| /* |
| * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/video_coding/timing/timing.h" |
| |
| #include "api/units/frequency.h" |
| #include "api/units/time_delta.h" |
| #include "system_wrappers/include/clock.h" |
| #include "test/gmock.h" |
| #include "test/gtest.h" |
| #include "test/scoped_key_value_config.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| constexpr Frequency k25Fps = Frequency::Hertz(25); |
| constexpr Frequency k90kHz = Frequency::KiloHertz(90); |
| |
| MATCHER(HasConsistentVideoDelayTimings, "") { |
| // Delays should be non-negative. |
| bool p1 = arg.minimum_delay >= TimeDelta::Zero(); |
| bool p2 = arg.estimated_max_decode_time >= TimeDelta::Zero(); |
| bool p3 = arg.render_delay >= TimeDelta::Zero(); |
| bool p4 = arg.min_playout_delay >= TimeDelta::Zero(); |
| bool p5 = arg.max_playout_delay >= TimeDelta::Zero(); |
| bool p6 = arg.target_delay >= TimeDelta::Zero(); |
| bool p7 = arg.current_delay >= TimeDelta::Zero(); |
| *result_listener << "\np: " << p1 << p2 << p3 << p4 << p5 << p6 << p7; |
| bool p = p1 && p2 && p3 && p4 && p5 && p6 && p7; |
| |
| // Delays should be internally consistent. |
| bool m1 = arg.minimum_delay <= arg.target_delay; |
| if (!m1) { |
| *result_listener << "\nminimum_delay: " << ToString(arg.minimum_delay) |
| << ", " << "target_delay: " << ToString(arg.target_delay) |
| << "\n"; |
| } |
| bool m2 = arg.minimum_delay <= arg.current_delay; |
| if (!m2) { |
| *result_listener << "\nminimum_delay: " << ToString(arg.minimum_delay) |
| << ", " |
| << "current_delay: " << ToString(arg.current_delay); |
| } |
| bool m3 = arg.target_delay >= arg.min_playout_delay; |
| if (!m3) { |
| *result_listener << "\ntarget_delay: " << ToString(arg.target_delay) << ", " |
| << "min_playout_delay: " << ToString(arg.min_playout_delay) |
| << "\n"; |
| } |
| // TODO(crbug.com/webrtc/15197): Uncomment when this is guaranteed. |
| // bool m4 = arg.target_delay <= arg.max_playout_delay; |
| bool m5 = arg.current_delay >= arg.min_playout_delay; |
| if (!m5) { |
| *result_listener << "\ncurrent_delay: " << ToString(arg.current_delay) |
| << ", " |
| << "min_playout_delay: " << ToString(arg.min_playout_delay) |
| << "\n"; |
| } |
| bool m6 = arg.current_delay <= arg.max_playout_delay; |
| if (!m6) { |
| *result_listener << "\ncurrent_delay: " << ToString(arg.current_delay) |
| << ", " |
| << "max_playout_delay: " << ToString(arg.max_playout_delay) |
| << "\n"; |
| } |
| bool m = m1 && m2 && m3 && m5 && m6; |
| |
| return p && m; |
| } |
| |
| } // namespace |
| |
| TEST(VCMTimingTest, JitterDelay) { |
| test::ScopedKeyValueConfig field_trials; |
| SimulatedClock clock(0); |
| VCMTiming timing(&clock, field_trials); |
| timing.Reset(); |
| |
| uint32_t timestamp = 0; |
| timing.UpdateCurrentDelay(timestamp); |
| |
| timing.Reset(); |
| |
| timing.IncomingTimestamp(timestamp, clock.CurrentTime()); |
| TimeDelta jitter_delay = TimeDelta::Millis(20); |
| timing.SetJitterDelay(jitter_delay); |
| timing.UpdateCurrentDelay(timestamp); |
| timing.set_render_delay(TimeDelta::Zero()); |
| auto wait_time = timing.MaxWaitingTime( |
| timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(), |
| /*too_many_frames_queued=*/false); |
| // First update initializes the render time. Since we have no decode delay |
| // we get wait_time = renderTime - now - renderDelay = jitter. |
| EXPECT_EQ(jitter_delay, wait_time); |
| |
| jitter_delay += TimeDelta::Millis(VCMTiming::kDelayMaxChangeMsPerS + 10); |
| timestamp += 90000; |
| clock.AdvanceTimeMilliseconds(1000); |
| timing.SetJitterDelay(jitter_delay); |
| timing.UpdateCurrentDelay(timestamp); |
| wait_time = timing.MaxWaitingTime( |
| timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(), |
| /*too_many_frames_queued=*/false); |
| // Since we gradually increase the delay we only get 100 ms every second. |
| EXPECT_EQ(jitter_delay - TimeDelta::Millis(10), wait_time); |
| |
| timestamp += 90000; |
| clock.AdvanceTimeMilliseconds(1000); |
| timing.UpdateCurrentDelay(timestamp); |
| wait_time = timing.MaxWaitingTime( |
| timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(), |
| /*too_many_frames_queued=*/false); |
| EXPECT_EQ(jitter_delay, wait_time); |
| |
| // Insert frames without jitter, verify that this gives the exact wait time. |
| const int kNumFrames = 300; |
| for (int i = 0; i < kNumFrames; i++) { |
| clock.AdvanceTime(1 / k25Fps); |
| timestamp += k90kHz / k25Fps; |
| timing.IncomingTimestamp(timestamp, clock.CurrentTime()); |
| } |
| timing.UpdateCurrentDelay(timestamp); |
| wait_time = timing.MaxWaitingTime( |
| timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(), |
| /*too_many_frames_queued=*/false); |
| EXPECT_EQ(jitter_delay, wait_time); |
| |
| // Add decode time estimates for 1 second. |
| const TimeDelta kDecodeTime = TimeDelta::Millis(10); |
| for (int i = 0; i < k25Fps.hertz(); i++) { |
| clock.AdvanceTime(kDecodeTime); |
| timing.StopDecodeTimer(kDecodeTime, clock.CurrentTime()); |
| timestamp += k90kHz / k25Fps; |
| clock.AdvanceTime(1 / k25Fps - kDecodeTime); |
| timing.IncomingTimestamp(timestamp, clock.CurrentTime()); |
| } |
| timing.UpdateCurrentDelay(timestamp); |
| wait_time = timing.MaxWaitingTime( |
| timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(), |
| /*too_many_frames_queued=*/false); |
| EXPECT_EQ(jitter_delay, wait_time); |
| |
| const TimeDelta kMinTotalDelay = TimeDelta::Millis(200); |
| timing.set_min_playout_delay(kMinTotalDelay); |
| clock.AdvanceTimeMilliseconds(5000); |
| timestamp += 5 * 90000; |
| timing.UpdateCurrentDelay(timestamp); |
| const TimeDelta kRenderDelay = TimeDelta::Millis(10); |
| timing.set_render_delay(kRenderDelay); |
| wait_time = timing.MaxWaitingTime( |
| timing.RenderTime(timestamp, clock.CurrentTime()), clock.CurrentTime(), |
| /*too_many_frames_queued=*/false); |
| // We should at least have kMinTotalDelayMs - decodeTime (10) - renderTime |
| // (10) to wait. |
| EXPECT_EQ(kMinTotalDelay - kDecodeTime - kRenderDelay, wait_time); |
| // The total video delay should be equal to the min total delay. |
| EXPECT_EQ(kMinTotalDelay, timing.TargetVideoDelay()); |
| |
| // Reset playout delay. |
| timing.set_min_playout_delay(TimeDelta::Zero()); |
| clock.AdvanceTimeMilliseconds(5000); |
| timestamp += 5 * 90000; |
| timing.UpdateCurrentDelay(timestamp); |
| |
| EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings()); |
| } |
| |
| TEST(VCMTimingTest, TimestampWrapAround) { |
| constexpr auto kStartTime = Timestamp::Millis(1337); |
| test::ScopedKeyValueConfig field_trials; |
| SimulatedClock clock(kStartTime); |
| VCMTiming timing(&clock, field_trials); |
| |
| // Provoke a wrap-around. The fifth frame will have wrapped at 25 fps. |
| constexpr uint32_t kRtpTicksPerFrame = k90kHz / k25Fps; |
| uint32_t timestamp = 0xFFFFFFFFu - 3 * kRtpTicksPerFrame; |
| for (int i = 0; i < 5; ++i) { |
| timing.IncomingTimestamp(timestamp, clock.CurrentTime()); |
| clock.AdvanceTime(1 / k25Fps); |
| timestamp += kRtpTicksPerFrame; |
| EXPECT_EQ(kStartTime + 3 / k25Fps, |
| timing.RenderTime(0xFFFFFFFFu, clock.CurrentTime())); |
| // One ms later in 90 kHz. |
| EXPECT_EQ(kStartTime + 3 / k25Fps + TimeDelta::Millis(1), |
| timing.RenderTime(89u, clock.CurrentTime())); |
| } |
| |
| EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings()); |
| } |
| |
| TEST(VCMTimingTest, UseLowLatencyRenderer) { |
| test::ScopedKeyValueConfig field_trials; |
| SimulatedClock clock(0); |
| VCMTiming timing(&clock, field_trials); |
| timing.Reset(); |
| // Default is false. |
| EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering); |
| // False if min playout delay > 0. |
| timing.set_min_playout_delay(TimeDelta::Millis(10)); |
| timing.set_max_playout_delay(TimeDelta::Millis(20)); |
| EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering); |
| // True if min==0, max > 0. |
| timing.set_min_playout_delay(TimeDelta::Zero()); |
| EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering); |
| // True if min==max==0. |
| timing.set_max_playout_delay(TimeDelta::Zero()); |
| EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering); |
| // True also for max playout delay==500 ms. |
| timing.set_max_playout_delay(TimeDelta::Millis(500)); |
| EXPECT_TRUE(timing.RenderParameters().use_low_latency_rendering); |
| // False if max playout delay > 500 ms. |
| timing.set_max_playout_delay(TimeDelta::Millis(501)); |
| EXPECT_FALSE(timing.RenderParameters().use_low_latency_rendering); |
| |
| EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings()); |
| } |
| |
| TEST(VCMTimingTest, MaxWaitingTimeIsZeroForZeroRenderTime) { |
| // This is the default path when the RTP playout delay header extension is set |
| // to min==0 and max==0. |
| constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us. |
| constexpr TimeDelta kTimeDelta = 1 / Frequency::Hertz(60); |
| constexpr Timestamp kZeroRenderTime = Timestamp::Zero(); |
| SimulatedClock clock(kStartTimeUs); |
| test::ScopedKeyValueConfig field_trials; |
| VCMTiming timing(&clock, field_trials); |
| timing.Reset(); |
| timing.set_max_playout_delay(TimeDelta::Zero()); |
| for (int i = 0; i < 10; ++i) { |
| clock.AdvanceTime(kTimeDelta); |
| Timestamp now = clock.CurrentTime(); |
| EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now, |
| /*too_many_frames_queued=*/false), |
| TimeDelta::Zero()); |
| } |
| // Another frame submitted at the same time also returns a negative max |
| // waiting time. |
| Timestamp now = clock.CurrentTime(); |
| EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now, |
| /*too_many_frames_queued=*/false), |
| TimeDelta::Zero()); |
| // MaxWaitingTime should be less than zero even if there's a burst of frames. |
| EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now, |
| /*too_many_frames_queued=*/false), |
| TimeDelta::Zero()); |
| EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now, |
| /*too_many_frames_queued=*/false), |
| TimeDelta::Zero()); |
| EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTime, now, |
| /*too_many_frames_queued=*/false), |
| TimeDelta::Zero()); |
| |
| EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings()); |
| } |
| |
| TEST(VCMTimingTest, MaxWaitingTimeZeroDelayPacingExperiment) { |
| // The minimum pacing is enabled by a field trial and active if the RTP |
| // playout delay header extension is set to min==0. |
| constexpr TimeDelta kMinPacing = TimeDelta::Millis(3); |
| test::ScopedKeyValueConfig field_trials( |
| "WebRTC-ZeroPlayoutDelay/min_pacing:3ms/"); |
| constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us. |
| constexpr TimeDelta kTimeDelta = 1 / Frequency::Hertz(60); |
| constexpr auto kZeroRenderTime = Timestamp::Zero(); |
| SimulatedClock clock(kStartTimeUs); |
| VCMTiming timing(&clock, field_trials); |
| timing.Reset(); |
| // MaxWaitingTime() returns zero for evenly spaced video frames. |
| for (int i = 0; i < 10; ++i) { |
| clock.AdvanceTime(kTimeDelta); |
| Timestamp now = clock.CurrentTime(); |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now, |
| /*too_many_frames_queued=*/false), |
| TimeDelta::Zero()); |
| timing.SetLastDecodeScheduledTimestamp(now); |
| } |
| // Another frame submitted at the same time is paced according to the field |
| // trial setting. |
| auto now = clock.CurrentTime(); |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now, |
| /*too_many_frames_queued=*/false), |
| kMinPacing); |
| // If there's a burst of frames, the wait time is calculated based on next |
| // decode time. |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now, |
| /*too_many_frames_queued=*/false), |
| kMinPacing); |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now, |
| /*too_many_frames_queued=*/false), |
| kMinPacing); |
| // Allow a few ms to pass, this should be subtracted from the MaxWaitingTime. |
| constexpr TimeDelta kTwoMs = TimeDelta::Millis(2); |
| clock.AdvanceTime(kTwoMs); |
| now = clock.CurrentTime(); |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now, |
| /*too_many_frames_queued=*/false), |
| kMinPacing - kTwoMs); |
| // A frame is decoded at the current time, the wait time should be restored to |
| // pacing delay. |
| timing.SetLastDecodeScheduledTimestamp(now); |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now, |
| /*too_many_frames_queued=*/false), |
| kMinPacing); |
| |
| EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings()); |
| } |
| |
| TEST(VCMTimingTest, DefaultMaxWaitingTimeUnaffectedByPacingExperiment) { |
| // The minimum pacing is enabled by a field trial but should not have any |
| // effect if render_time_ms is greater than 0; |
| test::ScopedKeyValueConfig field_trials( |
| "WebRTC-ZeroPlayoutDelay/min_pacing:3ms/"); |
| constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us. |
| const TimeDelta kTimeDelta = TimeDelta::Millis(1000.0 / 60.0); |
| SimulatedClock clock(kStartTimeUs); |
| VCMTiming timing(&clock, field_trials); |
| timing.Reset(); |
| clock.AdvanceTime(kTimeDelta); |
| auto now = clock.CurrentTime(); |
| Timestamp render_time = now + TimeDelta::Millis(30); |
| // Estimate the internal processing delay from the first frame. |
| TimeDelta estimated_processing_delay = |
| (render_time - now) - |
| timing.MaxWaitingTime(render_time, now, |
| /*too_many_frames_queued=*/false); |
| EXPECT_GT(estimated_processing_delay, TimeDelta::Zero()); |
| |
| // Any other frame submitted at the same time should be scheduled according to |
| // its render time. |
| for (int i = 0; i < 5; ++i) { |
| render_time += kTimeDelta; |
| EXPECT_EQ(timing.MaxWaitingTime(render_time, now, |
| /*too_many_frames_queued=*/false), |
| render_time - now - estimated_processing_delay); |
| } |
| |
| EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings()); |
| } |
| |
| TEST(VCMTimingTest, MaxWaitingTimeReturnsZeroIfTooManyFramesQueuedIsTrue) { |
| // The minimum pacing is enabled by a field trial and active if the RTP |
| // playout delay header extension is set to min==0. |
| constexpr TimeDelta kMinPacing = TimeDelta::Millis(3); |
| test::ScopedKeyValueConfig field_trials( |
| "WebRTC-ZeroPlayoutDelay/min_pacing:3ms/"); |
| constexpr int64_t kStartTimeUs = 3.15e13; // About one year in us. |
| const TimeDelta kTimeDelta = TimeDelta::Millis(1000.0 / 60.0); |
| constexpr auto kZeroRenderTime = Timestamp::Zero(); |
| SimulatedClock clock(kStartTimeUs); |
| VCMTiming timing(&clock, field_trials); |
| timing.Reset(); |
| // MaxWaitingTime() returns zero for evenly spaced video frames. |
| for (int i = 0; i < 10; ++i) { |
| clock.AdvanceTime(kTimeDelta); |
| auto now = clock.CurrentTime(); |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now, |
| /*too_many_frames_queued=*/false), |
| TimeDelta::Zero()); |
| timing.SetLastDecodeScheduledTimestamp(now); |
| } |
| // Another frame submitted at the same time is paced according to the field |
| // trial setting. |
| auto now_ms = clock.CurrentTime(); |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms, |
| /*too_many_frames_queued=*/false), |
| kMinPacing); |
| // MaxWaitingTime returns 0 even if there's a burst of frames if |
| // too_many_frames_queued is set to true. |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms, |
| /*too_many_frames_queued=*/true), |
| TimeDelta::Zero()); |
| EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTime, now_ms, |
| /*too_many_frames_queued=*/true), |
| TimeDelta::Zero()); |
| |
| EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings()); |
| } |
| |
| TEST(VCMTimingTest, UpdateCurrentDelayCapsWhenOffByMicroseconds) { |
| test::ScopedKeyValueConfig field_trials; |
| SimulatedClock clock(0); |
| VCMTiming timing(&clock, field_trials); |
| timing.Reset(); |
| |
| // Set larger initial current delay. |
| timing.set_min_playout_delay(TimeDelta::Millis(200)); |
| timing.UpdateCurrentDelay(Timestamp::Millis(900), Timestamp::Millis(1000)); |
| |
| // Add a few microseconds to ensure that the delta of decode time is 0 after |
| // rounding, and should reset to the target delay. |
| timing.set_min_playout_delay(TimeDelta::Millis(50)); |
| Timestamp decode_time = Timestamp::Millis(1337); |
| Timestamp render_time = |
| decode_time + TimeDelta::Millis(10) + TimeDelta::Micros(37); |
| timing.UpdateCurrentDelay(render_time, decode_time); |
| EXPECT_EQ(timing.GetTimings().current_delay, timing.TargetVideoDelay()); |
| |
| // TODO(crbug.com/webrtc/15197): Fix this. |
| // EXPECT_THAT(timing.GetTimings(), HasConsistentVideoDelayTimings()); |
| } |
| |
| TEST(VCMTimingTest, GetTimings) { |
| test::ScopedKeyValueConfig field_trials; |
| SimulatedClock clock(33); |
| VCMTiming timing(&clock, field_trials); |
| timing.Reset(); |
| |
| // Setup. |
| TimeDelta render_delay = TimeDelta::Millis(11); |
| timing.set_render_delay(render_delay); |
| TimeDelta min_playout_delay = TimeDelta::Millis(50); |
| timing.set_min_playout_delay(min_playout_delay); |
| TimeDelta max_playout_delay = TimeDelta::Millis(500); |
| timing.set_max_playout_delay(max_playout_delay); |
| |
| // On complete. |
| timing.IncomingTimestamp(3000, clock.CurrentTime()); |
| clock.AdvanceTimeMilliseconds(1); |
| |
| // On decodable. |
| Timestamp render_time = |
| timing.RenderTime(/*next_temporal_unit_rtp=*/3000, clock.CurrentTime()); |
| TimeDelta minimum_delay = TimeDelta::Millis(123); |
| timing.SetJitterDelay(minimum_delay); |
| timing.UpdateCurrentDelay(render_time, clock.CurrentTime()); |
| clock.AdvanceTimeMilliseconds(100); |
| |
| // On decoded. |
| TimeDelta decode_time = TimeDelta::Millis(4); |
| timing.StopDecodeTimer(decode_time, clock.CurrentTime()); |
| |
| VCMTiming::VideoDelayTimings timings = timing.GetTimings(); |
| EXPECT_EQ(timings.num_decoded_frames, 1u); |
| EXPECT_EQ(timings.minimum_delay, minimum_delay); |
| // A single decoded frame is not enough to calculate p95. |
| EXPECT_EQ(timings.estimated_max_decode_time, TimeDelta::Zero()); |
| EXPECT_EQ(timings.render_delay, render_delay); |
| EXPECT_EQ(timings.min_playout_delay, min_playout_delay); |
| EXPECT_EQ(timings.max_playout_delay, max_playout_delay); |
| EXPECT_EQ(timings.target_delay, minimum_delay); |
| EXPECT_EQ(timings.current_delay, minimum_delay); |
| EXPECT_THAT(timings, HasConsistentVideoDelayTimings()); |
| } |
| |
| } // namespace webrtc |