| // sigslot.h: Signal/Slot classes |
| // |
| // Written by Sarah Thompson (sarah@telergy.com) 2002. |
| // |
| // License: Public domain. You are free to use this code however you like, with |
| // the proviso that the author takes on no responsibility or liability for any |
| // use. |
| // |
| // QUICK DOCUMENTATION |
| // |
| // (see also the full documentation at http://sigslot.sourceforge.net/) |
| // |
| // #define switches |
| // SIGSLOT_PURE_ISO: |
| // Define this to force ISO C++ compliance. This also disables all of |
| // the thread safety support on platforms where it is available. |
| // |
| // SIGSLOT_USE_POSIX_THREADS: |
| // Force use of Posix threads when using a C++ compiler other than gcc |
| // on a platform that supports Posix threads. (When using gcc, this is |
| // the default - use SIGSLOT_PURE_ISO to disable this if necessary) |
| // |
| // SIGSLOT_DEFAULT_MT_POLICY: |
| // Where thread support is enabled, this defaults to |
| // multi_threaded_global. Otherwise, the default is single_threaded. |
| // #define this yourself to override the default. In pure ISO mode, |
| // anything other than single_threaded will cause a compiler error. |
| // |
| // PLATFORM NOTES |
| // |
| // Win32: |
| // On Win32, the WEBRTC_WIN symbol must be #defined. Most mainstream |
| // compilers do this by default, but you may need to define it yourself |
| // if your build environment is less standard. This causes the Win32 |
| // thread support to be compiled in and used automatically. |
| // |
| // Unix/Linux/BSD, etc.: |
| // If you're using gcc, it is assumed that you have Posix threads |
| // available, so they are used automatically. You can override this (as |
| // under Windows) with the SIGSLOT_PURE_ISO switch. If you're using |
| // something other than gcc but still want to use Posix threads, you |
| // need to #define SIGSLOT_USE_POSIX_THREADS. |
| // |
| // ISO C++: |
| // If none of the supported platforms are detected, or if |
| // SIGSLOT_PURE_ISO is defined, all multithreading support is turned |
| // off, along with any code that might cause a pure ISO C++ environment |
| // to complain. Before you ask, gcc -ansi -pedantic won't compile this |
| // library, but gcc -ansi is fine. Pedantic mode seems to throw a lot of |
| // errors that aren't really there. If you feel like investigating this, |
| // please contact the author. |
| // |
| // |
| // THREADING MODES |
| // |
| // single_threaded: |
| // Your program is assumed to be single threaded from the point of view |
| // of signal/slot usage (i.e. all objects using signals and slots are |
| // created and destroyed from a single thread). Behaviour if objects are |
| // destroyed concurrently is undefined (i.e. you'll get the occasional |
| // segmentation fault/memory exception). |
| // |
| // multi_threaded_global: |
| // Your program is assumed to be multi threaded. Objects using signals |
| // and slots can be safely created and destroyed from any thread, even |
| // when connections exist. In multi_threaded_global mode, this is |
| // achieved by a single global mutex (actually a critical section on |
| // Windows because they are faster). This option uses less OS resources, |
| // but results in more opportunities for contention, possibly resulting |
| // in more context switches than are strictly necessary. |
| // |
| // multi_threaded_local: |
| // Behaviour in this mode is essentially the same as |
| // multi_threaded_global, except that each signal, and each object that |
| // inherits has_slots, all have their own mutex/critical section. In |
| // practice, this means that mutex collisions (and hence context |
| // switches) only happen if they are absolutely essential. However, on |
| // some platforms, creating a lot of mutexes can slow down the whole OS, |
| // so use this option with care. |
| // |
| // USING THE LIBRARY |
| // |
| // See the full documentation at http://sigslot.sourceforge.net/ |
| // |
| // Libjingle specific: |
| // |
| // This file has been modified such that has_slots and signalx do not have to be |
| // using the same threading requirements. E.g. it is possible to connect a |
| // has_slots<single_threaded> and signal0<multi_threaded_local> or |
| // has_slots<multi_threaded_local> and signal0<single_threaded>. |
| // If has_slots is single threaded the user must ensure that it is not trying |
| // to connect or disconnect to signalx concurrently or data race may occur. |
| // If signalx is single threaded the user must ensure that disconnect, connect |
| // or signal is not happening concurrently or data race may occur. |
| |
| #ifndef RTC_BASE_SIGSLOT_H_ |
| #define RTC_BASE_SIGSLOT_H_ |
| |
| #include <stdlib.h> |
| #include <cstring> |
| #include <list> |
| #include <set> |
| |
| // On our copy of sigslot.h, we set single threading as default. |
| #define SIGSLOT_DEFAULT_MT_POLICY single_threaded |
| |
| #if defined(SIGSLOT_PURE_ISO) || \ |
| (!defined(WEBRTC_WIN) && !defined(__GNUG__) && \ |
| !defined(SIGSLOT_USE_POSIX_THREADS)) |
| #define _SIGSLOT_SINGLE_THREADED |
| #elif defined(WEBRTC_WIN) |
| #define _SIGSLOT_HAS_WIN32_THREADS |
| #if !defined(WIN32_LEAN_AND_MEAN) |
| #define WIN32_LEAN_AND_MEAN |
| #endif |
| #include "rtc_base/win32.h" |
| #elif defined(__GNUG__) || defined(SIGSLOT_USE_POSIX_THREADS) |
| #define _SIGSLOT_HAS_POSIX_THREADS |
| #include <pthread.h> |
| #else |
| #define _SIGSLOT_SINGLE_THREADED |
| #endif |
| |
| #ifndef SIGSLOT_DEFAULT_MT_POLICY |
| #ifdef _SIGSLOT_SINGLE_THREADED |
| #define SIGSLOT_DEFAULT_MT_POLICY single_threaded |
| #else |
| #define SIGSLOT_DEFAULT_MT_POLICY multi_threaded_local |
| #endif |
| #endif |
| |
| // TODO: change this namespace to rtc? |
| namespace sigslot { |
| |
| class single_threaded { |
| public: |
| void lock() {} |
| void unlock() {} |
| }; |
| |
| #ifdef _SIGSLOT_HAS_WIN32_THREADS |
| // The multi threading policies only get compiled in if they are enabled. |
| class multi_threaded_global { |
| public: |
| multi_threaded_global() { |
| static bool isinitialised = false; |
| |
| if (!isinitialised) { |
| InitializeCriticalSection(get_critsec()); |
| isinitialised = true; |
| } |
| } |
| |
| void lock() { EnterCriticalSection(get_critsec()); } |
| |
| void unlock() { LeaveCriticalSection(get_critsec()); } |
| |
| private: |
| CRITICAL_SECTION* get_critsec() { |
| static CRITICAL_SECTION g_critsec; |
| return &g_critsec; |
| } |
| }; |
| |
| class multi_threaded_local { |
| public: |
| multi_threaded_local() { InitializeCriticalSection(&m_critsec); } |
| |
| multi_threaded_local(const multi_threaded_local&) { |
| InitializeCriticalSection(&m_critsec); |
| } |
| |
| ~multi_threaded_local() { DeleteCriticalSection(&m_critsec); } |
| |
| void lock() { EnterCriticalSection(&m_critsec); } |
| |
| void unlock() { LeaveCriticalSection(&m_critsec); } |
| |
| private: |
| CRITICAL_SECTION m_critsec; |
| }; |
| #endif // _SIGSLOT_HAS_WIN32_THREADS |
| |
| #ifdef _SIGSLOT_HAS_POSIX_THREADS |
| // The multi threading policies only get compiled in if they are enabled. |
| class multi_threaded_global { |
| public: |
| void lock() { pthread_mutex_lock(get_mutex()); } |
| void unlock() { pthread_mutex_unlock(get_mutex()); } |
| |
| private: |
| static pthread_mutex_t* get_mutex(); |
| }; |
| |
| class multi_threaded_local { |
| public: |
| multi_threaded_local() { pthread_mutex_init(&m_mutex, nullptr); } |
| multi_threaded_local(const multi_threaded_local&) { |
| pthread_mutex_init(&m_mutex, nullptr); |
| } |
| ~multi_threaded_local() { pthread_mutex_destroy(&m_mutex); } |
| void lock() { pthread_mutex_lock(&m_mutex); } |
| void unlock() { pthread_mutex_unlock(&m_mutex); } |
| |
| private: |
| pthread_mutex_t m_mutex; |
| }; |
| #endif // _SIGSLOT_HAS_POSIX_THREADS |
| |
| template <class mt_policy> |
| class lock_block { |
| public: |
| mt_policy* m_mutex; |
| |
| lock_block(mt_policy* mtx) : m_mutex(mtx) { m_mutex->lock(); } |
| |
| ~lock_block() { m_mutex->unlock(); } |
| }; |
| |
| class _signal_base_interface; |
| |
| class has_slots_interface { |
| private: |
| typedef void (*signal_connect_t)(has_slots_interface* self, |
| _signal_base_interface* sender); |
| typedef void (*signal_disconnect_t)(has_slots_interface* self, |
| _signal_base_interface* sender); |
| typedef void (*disconnect_all_t)(has_slots_interface* self); |
| |
| const signal_connect_t m_signal_connect; |
| const signal_disconnect_t m_signal_disconnect; |
| const disconnect_all_t m_disconnect_all; |
| |
| protected: |
| has_slots_interface(signal_connect_t conn, |
| signal_disconnect_t disc, |
| disconnect_all_t disc_all) |
| : m_signal_connect(conn), |
| m_signal_disconnect(disc), |
| m_disconnect_all(disc_all) {} |
| |
| // Doesn't really need to be virtual, but is for backwards compatibility |
| // (it was virtual in a previous version of sigslot). |
| virtual ~has_slots_interface() {} |
| |
| public: |
| void signal_connect(_signal_base_interface* sender) { |
| m_signal_connect(this, sender); |
| } |
| |
| void signal_disconnect(_signal_base_interface* sender) { |
| m_signal_disconnect(this, sender); |
| } |
| |
| void disconnect_all() { m_disconnect_all(this); } |
| }; |
| |
| class _signal_base_interface { |
| private: |
| typedef void (*slot_disconnect_t)(_signal_base_interface* self, |
| has_slots_interface* pslot); |
| typedef void (*slot_duplicate_t)(_signal_base_interface* self, |
| const has_slots_interface* poldslot, |
| has_slots_interface* pnewslot); |
| |
| const slot_disconnect_t m_slot_disconnect; |
| const slot_duplicate_t m_slot_duplicate; |
| |
| protected: |
| _signal_base_interface(slot_disconnect_t disc, slot_duplicate_t dupl) |
| : m_slot_disconnect(disc), m_slot_duplicate(dupl) {} |
| |
| ~_signal_base_interface() {} |
| |
| public: |
| void slot_disconnect(has_slots_interface* pslot) { |
| m_slot_disconnect(this, pslot); |
| } |
| |
| void slot_duplicate(const has_slots_interface* poldslot, |
| has_slots_interface* pnewslot) { |
| m_slot_duplicate(this, poldslot, pnewslot); |
| } |
| }; |
| |
| class _opaque_connection { |
| private: |
| typedef void (*emit_t)(const _opaque_connection*); |
| template <typename FromT, typename ToT> |
| union union_caster { |
| FromT from; |
| ToT to; |
| }; |
| |
| emit_t pemit; |
| has_slots_interface* pdest; |
| // Pointers to member functions may be up to 16 bytes for virtual classes, |
| // so make sure we have enough space to store it. |
| unsigned char pmethod[16]; |
| |
| public: |
| template <typename DestT, typename... Args> |
| _opaque_connection(DestT* pd, void (DestT::*pm)(Args...)) : pdest(pd) { |
| typedef void (DestT::*pm_t)(Args...); |
| static_assert(sizeof(pm_t) <= sizeof(pmethod), |
| "Size of slot function pointer too large."); |
| |
| std::memcpy(pmethod, &pm, sizeof(pm_t)); |
| |
| typedef void (*em_t)(const _opaque_connection* self, Args...); |
| union_caster<em_t, emit_t> caster2; |
| caster2.from = &_opaque_connection::emitter<DestT, Args...>; |
| pemit = caster2.to; |
| } |
| |
| has_slots_interface* getdest() const { return pdest; } |
| |
| _opaque_connection duplicate(has_slots_interface* newtarget) const { |
| _opaque_connection res = *this; |
| res.pdest = newtarget; |
| return res; |
| } |
| |
| // Just calls the stored "emitter" function pointer stored at construction |
| // time. |
| template <typename... Args> |
| void emit(Args... args) const { |
| typedef void (*em_t)(const _opaque_connection*, Args...); |
| union_caster<emit_t, em_t> caster; |
| caster.from = pemit; |
| (caster.to)(this, args...); |
| } |
| |
| private: |
| template <typename DestT, typename... Args> |
| static void emitter(const _opaque_connection* self, Args... args) { |
| typedef void (DestT::*pm_t)(Args...); |
| pm_t pm; |
| std::memcpy(&pm, self->pmethod, sizeof(pm_t)); |
| (static_cast<DestT*>(self->pdest)->*(pm))(args...); |
| } |
| }; |
| |
| template <class mt_policy> |
| class _signal_base : public _signal_base_interface, public mt_policy { |
| protected: |
| typedef std::list<_opaque_connection> connections_list; |
| |
| _signal_base() |
| : _signal_base_interface(&_signal_base::do_slot_disconnect, |
| &_signal_base::do_slot_duplicate), |
| m_current_iterator(m_connected_slots.end()) {} |
| |
| ~_signal_base() { disconnect_all(); } |
| |
| private: |
| _signal_base& operator=(_signal_base const& that); |
| |
| public: |
| _signal_base(const _signal_base& o) |
| : _signal_base_interface(&_signal_base::do_slot_disconnect, |
| &_signal_base::do_slot_duplicate), |
| m_current_iterator(m_connected_slots.end()) { |
| lock_block<mt_policy> lock(this); |
| for (const auto& connection : o.m_connected_slots) { |
| connection.getdest()->signal_connect(this); |
| m_connected_slots.push_back(connection); |
| } |
| } |
| |
| bool is_empty() { |
| lock_block<mt_policy> lock(this); |
| return m_connected_slots.empty(); |
| } |
| |
| void disconnect_all() { |
| lock_block<mt_policy> lock(this); |
| |
| while (!m_connected_slots.empty()) { |
| has_slots_interface* pdest = m_connected_slots.front().getdest(); |
| m_connected_slots.pop_front(); |
| pdest->signal_disconnect(static_cast<_signal_base_interface*>(this)); |
| } |
| // If disconnect_all is called while the signal is firing, advance the |
| // current slot iterator to the end to avoid an invalidated iterator from |
| // being dereferenced. |
| m_current_iterator = m_connected_slots.end(); |
| } |
| |
| #if !defined(NDEBUG) |
| bool connected(has_slots_interface* pclass) { |
| lock_block<mt_policy> lock(this); |
| connections_list::const_iterator it = m_connected_slots.begin(); |
| connections_list::const_iterator itEnd = m_connected_slots.end(); |
| while (it != itEnd) { |
| if (it->getdest() == pclass) |
| return true; |
| ++it; |
| } |
| return false; |
| } |
| #endif |
| |
| void disconnect(has_slots_interface* pclass) { |
| lock_block<mt_policy> lock(this); |
| connections_list::iterator it = m_connected_slots.begin(); |
| connections_list::iterator itEnd = m_connected_slots.end(); |
| |
| while (it != itEnd) { |
| if (it->getdest() == pclass) { |
| // If we're currently using this iterator because the signal is firing, |
| // advance it to avoid it being invalidated. |
| if (m_current_iterator == it) { |
| m_current_iterator = m_connected_slots.erase(it); |
| } else { |
| m_connected_slots.erase(it); |
| } |
| pclass->signal_disconnect(static_cast<_signal_base_interface*>(this)); |
| return; |
| } |
| ++it; |
| } |
| } |
| |
| private: |
| static void do_slot_disconnect(_signal_base_interface* p, |
| has_slots_interface* pslot) { |
| _signal_base* const self = static_cast<_signal_base*>(p); |
| lock_block<mt_policy> lock(self); |
| connections_list::iterator it = self->m_connected_slots.begin(); |
| connections_list::iterator itEnd = self->m_connected_slots.end(); |
| |
| while (it != itEnd) { |
| connections_list::iterator itNext = it; |
| ++itNext; |
| |
| if (it->getdest() == pslot) { |
| // If we're currently using this iterator because the signal is firing, |
| // advance it to avoid it being invalidated. |
| if (self->m_current_iterator == it) { |
| self->m_current_iterator = self->m_connected_slots.erase(it); |
| } else { |
| self->m_connected_slots.erase(it); |
| } |
| } |
| |
| it = itNext; |
| } |
| } |
| |
| static void do_slot_duplicate(_signal_base_interface* p, |
| const has_slots_interface* oldtarget, |
| has_slots_interface* newtarget) { |
| _signal_base* const self = static_cast<_signal_base*>(p); |
| lock_block<mt_policy> lock(self); |
| connections_list::iterator it = self->m_connected_slots.begin(); |
| connections_list::iterator itEnd = self->m_connected_slots.end(); |
| |
| while (it != itEnd) { |
| if (it->getdest() == oldtarget) { |
| self->m_connected_slots.push_back(it->duplicate(newtarget)); |
| } |
| |
| ++it; |
| } |
| } |
| |
| protected: |
| connections_list m_connected_slots; |
| |
| // Used to handle a slot being disconnected while a signal is |
| // firing (iterating m_connected_slots). |
| connections_list::iterator m_current_iterator; |
| bool m_erase_current_iterator = false; |
| }; |
| |
| template <class mt_policy = SIGSLOT_DEFAULT_MT_POLICY> |
| class has_slots : public has_slots_interface, public mt_policy { |
| private: |
| typedef std::set<_signal_base_interface*> sender_set; |
| typedef sender_set::const_iterator const_iterator; |
| |
| public: |
| has_slots() |
| : has_slots_interface(&has_slots::do_signal_connect, |
| &has_slots::do_signal_disconnect, |
| &has_slots::do_disconnect_all) {} |
| |
| has_slots(has_slots const& o) |
| : has_slots_interface(&has_slots::do_signal_connect, |
| &has_slots::do_signal_disconnect, |
| &has_slots::do_disconnect_all) { |
| lock_block<mt_policy> lock(this); |
| for (auto* sender : o.m_senders) { |
| sender->slot_duplicate(&o, this); |
| m_senders.insert(sender); |
| } |
| } |
| |
| ~has_slots() { this->disconnect_all(); } |
| |
| private: |
| has_slots& operator=(has_slots const&); |
| |
| static void do_signal_connect(has_slots_interface* p, |
| _signal_base_interface* sender) { |
| has_slots* const self = static_cast<has_slots*>(p); |
| lock_block<mt_policy> lock(self); |
| self->m_senders.insert(sender); |
| } |
| |
| static void do_signal_disconnect(has_slots_interface* p, |
| _signal_base_interface* sender) { |
| has_slots* const self = static_cast<has_slots*>(p); |
| lock_block<mt_policy> lock(self); |
| self->m_senders.erase(sender); |
| } |
| |
| static void do_disconnect_all(has_slots_interface* p) { |
| has_slots* const self = static_cast<has_slots*>(p); |
| lock_block<mt_policy> lock(self); |
| while (!self->m_senders.empty()) { |
| std::set<_signal_base_interface*> senders; |
| senders.swap(self->m_senders); |
| const_iterator it = senders.begin(); |
| const_iterator itEnd = senders.end(); |
| |
| while (it != itEnd) { |
| _signal_base_interface* s = *it; |
| ++it; |
| s->slot_disconnect(p); |
| } |
| } |
| } |
| |
| private: |
| sender_set m_senders; |
| }; |
| |
| template <class mt_policy, typename... Args> |
| class signal_with_thread_policy : public _signal_base<mt_policy> { |
| private: |
| typedef _signal_base<mt_policy> base; |
| |
| protected: |
| typedef typename base::connections_list connections_list; |
| |
| public: |
| signal_with_thread_policy() {} |
| |
| template <class desttype> |
| void connect(desttype* pclass, void (desttype::*pmemfun)(Args...)) { |
| lock_block<mt_policy> lock(this); |
| this->m_connected_slots.push_back(_opaque_connection(pclass, pmemfun)); |
| pclass->signal_connect(static_cast<_signal_base_interface*>(this)); |
| } |
| |
| void emit(Args... args) { |
| lock_block<mt_policy> lock(this); |
| this->m_current_iterator = this->m_connected_slots.begin(); |
| while (this->m_current_iterator != this->m_connected_slots.end()) { |
| _opaque_connection const& conn = *this->m_current_iterator; |
| ++(this->m_current_iterator); |
| conn.emit<Args...>(args...); |
| } |
| } |
| |
| void operator()(Args... args) { emit(args...); } |
| }; |
| |
| // Alias with default thread policy. Needed because both default arguments |
| // and variadic template arguments must go at the end of the list, so we |
| // can't have both at once. |
| template <typename... Args> |
| using signal = signal_with_thread_policy<SIGSLOT_DEFAULT_MT_POLICY, Args...>; |
| |
| // The previous verion of sigslot didn't use variadic templates, so you would |
| // need to write "sigslot::signal2<Arg1, Arg2>", for example. |
| // Now you can just write "sigslot::signal<Arg1, Arg2>", but these aliases |
| // exist for backwards compatibility. |
| template <typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY> |
| using signal0 = signal_with_thread_policy<mt_policy>; |
| |
| template <typename A1, typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY> |
| using signal1 = signal_with_thread_policy<mt_policy, A1>; |
| |
| template <typename A1, |
| typename A2, |
| typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY> |
| using signal2 = signal_with_thread_policy<mt_policy, A1, A2>; |
| |
| template <typename A1, |
| typename A2, |
| typename A3, |
| typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY> |
| using signal3 = signal_with_thread_policy<mt_policy, A1, A2, A3>; |
| |
| template <typename A1, |
| typename A2, |
| typename A3, |
| typename A4, |
| typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY> |
| using signal4 = signal_with_thread_policy<mt_policy, A1, A2, A3, A4>; |
| |
| template <typename A1, |
| typename A2, |
| typename A3, |
| typename A4, |
| typename A5, |
| typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY> |
| using signal5 = signal_with_thread_policy<mt_policy, A1, A2, A3, A4, A5>; |
| |
| template <typename A1, |
| typename A2, |
| typename A3, |
| typename A4, |
| typename A5, |
| typename A6, |
| typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY> |
| using signal6 = signal_with_thread_policy<mt_policy, A1, A2, A3, A4, A5, A6>; |
| |
| template <typename A1, |
| typename A2, |
| typename A3, |
| typename A4, |
| typename A5, |
| typename A6, |
| typename A7, |
| typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY> |
| using signal7 = |
| signal_with_thread_policy<mt_policy, A1, A2, A3, A4, A5, A6, A7>; |
| |
| template <typename A1, |
| typename A2, |
| typename A3, |
| typename A4, |
| typename A5, |
| typename A6, |
| typename A7, |
| typename A8, |
| typename mt_policy = SIGSLOT_DEFAULT_MT_POLICY> |
| using signal8 = |
| signal_with_thread_policy<mt_policy, A1, A2, A3, A4, A5, A6, A7, A8>; |
| |
| } // namespace sigslot |
| |
| #endif // RTC_BASE_SIGSLOT_H_ |