoCodec(cricket::kVp8CodecName);
encoder_.reset(encoder_factory->CreateVideoEncoder(codec));
decoder_.reset(
decoder_factory->CreateVideoDecoderWithParams(codec, decoder_params));
break;
case kVideoCodecVP9:
codec = cricket::VideoCodec(cricket::kVp9CodecName);
encoder_.reset(encoder_factory->CreateVideoEncoder(codec));
decoder_.reset(
decoder_factory->CreateVideoDecoderWithParams(codec, decoder_params));
break;
case kVideoCodecH264:
codec = cricket::VideoCodec(cricket::kH264CodecName);
if (config_.h264_codec_settings.profile ==
H264::kProfileConstrainedHigh) {
const H264::ProfileLevelId constrained_high_profile(
H264::kProfileConstrainedHigh, H264::kLevel3_1);
codec.SetParam(cricket::kH264FmtpProfileLevelId,
*H264::ProfileLevelIdToString(constrained_high_profile));
} else {
RTC_CHECK_EQ(config_.h264_codec_settings.profile,
H264::kProfileConstrainedBaseline);
const H264::ProfileLevelId constrained_baseline_profile(
H264::kProfileConstrainedBaseline, H264::kLevel3_1);
codec.SetParam(
cricket::kH264FmtpProfileLevelId,
*H264::ProfileLevelIdToString(constrained_baseline_profile));
}
if (config_.h264_codec_settings.packetization_mode ==
H264PacketizationMode::NonInterleaved) {
codec.SetParam(cricket::kH264FmtpPacketizationMode, "1");
} else {
RTC_CHECK_EQ(config_.h264_codec_settings.packetization_mode,
H264PacketizationMode::SingleNalUnit);
codec.SetParam(cricket::kH264FmtpPacketizationMode, "0");
}
encoder_.reset(encoder_factory->CreateVideoEncoder(codec));
decoder_.reset(
decoder_factory->CreateVideoDecoderWithParams(codec, decoder_params));
break;
default:
RTC_NOTREACHED();
break;
}
if (config_.sw_fallback_encoder) {
encoder_ = rtc::MakeUnique<VideoEncoderSoftwareFallbackWrapper>(
InternalEncoderFactory().CreateVideoEncoder(
SdpVideoFormat(codec.name, codec.params)),
std::move(encoder_));
}
if (config_.sw_fallback_decoder) {
decoder_ = rtc::MakeUnique<VideoDecoderSoftwareFallbackWrapper>(
InternalDecoderFactory().CreateVideoDecoder(
SdpVideoFormat(codec.name, codec.params)),
std::move(decoder_));
}
EXPECT_TRUE(encoder_) << "Encoder not successfully created.";
EXPECT_TRUE(decoder_) << "Decoder not successfully created.";
}
void VideoProcessorIntegrationTest::DestroyEncoderAndDecoder() {
encoder_.reset();
decoder_.reset();
}
void VideoProcessorIntegrationTest::SetUpAndInitObjects(
rtc::TaskQueue* task_queue,
const int initial_bitrate_kbps,
const int initial_framerate_fps,
const VisualizationParams* visualization_params) {
CreateEncoderAndDecoder();
config_.codec_settings.minBitrate = 0;
config_.codec_settings.startBitrate = initial_bitrate_kbps;
config_.codec_settings.maxFramerate = initial_framerate_fps;
// Create file objects for quality analysis.
analysis_frame_reader_.reset(new YuvFrameReaderImpl(
config_.input_filename, config_.codec_settings.width,
config_.codec_settings.height));
analysis_frame_writer_.reset(new YuvFrameWriterImpl(
config_.output_filename, config_.codec_settings.width,
config_.codec_settings.height));
EXPECT_TRUE(analysis_frame_reader_->Init());
EXPECT_TRUE(analysis_frame_writer_->Init());
if (visualization_params) {
const std::string output_filename_base =
OutputPath() + config_.FilenameWithParams();
if (visualization_params->save_encoded_ivf) {
rtc::File post_encode_file =
rtc::File::Create(output_filename_base + ".ivf");
encoded_frame_writer_ =
IvfFileWriter::Wrap(std::move(post_encode_file), 0);
}
if (visualization_params->save_decoded_y4m) {
decoded_frame_writer_.reset(new Y4mFrameWriterImpl(
output_filename_base + ".y4m", config_.codec_settings.width,
config_.codec_settings.height, initial_framerate_fps));
EXPECT_TRUE(decoded_frame_writer_->Init());
}
}
cpu_process_time_.reset(new CpuProcessTime(config_));
packet_manipulator_.reset(new PacketManipulatorImpl(
&packet_reader_, config_.networking_config, false));
rtc::Event sync_event(false, false);
task_queue->PostTask([this, &sync_event]() {
processor_ = rtc::MakeUnique<VideoProcessor>(
encoder_.get(), decoder_.get(), analysis_frame_reader_.get(),
packet_manipulator_.get(), config_, &stats_,
encoded_frame_writer_.get(), decoded_frame_writer_.get());
sync_event.Set();
});
sync_event.Wait(rtc::Event::kForever);
}
void VideoProcessorIntegrationTest::ReleaseAndCloseObjects(
rtc::TaskQueue* task_queue) {
rtc::Event sync_event(false, false);
task_queue->PostTask([this, &sync_event]() {
processor_.reset();
sync_event.Set();
});
sync_event.Wait(rtc::Event::kForever);
// The VideoProcessor must be destroyed before the codecs.
DestroyEncoderAndDecoder();
analysis_frame_reader_->Close();
// Close visualization files.
if (encoded_frame_writer_) {
EXPECT_TRUE(encoded_frame_writer_->Close());
}
if (decoded_frame_writer_) {
decoded_frame_writer_->Close();
}
}
// For every encoded frame, update the rate control metrics.
void VideoProcessorIntegrationTest::UpdateRateControlMetrics(int frame_number) {
RTC_CHECK_GE(frame_number, 0);
const int tl_idx = config_.TemporalLayerForFrame(frame_number);
++actual_.num_frames_layer[tl_idx];
++actual_.num_frames;
const FrameStatistic* frame_stat = stats_.GetFrame(frame_number);
FrameType frame_type = frame_stat->frame_type;
float framesize_kbits = frame_stat->encoded_frame_size_bytes * 8.0f / 1000.0f;
// Update rate mismatch relative to per-frame bandwidth.
if (frame_type == kVideoFrameDelta) {
// TODO(marpan): Should we count dropped (zero size) frames in mismatch?
actual_.sum_delta_framesize_mismatch_layer[tl_idx] +=
fabs(framesize_kbits - target_.framesize_kbits_layer[tl_idx]) /
target_.framesize_kbits_layer[tl_idx];
} else {
float key_framesize_kbits = (frame_number == 0)
? target_.key_framesize_kbits_initial
: target_.key_framesize_kbits;
actual_.sum_key_framesize_mismatch +=
fabs(framesize_kbits - key_framesize_kbits) / key_framesize_kbits;
++actual_.num_key_frames;
}
actual_.sum_framesize_kbits += framesize_kbits;
actual_.sum_framesize_kbits_layer[tl_idx] += framesize_kbits;
// Encoded bitrate: from the start of the update/run to current frame.
actual_.kbps = actual_.sum_framesize_kbits * target_.fps / actual_.num_frames;
actual_.kbps_layer[tl_idx] = actual_.sum_framesize_kbits_layer[tl_idx] *
target_.fps_layer[tl_idx] /
actual_.num_frames_layer[tl_idx];
// Number of frames to hit target bitrate.
if (actual_.BitrateMismatchPercent(target_.kbps) <
kMaxBitrateMismatchPercent) {
actual_.num_frames_to_hit_target =
std::min(actual_.num_frames, actual_.num_frames_to_hit_target);
}
}
// Verify expected behavior of rate control.
void VideoProcessorIntegrationTest::VerifyRateControlMetrics(
int rate_update_index,
const std::vector<RateControlThresholds>* rc_thresholds,
const std::vector<int>& num_dropped_frames,
const std::vector<int>& num_spatial_resizes) const {
if (!rc_thresholds)
return;
const RateControlThresholds& rc_threshold =
(*rc_thresholds)[rate_update_index];
EXPECT_LE(num_dropped_frames[rate_update_index],
rc_threshold.max_num_dropped_frames);
EXPECT_EQ(rc_threshold.num_spatial_resizes,
num_spatial_resizes[rate_update_index]);
EXPECT_LE(actual_.num_frames_to_hit_target,
rc_threshold.max_num_frames_to_hit_target);
EXPECT_EQ(rc_threshold.num_key_frames, actual_.num_key_frames);
EXPECT_LE(actual_.KeyFrameSizeMismatchPercent(),
rc_threshold.max_key_framesize_mismatch_percent);
EXPECT_LE(actual_.BitrateMismatchPercent(target_.kbps),
rc_threshold.max_bitrate_mismatch_percent);
const int num_temporal_layers = config_.NumberOfTemporalLayers();
for (int i = 0; i < num_temporal_layers; ++i) {
EXPECT_LE(actual_.DeltaFrameSizeMismatchPercent(i),
rc_threshold.max_delta_framesize_mismatch_percent);
EXPECT_LE(actual_.BitrateMismatchPercent(i, target_.kbps_layer[i]),
rc_threshold.max_bitrate_mismatch_percent);
}
}
void VideoProcessorIntegrationTest::UpdateQualityMetrics(int frame_number) {
FrameStatistic* frame_stat = stats_.GetFrame(frame_number);
if (frame_stat->decoding_successful) {
++quality_.num_decoded_frames;
quality_.total_psnr += frame_stat->psnr;
quality_.total_ssim += frame_stat->ssim;
if (frame_stat->psnr < quality_.min_psnr)
quality_.min_psnr = frame_stat->psnr;
if (frame_stat->ssim < quality_.min_ssim)
quality_.min_ssim = frame_stat->ssim;
}
}
void VideoProcessorIntegrationTest::PrintRateControlMetrics(
int rate_update_index,
const std::vector<int>& num_dropped_frames,
const std::vector<int>& num_spatial_resizes) const {
if (rate_update_index == 0) {
printf("Rate control statistics\n==\n");
}
printf("Rate update #%d:\n", rate_update_index);
printf(" Target bitrate : %d\n", target_.kbps);
printf(" Encoded bitrate : %f\n", actual_.kbps);
printf(" Frame rate : %d\n", target_.fps);
printf(" # processed frames : %d\n", actual_.num_frames);
printf(" # frames to convergence : %d\n", actual_.num_frames_to_hit_target);
printf(" # dropped frames : %d\n",
num_dropped_frames[rate_update_index]);
printf(" # spatial resizes : %d\n",
num_spatial_resizes[rate_update_index]);
printf(" # key frames : %d\n", actual_.num_key_frames);
printf(" Key frame rate mismatch : %d\n",
actual_.KeyFrameSizeMismatchPercent());
const int num_temporal_layers = config_.NumberOfTemporalLayers();
for (int i = 0; i < num_temporal_layers; ++i) {
printf(" Temporal layer #%d:\n", i);
printf(" TL%d target bitrate : %f\n", i, target_.kbps_layer[i]);
printf(" TL%d encoded bitrate : %f\n", i, actual_.kbps_layer[i]);
printf(" TL%d frame rate : %f\n", i, target_.fps_layer[i]);
printf(" TL%d # processed frames : %d\n", i,
actual_.num_frames_layer[i]);
printf(" TL%d frame size %% mismatch : %d\n", i,
actual_.DeltaFrameSizeMismatchPercent(i));
printf(" TL%d bitrate %% mismatch : %d\n", i,
actual_.BitrateMismatchPercent(i, target_.kbps_layer[i]));
printf(" TL%d per-frame bitrate : %f\n", i,
target_.framesize_kbits_layer[i]);
}
printf("\n");
}
void VideoProcessorIntegrationTest::PrintSettings() const {
printf("VideoProcessor settings\n==\n");
printf(" Total # of frames: %d", analysis_frame_reader_->NumberOfFrames());
printf("%s\n", config_.ToString().c_str());
printf("VideoProcessorIntegrationTest settings\n==\n");
const char* encoder_name = encoder_->ImplementationName();
printf(" Encoder implementation name: %s\n", encoder_name);
const char* decoder_name = decoder_->ImplementationName();
printf(" Decoder implementation name: %s\n", decoder_name);
if (strcmp(encoder_name, decoder_name) == 0) {
printf(" Codec implementation name : %s_%s\n", config_.CodecName().c_str(),
encoder_name);
}
printf("\n");
}
void VideoProcessorIntegrationTest::VerifyBitstream(
int frame_number,
const BitstreamThresholds& bs_thresholds) {
RTC_CHECK_GE(frame_number, 0);
const FrameStatistic* frame_stat = stats_.GetFrame(frame_number);
EXPECT_LE(*(frame_stat->max_nalu_length), bs_thresholds.max_nalu_length);
}
void VideoProcessorIntegrationTest::VerifyQualityMetrics(
const QualityThresholds& quality_thresholds) {
EXPECT_GT(quality_.num_decoded_frames, 0);
EXPECT_GT(quality_.total_psnr / quality_.num_decoded_frames,
quality_thresholds.min_avg_psnr);
EXPECT_GT(quality_.min_psnr, quality_thresholds.min_min_psnr);
EXPECT_GT(quality_.total_ssim / quality_.num_decoded_frames,
quality_thresholds.min_avg_ssim);
EXPECT_GT(quality_.min_ssim, quality_thresholds.min_min_ssim);
}
// Reset quantities before each encoder rate update.
void VideoProcessorIntegrationTest::ResetRateControlMetrics(
int rate_update_index,
const std::vector<RateProfile>& rate_profiles) {
RTC_DCHECK_GT(rate_profiles.size(), rate_update_index);
// Set new rates.
target_.kbps = rate_profiles[rate_update_index].target_kbps;
target_.fps = rate_profiles[rate_update_index].input_fps;
SetRatesPerTemporalLayer();
// Set key frame target sizes.
if (rate_update_index == 0) {
target_.key_framesize_kbits_initial =
0.5 * kInitialBufferSize * target_.kbps_layer[0];
}
// Set maximum size of key frames, following setting in the VP8 wrapper.
float max_key_size = kScaleKeyFrameSize * kOptimalBufferSize * target_.fps;
// We don't know exact target size of the key frames (except for first one),
// but the minimum in libvpx is ~|3 * per_frame_bandwidth| and maximum is
// set by |max_key_size_ * per_frame_bandwidth|. Take middle point/average
// as reference for mismatch. Note key frames always correspond to base
// layer frame in this test.
target_.key_framesize_kbits =
0.5 * (3 + max_key_size) * target_.framesize_kbits_layer[0];
// Reset rate control metrics.
actual_ = TestResults();
actual_.num_frames_to_hit_target = // Set to max number of frames.
rate_profiles[rate_update_index].frame_index_rate_update;
}
void VideoProcessorIntegrationTest::SetRatesPerTemporalLayer() {
const int num_temporal_layers = config_.NumberOfTemporalLayers();
RTC_DCHECK_LE(num_temporal_layers, kMaxNumTemporalLayers);
for (int i = 0; i < num_temporal_layers; ++i) {
float bitrate_ratio;
if (i > 0) {
bitrate_ratio = kVp8LayerRateAlloction[num_temporal_layers - 1][i] -
kVp8LayerRateAlloction[num_temporal_layers - 1][i - 1];
} else {
bitrate_ratio = kVp8LayerRateAlloction[num_temporal_layers - 1][i];
}
target_.kbps_layer[i] = target_.kbps * bitrate_ratio;
target_.fps_layer[i] =
target_.fps / static_cast<float>(1 << (num_temporal_layers - 1));
}
if (num_temporal_layers == 3) {
target_.fps_layer[2] = target_.fps / 2.0f;
}
// Update layer per-frame-bandwidth.
for (int i = 0; i < num_temporal_layers; ++i) {
target_.framesize_kbits_layer[i] =
target_.kbps_layer[i] / target_.fps_layer[i];
}
}
} // namespace test
} // namespace webrtc