| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/video_coding/timing/jitter_estimator.h" |
| |
| #include <math.h> |
| #include <string.h> |
| |
| #include <algorithm> |
| #include <cstdint> |
| #include <optional> |
| |
| #include "api/field_trials_view.h" |
| #include "api/units/data_size.h" |
| #include "api/units/frequency.h" |
| #include "api/units/time_delta.h" |
| #include "api/units/timestamp.h" |
| #include "modules/video_coding/timing/rtt_filter.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "system_wrappers/include/clock.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| // Number of frames to wait for before post processing estimate. Also used in |
| // the frame rate estimator ramp-up. |
| constexpr size_t kFrameProcessingStartupCount = 30; |
| |
| // Number of frames to wait for before enabling the frame size filters. |
| constexpr size_t kFramesUntilSizeFiltering = 5; |
| |
| // Initial value for frame size filters. |
| constexpr double kInitialAvgAndMaxFrameSizeBytes = 500.0; |
| |
| // Time constant for average frame size filter. |
| constexpr double kPhi = 0.97; |
| // Time constant for max frame size filter. |
| constexpr double kPsi = 0.9999; |
| // Default constants for percentile frame size filter. |
| constexpr double kDefaultMaxFrameSizePercentile = 0.95; |
| constexpr int kDefaultFrameSizeWindow = 30 * 10; |
| |
| // Outlier rejection constants. |
| constexpr double kNumStdDevDelayClamp = 3.5; |
| constexpr double kNumStdDevDelayOutlier = 15.0; |
| constexpr double kNumStdDevSizeOutlier = 3.0; |
| constexpr double kCongestionRejectionFactor = -0.25; |
| |
| // Rampup constant for deviation noise filters. |
| constexpr size_t kAlphaCountMax = 400; |
| |
| // Noise threshold constants. |
| // ~Less than 1% chance (look up in normal distribution table)... |
| constexpr double kNoiseStdDevs = 2.33; |
| // ...of getting 30 ms freezes |
| constexpr double kNoiseStdDevOffset = 30.0; |
| |
| // Jitter estimate clamping limits. |
| constexpr TimeDelta kMinJitterEstimate = TimeDelta::Millis(1); |
| constexpr TimeDelta kMaxJitterEstimate = TimeDelta::Seconds(10); |
| |
| // A constant describing the delay from the jitter buffer to the delay on the |
| // receiving side which is not accounted for by the jitter buffer nor the |
| // decoding delay estimate. |
| constexpr TimeDelta OPERATING_SYSTEM_JITTER = TimeDelta::Millis(10); |
| |
| // Time constant for reseting the NACK count. |
| constexpr TimeDelta kNackCountTimeout = TimeDelta::Seconds(60); |
| |
| // RTT mult activation. |
| constexpr size_t kNackLimit = 3; |
| |
| // Frame rate estimate clamping limit. |
| constexpr Frequency kMaxFramerateEstimate = Frequency::Hertz(200); |
| |
| } // namespace |
| |
| constexpr char JitterEstimator::Config::kFieldTrialsKey[]; |
| |
| JitterEstimator::Config JitterEstimator::Config::ParseAndValidate( |
| absl::string_view field_trial) { |
| Config config; |
| config.Parser()->Parse(field_trial); |
| |
| // The `MovingPercentileFilter` RTC_CHECKs on the validity of the |
| // percentile and window length, so we'd better validate the field trial |
| // provided values here. |
| if (config.max_frame_size_percentile) { |
| double original = *config.max_frame_size_percentile; |
| config.max_frame_size_percentile = std::min(std::max(0.0, original), 1.0); |
| if (config.max_frame_size_percentile != original) { |
| RTC_LOG(LS_ERROR) << "Skipping invalid max_frame_size_percentile=" |
| << original; |
| } |
| } |
| if (config.frame_size_window && config.frame_size_window < 1) { |
| RTC_LOG(LS_ERROR) << "Skipping invalid frame_size_window=" |
| << *config.frame_size_window; |
| config.frame_size_window = 1; |
| } |
| |
| // General sanity checks. |
| if (config.num_stddev_delay_clamp && config.num_stddev_delay_clamp < 0.0) { |
| RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_delay_clamp=" |
| << *config.num_stddev_delay_clamp; |
| config.num_stddev_delay_clamp = 0.0; |
| } |
| if (config.num_stddev_delay_outlier && |
| config.num_stddev_delay_outlier < 0.0) { |
| RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_delay_outlier=" |
| << *config.num_stddev_delay_outlier; |
| config.num_stddev_delay_outlier = 0.0; |
| } |
| if (config.num_stddev_size_outlier && config.num_stddev_size_outlier < 0.0) { |
| RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_size_outlier=" |
| << *config.num_stddev_size_outlier; |
| config.num_stddev_size_outlier = 0.0; |
| } |
| |
| return config; |
| } |
| |
| JitterEstimator::JitterEstimator(Clock* clock, |
| const FieldTrialsView& field_trials) |
| : config_(Config::ParseAndValidate( |
| field_trials.Lookup(Config::kFieldTrialsKey))), |
| avg_frame_size_median_bytes_(static_cast<size_t>( |
| config_.frame_size_window.value_or(kDefaultFrameSizeWindow))), |
| max_frame_size_bytes_percentile_( |
| config_.max_frame_size_percentile.value_or( |
| kDefaultMaxFrameSizePercentile), |
| static_cast<size_t>( |
| config_.frame_size_window.value_or(kDefaultFrameSizeWindow))), |
| fps_counter_(30), // TODO(sprang): Use an estimator with limit based |
| // on time, rather than number of samples. |
| clock_(clock) { |
| Reset(); |
| } |
| |
| JitterEstimator::~JitterEstimator() = default; |
| |
| // Resets the JitterEstimate. |
| void JitterEstimator::Reset() { |
| avg_frame_size_bytes_ = kInitialAvgAndMaxFrameSizeBytes; |
| max_frame_size_bytes_ = kInitialAvgAndMaxFrameSizeBytes; |
| var_frame_size_bytes2_ = 100; |
| avg_frame_size_median_bytes_.Reset(); |
| max_frame_size_bytes_percentile_.Reset(); |
| last_update_time_ = std::nullopt; |
| prev_estimate_ = std::nullopt; |
| prev_frame_size_ = std::nullopt; |
| avg_noise_ms_ = 0.0; |
| var_noise_ms2_ = 4.0; |
| alpha_count_ = 1; |
| filter_jitter_estimate_ = TimeDelta::Zero(); |
| latest_nack_ = Timestamp::Zero(); |
| nack_count_ = 0; |
| startup_frame_size_sum_bytes_ = 0; |
| startup_frame_size_count_ = 0; |
| startup_count_ = 0; |
| rtt_filter_.Reset(); |
| fps_counter_.Reset(); |
| |
| kalman_filter_ = FrameDelayVariationKalmanFilter(); |
| } |
| |
| // Updates the estimates with the new measurements. |
| void JitterEstimator::UpdateEstimate(TimeDelta frame_delay, |
| DataSize frame_size) { |
| if (frame_size.IsZero()) { |
| return; |
| } |
| // Can't use DataSize since this can be negative. |
| double delta_frame_bytes = |
| frame_size.bytes() - prev_frame_size_.value_or(DataSize::Zero()).bytes(); |
| if (startup_frame_size_count_ < kFramesUntilSizeFiltering) { |
| startup_frame_size_sum_bytes_ += frame_size.bytes(); |
| startup_frame_size_count_++; |
| } else if (startup_frame_size_count_ == kFramesUntilSizeFiltering) { |
| // Give the frame size filter. |
| avg_frame_size_bytes_ = startup_frame_size_sum_bytes_ / |
| static_cast<double>(startup_frame_size_count_); |
| startup_frame_size_count_++; |
| } |
| |
| double avg_frame_size_bytes = |
| kPhi * avg_frame_size_bytes_ + (1 - kPhi) * frame_size.bytes(); |
| double deviation_size_bytes = 2 * sqrt(var_frame_size_bytes2_); |
| if (frame_size.bytes() < avg_frame_size_bytes_ + deviation_size_bytes) { |
| // Only update the average frame size if this sample wasn't a key frame. |
| avg_frame_size_bytes_ = avg_frame_size_bytes; |
| } |
| |
| double delta_bytes = frame_size.bytes() - avg_frame_size_bytes; |
| var_frame_size_bytes2_ = std::max( |
| kPhi * var_frame_size_bytes2_ + (1 - kPhi) * (delta_bytes * delta_bytes), |
| 1.0); |
| |
| // Update non-linear IIR estimate of max frame size. |
| max_frame_size_bytes_ = |
| std::max<double>(kPsi * max_frame_size_bytes_, frame_size.bytes()); |
| |
| // Maybe update percentile estimates of frame sizes. |
| if (config_.avg_frame_size_median) { |
| avg_frame_size_median_bytes_.Insert(frame_size.bytes()); |
| } |
| if (config_.MaxFrameSizePercentileEnabled()) { |
| max_frame_size_bytes_percentile_.Insert(frame_size.bytes()); |
| } |
| |
| if (!prev_frame_size_) { |
| prev_frame_size_ = frame_size; |
| return; |
| } |
| prev_frame_size_ = frame_size; |
| |
| // Cap frame_delay based on the current time deviation noise. |
| double num_stddev_delay_clamp = |
| config_.num_stddev_delay_clamp.value_or(kNumStdDevDelayClamp); |
| TimeDelta max_time_deviation = |
| TimeDelta::Millis(num_stddev_delay_clamp * sqrt(var_noise_ms2_) + 0.5); |
| frame_delay.Clamp(-max_time_deviation, max_time_deviation); |
| |
| double delay_deviation_ms = |
| frame_delay.ms() - |
| kalman_filter_.GetFrameDelayVariationEstimateTotal(delta_frame_bytes); |
| |
| // Outlier rejection: these conditions depend on filtered versions of the |
| // delay and frame size _means_, respectively, together with a configurable |
| // number of standard deviations. If a sample is large with respect to the |
| // corresponding mean and dispersion (defined by the number of |
| // standard deviations and the sample standard deviation), it is deemed an |
| // outlier. This "empirical rule" is further described in |
| // https://en.wikipedia.org/wiki/68-95-99.7_rule. Note that neither of the |
| // estimated means are true sample means, which implies that they are possibly |
| // not normally distributed. Hence, this rejection method is just a heuristic. |
| double num_stddev_delay_outlier = |
| config_.num_stddev_delay_outlier.value_or(kNumStdDevDelayOutlier); |
| // Delay outlier rejection is two-sided. |
| bool abs_delay_is_not_outlier = |
| fabs(delay_deviation_ms) < |
| num_stddev_delay_outlier * sqrt(var_noise_ms2_); |
| // The reasoning above means, in particular, that we should use the sample |
| // mean-style `avg_frame_size_bytes_` estimate, as opposed to the |
| // median-filtered version, even if configured to use latter for the |
| // calculation in `CalculateEstimate()`. |
| // Size outlier rejection is one-sided. |
| double num_stddev_size_outlier = |
| config_.num_stddev_size_outlier.value_or(kNumStdDevSizeOutlier); |
| bool size_is_positive_outlier = |
| frame_size.bytes() > |
| avg_frame_size_bytes_ + |
| num_stddev_size_outlier * sqrt(var_frame_size_bytes2_); |
| |
| // Only update the Kalman filter if the sample is not considered an extreme |
| // outlier. Even if it is an extreme outlier from a delay point of view, if |
| // the frame size also is large the deviation is probably due to an incorrect |
| // line slope. |
| if (abs_delay_is_not_outlier || size_is_positive_outlier) { |
| // Prevent updating with frames which have been congested by a large frame, |
| // and therefore arrives almost at the same time as that frame. |
| // This can occur when we receive a large frame (key frame) which has been |
| // delayed. The next frame is of normal size (delta frame), and thus deltaFS |
| // will be << 0. This removes all frame samples which arrives after a key |
| // frame. |
| double congestion_rejection_factor = |
| config_.congestion_rejection_factor.value_or( |
| kCongestionRejectionFactor); |
| double filtered_max_frame_size_bytes = |
| config_.MaxFrameSizePercentileEnabled() |
| ? max_frame_size_bytes_percentile_.GetFilteredValue() |
| : max_frame_size_bytes_; |
| bool is_not_congested = |
| delta_frame_bytes > |
| congestion_rejection_factor * filtered_max_frame_size_bytes; |
| |
| if (is_not_congested || config_.estimate_noise_when_congested) { |
| // Update the variance of the deviation from the line given by the Kalman |
| // filter. |
| EstimateRandomJitter(delay_deviation_ms); |
| } |
| if (is_not_congested) { |
| // Neither a delay outlier nor a congested frame, so we can safely update |
| // the Kalman filter with the sample. |
| kalman_filter_.PredictAndUpdate(frame_delay.ms(), delta_frame_bytes, |
| filtered_max_frame_size_bytes, |
| var_noise_ms2_); |
| } |
| } else { |
| // Delay outliers affect the noise estimate through a value equal to the |
| // outlier rejection threshold. |
| double num_stddev = (delay_deviation_ms >= 0) ? num_stddev_delay_outlier |
| : -num_stddev_delay_outlier; |
| EstimateRandomJitter(num_stddev * sqrt(var_noise_ms2_)); |
| } |
| // Post process the total estimated jitter |
| if (startup_count_ >= kFrameProcessingStartupCount) { |
| PostProcessEstimate(); |
| } else { |
| startup_count_++; |
| } |
| } |
| |
| // Updates the nack/packet ratio. |
| void JitterEstimator::FrameNacked() { |
| if (nack_count_ < kNackLimit) { |
| nack_count_++; |
| } |
| latest_nack_ = clock_->CurrentTime(); |
| } |
| |
| void JitterEstimator::UpdateRtt(TimeDelta rtt) { |
| rtt_filter_.Update(rtt); |
| } |
| |
| JitterEstimator::Config JitterEstimator::GetConfigForTest() const { |
| return config_; |
| } |
| |
| // Estimates the random jitter by calculating the variance of the sample |
| // distance from the line given by the Kalman filter. |
| void JitterEstimator::EstimateRandomJitter(double d_dT) { |
| Timestamp now = clock_->CurrentTime(); |
| if (last_update_time_.has_value()) { |
| fps_counter_.AddSample((now - *last_update_time_).us()); |
| } |
| last_update_time_ = now; |
| |
| if (alpha_count_ == 0) { |
| RTC_DCHECK_NOTREACHED(); |
| return; |
| } |
| double alpha = |
| static_cast<double>(alpha_count_ - 1) / static_cast<double>(alpha_count_); |
| alpha_count_++; |
| if (alpha_count_ > kAlphaCountMax) |
| alpha_count_ = kAlphaCountMax; |
| |
| // In order to avoid a low frame rate stream to react slower to changes, |
| // scale the alpha weight relative a 30 fps stream. |
| Frequency fps = GetFrameRate(); |
| if (fps > Frequency::Zero()) { |
| constexpr Frequency k30Fps = Frequency::Hertz(30); |
| double rate_scale = k30Fps / fps; |
| // At startup, there can be a lot of noise in the fps estimate. |
| // Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps |
| // at sample #kFrameProcessingStartupCount. |
| if (alpha_count_ < kFrameProcessingStartupCount) { |
| rate_scale = (alpha_count_ * rate_scale + |
| (kFrameProcessingStartupCount - alpha_count_)) / |
| kFrameProcessingStartupCount; |
| } |
| alpha = pow(alpha, rate_scale); |
| } |
| |
| double avg_noise_ms = alpha * avg_noise_ms_ + (1 - alpha) * d_dT; |
| double var_noise_ms2 = alpha * var_noise_ms2_ + (1 - alpha) * |
| (d_dT - avg_noise_ms_) * |
| (d_dT - avg_noise_ms_); |
| avg_noise_ms_ = avg_noise_ms; |
| var_noise_ms2_ = var_noise_ms2; |
| if (var_noise_ms2_ < 1.0) { |
| // The variance should never be zero, since we might get stuck and consider |
| // all samples as outliers. |
| var_noise_ms2_ = 1.0; |
| } |
| } |
| |
| double JitterEstimator::NoiseThreshold() const { |
| double noise_threshold_ms = |
| kNoiseStdDevs * sqrt(var_noise_ms2_) - kNoiseStdDevOffset; |
| if (noise_threshold_ms < 1.0) { |
| noise_threshold_ms = 1.0; |
| } |
| return noise_threshold_ms; |
| } |
| |
| // Calculates the current jitter estimate from the filtered estimates. |
| TimeDelta JitterEstimator::CalculateEstimate() { |
| // Using median- and percentile-filtered versions of the frame sizes may be |
| // more robust than using sample mean-style estimates. |
| double filtered_avg_frame_size_bytes = |
| config_.avg_frame_size_median |
| ? avg_frame_size_median_bytes_.GetFilteredValue() |
| : avg_frame_size_bytes_; |
| double filtered_max_frame_size_bytes = |
| config_.MaxFrameSizePercentileEnabled() |
| ? max_frame_size_bytes_percentile_.GetFilteredValue() |
| : max_frame_size_bytes_; |
| double worst_case_frame_size_deviation_bytes = |
| filtered_max_frame_size_bytes - filtered_avg_frame_size_bytes; |
| double ret_ms = kalman_filter_.GetFrameDelayVariationEstimateSizeBased( |
| worst_case_frame_size_deviation_bytes) + |
| NoiseThreshold(); |
| TimeDelta ret = TimeDelta::Millis(ret_ms); |
| |
| // A very low estimate (or negative) is neglected. |
| if (ret < kMinJitterEstimate) { |
| ret = prev_estimate_.value_or(kMinJitterEstimate); |
| // Sanity check to make sure that no other method has set `prev_estimate_` |
| // to a value lower than `kMinJitterEstimate`. |
| RTC_DCHECK_GE(ret, kMinJitterEstimate); |
| } else if (ret > kMaxJitterEstimate) { // Sanity |
| ret = kMaxJitterEstimate; |
| } |
| prev_estimate_ = ret; |
| return ret; |
| } |
| |
| void JitterEstimator::PostProcessEstimate() { |
| filter_jitter_estimate_ = CalculateEstimate(); |
| } |
| |
| // Returns the current filtered estimate if available, |
| // otherwise tries to calculate an estimate. |
| TimeDelta JitterEstimator::GetJitterEstimate( |
| double rtt_multiplier, |
| std::optional<TimeDelta> rtt_mult_add_cap) { |
| TimeDelta jitter = CalculateEstimate() + OPERATING_SYSTEM_JITTER; |
| Timestamp now = clock_->CurrentTime(); |
| |
| if (now - latest_nack_ > kNackCountTimeout) |
| nack_count_ = 0; |
| |
| if (filter_jitter_estimate_ > jitter) |
| jitter = filter_jitter_estimate_; |
| if (nack_count_ >= kNackLimit) { |
| if (rtt_mult_add_cap.has_value()) { |
| jitter += std::min(rtt_filter_.Rtt() * rtt_multiplier, |
| rtt_mult_add_cap.value()); |
| } else { |
| jitter += rtt_filter_.Rtt() * rtt_multiplier; |
| } |
| } |
| |
| static const Frequency kJitterScaleLowThreshold = Frequency::Hertz(5); |
| static const Frequency kJitterScaleHighThreshold = Frequency::Hertz(10); |
| Frequency fps = GetFrameRate(); |
| // Ignore jitter for very low fps streams. |
| if (fps < kJitterScaleLowThreshold) { |
| if (fps.IsZero()) { |
| return std::max(TimeDelta::Zero(), jitter); |
| } |
| return TimeDelta::Zero(); |
| } |
| |
| // Semi-low frame rate; scale by factor linearly interpolated from 0.0 at |
| // kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold. |
| if (fps < kJitterScaleHighThreshold) { |
| jitter = (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) * |
| (fps - kJitterScaleLowThreshold) * jitter; |
| } |
| |
| return std::max(TimeDelta::Zero(), jitter); |
| } |
| |
| Frequency JitterEstimator::GetFrameRate() const { |
| TimeDelta mean_frame_period = TimeDelta::Micros(fps_counter_.ComputeMean()); |
| if (mean_frame_period <= TimeDelta::Zero()) |
| return Frequency::Zero(); |
| |
| Frequency fps = 1 / mean_frame_period; |
| // Sanity check. |
| RTC_DCHECK_GE(fps, Frequency::Zero()); |
| return std::min(fps, kMaxFramerateEstimate); |
| } |
| } // namespace webrtc |