| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // Unit tests for DelayManager class. |
| |
| #include "modules/audio_coding/neteq/delay_manager.h" |
| |
| #include <math.h> |
| |
| #include "modules/audio_coding/neteq/mock/mock_delay_peak_detector.h" |
| #include "rtc_base/checks.h" |
| #include "test/field_trial.h" |
| #include "test/gmock.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| |
| using ::testing::Return; |
| using ::testing::_; |
| |
| class DelayManagerTest : public ::testing::Test { |
| protected: |
| static const int kMaxNumberOfPackets = 240; |
| static const int kMinDelayMs = 0; |
| static const int kTimeStepMs = 10; |
| static const int kFs = 8000; |
| static const int kFrameSizeMs = 20; |
| static const int kTsIncrement = kFrameSizeMs * kFs / 1000; |
| static const int kMaxBufferSizeMs = kMaxNumberOfPackets * kFrameSizeMs; |
| |
| DelayManagerTest(); |
| virtual void SetUp(); |
| virtual void TearDown(); |
| void RecreateDelayManager(); |
| void SetPacketAudioLength(int lengt_ms); |
| void InsertNextPacket(); |
| void IncreaseTime(int inc_ms); |
| |
| std::unique_ptr<DelayManager> dm_; |
| TickTimer tick_timer_; |
| MockDelayPeakDetector detector_; |
| uint16_t seq_no_; |
| uint32_t ts_; |
| bool enable_rtx_handling_ = false; |
| }; |
| |
| DelayManagerTest::DelayManagerTest() |
| : dm_(nullptr), |
| detector_(&tick_timer_, false), |
| seq_no_(0x1234), |
| ts_(0x12345678) {} |
| |
| void DelayManagerTest::SetUp() { |
| RecreateDelayManager(); |
| } |
| |
| void DelayManagerTest::RecreateDelayManager() { |
| EXPECT_CALL(detector_, Reset()).Times(1); |
| dm_.reset(new DelayManager(kMaxNumberOfPackets, kMinDelayMs, |
| enable_rtx_handling_, &detector_, &tick_timer_)); |
| } |
| |
| void DelayManagerTest::SetPacketAudioLength(int lengt_ms) { |
| EXPECT_CALL(detector_, SetPacketAudioLength(lengt_ms)); |
| dm_->SetPacketAudioLength(lengt_ms); |
| } |
| |
| void DelayManagerTest::InsertNextPacket() { |
| EXPECT_EQ(0, dm_->Update(seq_no_, ts_, kFs)); |
| seq_no_ += 1; |
| ts_ += kTsIncrement; |
| } |
| |
| void DelayManagerTest::IncreaseTime(int inc_ms) { |
| for (int t = 0; t < inc_ms; t += kTimeStepMs) { |
| tick_timer_.Increment(); |
| } |
| } |
| void DelayManagerTest::TearDown() { |
| EXPECT_CALL(detector_, Die()); |
| } |
| |
| TEST_F(DelayManagerTest, CreateAndDestroy) { |
| // Nothing to do here. The test fixture creates and destroys the DelayManager |
| // object. |
| } |
| |
| TEST_F(DelayManagerTest, VectorInitialization) { |
| const DelayManager::IATVector& vec = dm_->iat_vector(); |
| double sum = 0.0; |
| for (size_t i = 0; i < vec.size(); i++) { |
| EXPECT_NEAR(ldexp(pow(0.5, static_cast<int>(i + 1)), 30), vec[i], 65537); |
| // Tolerance 65537 in Q30 corresponds to a delta of approximately 0.00006. |
| sum += vec[i]; |
| } |
| EXPECT_EQ(1 << 30, static_cast<int>(sum)); // Should be 1 in Q30. |
| } |
| |
| TEST_F(DelayManagerTest, SetPacketAudioLength) { |
| const int kLengthMs = 30; |
| // Expect DelayManager to pass on the new length to the detector object. |
| EXPECT_CALL(detector_, SetPacketAudioLength(kLengthMs)).Times(1); |
| EXPECT_EQ(0, dm_->SetPacketAudioLength(kLengthMs)); |
| EXPECT_EQ(-1, dm_->SetPacketAudioLength(-1)); // Illegal parameter value. |
| } |
| |
| TEST_F(DelayManagerTest, PeakFound) { |
| // Expect DelayManager to pass on the question to the detector. |
| // Call twice, and let the detector return true the first time and false the |
| // second time. |
| EXPECT_CALL(detector_, peak_found()) |
| .WillOnce(Return(true)) |
| .WillOnce(Return(false)); |
| EXPECT_TRUE(dm_->PeakFound()); |
| EXPECT_FALSE(dm_->PeakFound()); |
| } |
| |
| TEST_F(DelayManagerTest, UpdateNormal) { |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Advance time by one frame size. |
| IncreaseTime(kFrameSizeMs); |
| // Second packet arrival. |
| // Expect detector update method to be called once with inter-arrival time |
| // equal to 1 packet, and (base) target level equal to 1 as well. |
| // Return false to indicate no peaks found. |
| EXPECT_CALL(detector_, Update(1, false, 1)).WillOnce(Return(false)); |
| InsertNextPacket(); |
| EXPECT_EQ(1 << 8, dm_->TargetLevel()); // In Q8. |
| EXPECT_EQ(1, dm_->base_target_level()); |
| int lower, higher; |
| dm_->BufferLimits(&lower, &higher); |
| // Expect |lower| to be 75% of target level, and |higher| to be target level, |
| // but also at least 20 ms higher than |lower|, which is the limiting case |
| // here. |
| EXPECT_EQ((1 << 8) * 3 / 4, lower); |
| EXPECT_EQ(lower + (20 << 8) / kFrameSizeMs, higher); |
| } |
| |
| TEST_F(DelayManagerTest, UpdateLongInterArrivalTime) { |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Advance time by two frame size. |
| IncreaseTime(2 * kFrameSizeMs); |
| // Second packet arrival. |
| // Expect detector update method to be called once with inter-arrival time |
| // equal to 1 packet, and (base) target level equal to 1 as well. |
| // Return false to indicate no peaks found. |
| EXPECT_CALL(detector_, Update(2, false, 2)).WillOnce(Return(false)); |
| InsertNextPacket(); |
| EXPECT_EQ(2 << 8, dm_->TargetLevel()); // In Q8. |
| EXPECT_EQ(2, dm_->base_target_level()); |
| int lower, higher; |
| dm_->BufferLimits(&lower, &higher); |
| // Expect |lower| to be 75% of target level, and |higher| to be target level, |
| // but also at least 20 ms higher than |lower|, which is the limiting case |
| // here. |
| EXPECT_EQ((2 << 8) * 3 / 4, lower); |
| EXPECT_EQ(lower + (20 << 8) / kFrameSizeMs, higher); |
| } |
| |
| TEST_F(DelayManagerTest, UpdatePeakFound) { |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Advance time by one frame size. |
| IncreaseTime(kFrameSizeMs); |
| // Second packet arrival. |
| // Expect detector update method to be called once with inter-arrival time |
| // equal to 1 packet, and (base) target level equal to 1 as well. |
| // Return true to indicate that peaks are found. Let the peak height be 5. |
| EXPECT_CALL(detector_, Update(1, false, 1)).WillOnce(Return(true)); |
| EXPECT_CALL(detector_, MaxPeakHeight()).WillOnce(Return(5)); |
| InsertNextPacket(); |
| EXPECT_EQ(5 << 8, dm_->TargetLevel()); |
| EXPECT_EQ(1, dm_->base_target_level()); // Base target level is w/o peaks. |
| int lower, higher; |
| dm_->BufferLimits(&lower, &higher); |
| // Expect |lower| to be 75% of target level, and |higher| to be target level. |
| EXPECT_EQ((5 << 8) * 3 / 4, lower); |
| EXPECT_EQ(5 << 8, higher); |
| } |
| |
| TEST_F(DelayManagerTest, TargetDelay) { |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Advance time by one frame size. |
| IncreaseTime(kFrameSizeMs); |
| // Second packet arrival. |
| // Expect detector update method to be called once with inter-arrival time |
| // equal to 1 packet, and (base) target level equal to 1 as well. |
| // Return false to indicate no peaks found. |
| EXPECT_CALL(detector_, Update(1, false, 1)).WillOnce(Return(false)); |
| InsertNextPacket(); |
| const int kExpectedTarget = 1; |
| EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); // In Q8. |
| EXPECT_EQ(1, dm_->base_target_level()); |
| int lower, higher; |
| dm_->BufferLimits(&lower, &higher); |
| // Expect |lower| to be 75% of base target level, and |higher| to be |
| // lower + 20 ms headroom. |
| EXPECT_EQ((1 << 8) * 3 / 4, lower); |
| EXPECT_EQ(lower + (20 << 8) / kFrameSizeMs, higher); |
| } |
| |
| TEST_F(DelayManagerTest, MaxDelay) { |
| const int kExpectedTarget = 5; |
| const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Second packet arrival. |
| // Expect detector update method to be called once with inter-arrival time |
| // equal to |kExpectedTarget| packet. Return true to indicate peaks found. |
| EXPECT_CALL(detector_, Update(kExpectedTarget, false, _)) |
| .WillRepeatedly(Return(true)); |
| EXPECT_CALL(detector_, MaxPeakHeight()) |
| .WillRepeatedly(Return(kExpectedTarget)); |
| IncreaseTime(kTimeIncrement); |
| InsertNextPacket(); |
| |
| // No limit is set. |
| EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); |
| |
| int kMaxDelayPackets = kExpectedTarget - 2; |
| int kMaxDelayMs = kMaxDelayPackets * kFrameSizeMs; |
| EXPECT_TRUE(dm_->SetMaximumDelay(kMaxDelayMs)); |
| IncreaseTime(kTimeIncrement); |
| InsertNextPacket(); |
| EXPECT_EQ(kMaxDelayPackets << 8, dm_->TargetLevel()); |
| |
| // Target level at least should be one packet. |
| EXPECT_FALSE(dm_->SetMaximumDelay(kFrameSizeMs - 1)); |
| } |
| |
| TEST_F(DelayManagerTest, MinDelay) { |
| const int kExpectedTarget = 5; |
| const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Second packet arrival. |
| // Expect detector update method to be called once with inter-arrival time |
| // equal to |kExpectedTarget| packet. Return true to indicate peaks found. |
| EXPECT_CALL(detector_, Update(kExpectedTarget, false, _)) |
| .WillRepeatedly(Return(true)); |
| EXPECT_CALL(detector_, MaxPeakHeight()) |
| .WillRepeatedly(Return(kExpectedTarget)); |
| IncreaseTime(kTimeIncrement); |
| InsertNextPacket(); |
| |
| // No limit is applied. |
| EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); |
| |
| int kMinDelayPackets = kExpectedTarget + 2; |
| int kMinDelayMs = kMinDelayPackets * kFrameSizeMs; |
| dm_->SetMinimumDelay(kMinDelayMs); |
| IncreaseTime(kTimeIncrement); |
| InsertNextPacket(); |
| EXPECT_EQ(kMinDelayPackets << 8, dm_->TargetLevel()); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayCheckValidRange) { |
| SetPacketAudioLength(kFrameSizeMs); |
| |
| // Base minimum delay should be between [0, 10000] milliseconds. |
| EXPECT_FALSE(dm_->SetBaseMinimumDelay(-1)); |
| EXPECT_FALSE(dm_->SetBaseMinimumDelay(10001)); |
| EXPECT_EQ(dm_->GetBaseMinimumDelay(), 0); |
| |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(7999)); |
| EXPECT_EQ(dm_->GetBaseMinimumDelay(), 7999); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMinimumDelay) { |
| SetPacketAudioLength(kFrameSizeMs); |
| constexpr int kBaseMinimumDelayMs = 100; |
| constexpr int kMinimumDelayMs = 200; |
| |
| // Base minimum delay sets lower bound on minimum. That is why when base |
| // minimum delay is lower than minimum delay we use minimum delay. |
| RTC_DCHECK_LT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMinimumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMinimumDelay) { |
| SetPacketAudioLength(kFrameSizeMs); |
| constexpr int kBaseMinimumDelayMs = 70; |
| constexpr int kMinimumDelayMs = 30; |
| |
| // Base minimum delay sets lower bound on minimum. That is why when base |
| // minimum delay is greater than minimum delay we use base minimum delay. |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanBufferSize) { |
| SetPacketAudioLength(kFrameSizeMs); |
| constexpr int kBaseMinimumDelayMs = kMaxBufferSizeMs + 1; |
| constexpr int kMinimumDelayMs = 12; |
| constexpr int kMaxBufferSizeMsQ75 = 3 * kMaxBufferSizeMs / 4; |
| |
| // Base minimum delay is greater than minimum delay, that is why we clamp |
| // it to current the highest possible value which is maximum delay. |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaxBufferSizeMs); |
| |
| EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| |
| // Unset maximum value. |
| EXPECT_TRUE(dm_->SetMaximumDelay(0)); |
| |
| // With maximum value unset, the highest possible value now is 75% of |
| // currently possible maximum buffer size. |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMaxBufferSizeMsQ75); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMaximumDelay) { |
| SetPacketAudioLength(kFrameSizeMs); |
| constexpr int kMaximumDelayMs = 400; |
| constexpr int kBaseMinimumDelayMs = kMaximumDelayMs + 1; |
| constexpr int kMinimumDelayMs = 20; |
| |
| // Base minimum delay is greater than minimum delay, that is why we clamp |
| // it to current the highest possible value which is kMaximumDelayMs. |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs); |
| RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMs); |
| |
| EXPECT_TRUE(dm_->SetMaximumDelay(kMaximumDelayMs)); |
| EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMaximumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMaxSize) { |
| SetPacketAudioLength(kFrameSizeMs); |
| constexpr int kMaximumDelayMs = 400; |
| constexpr int kBaseMinimumDelayMs = kMaximumDelayMs - 1; |
| constexpr int kMinimumDelayMs = 20; |
| |
| // Base minimum delay is greater than minimum delay, and lower than maximum |
| // delays that is why it is used. |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| RTC_DCHECK_LT(kBaseMinimumDelayMs, kMaximumDelayMs); |
| |
| EXPECT_TRUE(dm_->SetMaximumDelay(kMaximumDelayMs)); |
| EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, MinimumDelayMemorization) { |
| // Check that when we increase base minimum delay to value higher than |
| // minimum delay then minimum delay is still memorized. This allows to |
| // restore effective minimum delay to memorized minimum delay value when we |
| // decrease base minimum delay. |
| SetPacketAudioLength(kFrameSizeMs); |
| |
| constexpr int kBaseMinimumDelayMsLow = 10; |
| constexpr int kMinimumDelayMs = 20; |
| constexpr int kBaseMinimumDelayMsHigh = 30; |
| |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMsLow)); |
| EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); |
| // Minimum delay is used as it is higher than base minimum delay. |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMinimumDelayMs); |
| |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMsHigh)); |
| // Base minimum delay is used as it is now higher than minimum delay. |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), |
| kBaseMinimumDelayMsHigh); |
| |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMsLow)); |
| // Check that minimum delay is memorized and is used again. |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMinimumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelay) { |
| const int kExpectedTarget = 5; |
| const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Second packet arrival. |
| // Expect detector update method to be called once with inter-arrival time |
| // equal to |kExpectedTarget| packet. Return true to indicate peaks found. |
| EXPECT_CALL(detector_, Update(kExpectedTarget, false, _)) |
| .WillRepeatedly(Return(true)); |
| EXPECT_CALL(detector_, MaxPeakHeight()) |
| .WillRepeatedly(Return(kExpectedTarget)); |
| IncreaseTime(kTimeIncrement); |
| InsertNextPacket(); |
| |
| // No limit is applied. |
| EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); |
| |
| constexpr int kBaseMinimumDelayPackets = kExpectedTarget + 2; |
| constexpr int kBaseMinimumDelayMs = kBaseMinimumDelayPackets * kFrameSizeMs; |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs); |
| |
| IncreaseTime(kTimeIncrement); |
| InsertNextPacket(); |
| EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs); |
| EXPECT_EQ(kBaseMinimumDelayPackets << 8, dm_->TargetLevel()); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDealyAffectTargetLevel) { |
| const int kExpectedTarget = 5; |
| const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Second packet arrival. |
| // Expect detector update method to be called once with inter-arrival time |
| // equal to |kExpectedTarget|. Return true to indicate peaks found. |
| EXPECT_CALL(detector_, Update(kExpectedTarget, false, _)) |
| .WillRepeatedly(Return(true)); |
| EXPECT_CALL(detector_, MaxPeakHeight()) |
| .WillRepeatedly(Return(kExpectedTarget)); |
| IncreaseTime(kTimeIncrement); |
| InsertNextPacket(); |
| |
| // No limit is applied. |
| EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); |
| |
| // Minimum delay is lower than base minimum delay, that is why base minimum |
| // delay is used to calculate target level. |
| constexpr int kMinimumDelayPackets = kExpectedTarget + 1; |
| constexpr int kBaseMinimumDelayPackets = kExpectedTarget + 2; |
| |
| constexpr int kMinimumDelayMs = kMinimumDelayPackets * kFrameSizeMs; |
| constexpr int kBaseMinimumDelayMs = kBaseMinimumDelayPackets * kFrameSizeMs; |
| |
| EXPECT_TRUE(kMinimumDelayMs < kBaseMinimumDelayMs); |
| EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs); |
| |
| IncreaseTime(kTimeIncrement); |
| InsertNextPacket(); |
| EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs); |
| EXPECT_EQ(kBaseMinimumDelayPackets << 8, dm_->TargetLevel()); |
| } |
| |
| TEST_F(DelayManagerTest, UpdateReorderedPacket) { |
| SetPacketAudioLength(kFrameSizeMs); |
| InsertNextPacket(); |
| |
| // Insert packet that was sent before the previous packet. |
| EXPECT_CALL(detector_, Update(_, true, _)); |
| EXPECT_EQ(0, dm_->Update(seq_no_ - 1, ts_ - kFrameSizeMs, kFs)); |
| } |
| |
| TEST_F(DelayManagerTest, EnableRtxHandling) { |
| enable_rtx_handling_ = true; |
| RecreateDelayManager(); |
| |
| // Insert first packet. |
| SetPacketAudioLength(kFrameSizeMs); |
| InsertNextPacket(); |
| |
| // Insert reordered packet. |
| // TODO(jakobi): Test estimated inter-arrival time by mocking the histogram |
| // instead of checking the call to the peak detector. |
| EXPECT_CALL(detector_, Update(3, true, _)); |
| EXPECT_EQ(0, dm_->Update(seq_no_ - 3, ts_ - 3 * kFrameSizeMs, kFs)); |
| |
| // Insert another reordered packet. |
| EXPECT_CALL(detector_, Update(2, true, _)); |
| EXPECT_EQ(0, dm_->Update(seq_no_ - 2, ts_ - 2 * kFrameSizeMs, kFs)); |
| |
| // Insert the next packet in order and verify that the inter-arrival time is |
| // estimated correctly. |
| IncreaseTime(kFrameSizeMs); |
| EXPECT_CALL(detector_, Update(1, false, _)); |
| InsertNextPacket(); |
| } |
| |
| // Tests that skipped sequence numbers (simulating empty packets) are handled |
| // correctly. |
| TEST_F(DelayManagerTest, EmptyPacketsReported) { |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| |
| // Advance time by one frame size. |
| IncreaseTime(kFrameSizeMs); |
| |
| // Advance the sequence number by 5, simulating that 5 empty packets were |
| // received, but never inserted. |
| seq_no_ += 10; |
| for (int j = 0; j < 10; ++j) { |
| dm_->RegisterEmptyPacket(); |
| } |
| |
| // Second packet arrival. |
| // Expect detector update method to be called once with inter-arrival time |
| // equal to 1 packet, and (base) target level equal to 1 as well. |
| // Return false to indicate no peaks found. |
| EXPECT_CALL(detector_, Update(1, false, 1)).WillOnce(Return(false)); |
| InsertNextPacket(); |
| |
| EXPECT_EQ(1 << 8, dm_->TargetLevel()); // In Q8. |
| } |
| |
| // Same as above, but do not call RegisterEmptyPacket. Observe the target level |
| // increase dramatically. |
| TEST_F(DelayManagerTest, EmptyPacketsNotReported) { |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| |
| // Advance time by one frame size. |
| IncreaseTime(kFrameSizeMs); |
| |
| // Advance the sequence number by 5, simulating that 5 empty packets were |
| // received, but never inserted. |
| seq_no_ += 10; |
| |
| // Second packet arrival. |
| // Expect detector update method to be called once with inter-arrival time |
| // equal to 1 packet, and (base) target level equal to 1 as well. |
| // Return false to indicate no peaks found. |
| EXPECT_CALL(detector_, Update(10, false, 10)).WillOnce(Return(false)); |
| InsertNextPacket(); |
| |
| // Note 10 times higher target value. |
| EXPECT_EQ(10 * 1 << 8, dm_->TargetLevel()); // In Q8. |
| } |
| |
| TEST_F(DelayManagerTest, Failures) { |
| // Wrong sample rate. |
| EXPECT_EQ(-1, dm_->Update(0, 0, -1)); |
| // Wrong packet size. |
| EXPECT_EQ(-1, dm_->SetPacketAudioLength(0)); |
| EXPECT_EQ(-1, dm_->SetPacketAudioLength(-1)); |
| |
| // Minimum delay higher than a maximum delay is not accepted. |
| EXPECT_TRUE(dm_->SetMaximumDelay(10)); |
| EXPECT_FALSE(dm_->SetMinimumDelay(20)); |
| |
| // Maximum delay less than minimum delay is not accepted. |
| EXPECT_TRUE(dm_->SetMaximumDelay(100)); |
| EXPECT_TRUE(dm_->SetMinimumDelay(80)); |
| EXPECT_FALSE(dm_->SetMaximumDelay(60)); |
| } |
| |
| TEST_F(DelayManagerTest, TargetDelayGreaterThanOne) { |
| test::ScopedFieldTrials field_trial( |
| "WebRTC-Audio-NetEqForceTargetDelayPercentile/Enabled-0/"); |
| RecreateDelayManager(); |
| EXPECT_EQ(absl::make_optional<int>(1 << 30), |
| dm_->forced_limit_probability_for_test()); |
| |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Advance time by one frame size. |
| IncreaseTime(kFrameSizeMs); |
| // Second packet arrival. |
| // Expect detector update method to be called once with inter-arrival time |
| // equal to 1 packet. |
| EXPECT_CALL(detector_, Update(1, false, 1)).WillOnce(Return(false)); |
| InsertNextPacket(); |
| constexpr int kExpectedTarget = 1; |
| EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); // In Q8. |
| } |
| |
| TEST_F(DelayManagerTest, ForcedTargetDelayPercentile) { |
| { |
| test::ScopedFieldTrials field_trial( |
| "WebRTC-Audio-NetEqForceTargetDelayPercentile/Enabled-95/"); |
| RecreateDelayManager(); |
| EXPECT_EQ(absl::make_optional<int>(53687091), |
| dm_->forced_limit_probability_for_test()); // 1/20 in Q30 |
| } |
| { |
| test::ScopedFieldTrials field_trial( |
| "WebRTC-Audio-NetEqForceTargetDelayPercentile/Enabled-99.95/"); |
| RecreateDelayManager(); |
| EXPECT_EQ(absl::make_optional<int>(536871), |
| dm_->forced_limit_probability_for_test()); // 1/2000 in Q30 |
| } |
| { |
| test::ScopedFieldTrials field_trial( |
| "WebRTC-Audio-NetEqForceTargetDelayPercentile/Disabled/"); |
| RecreateDelayManager(); |
| EXPECT_EQ(absl::nullopt, dm_->forced_limit_probability_for_test()); |
| } |
| { |
| test::ScopedFieldTrials field_trial( |
| "WebRTC-Audio-NetEqForceTargetDelayPercentile/Enabled--1/"); |
| EXPECT_EQ(absl::nullopt, dm_->forced_limit_probability_for_test()); |
| } |
| { |
| test::ScopedFieldTrials field_trial( |
| "WebRTC-Audio-NetEqForceTargetDelayPercentile/Enabled-100.1/"); |
| RecreateDelayManager(); |
| EXPECT_EQ(absl::nullopt, dm_->forced_limit_probability_for_test()); |
| } |
| } |
| |
| // Test if the histogram is stretched correctly if the packet size is decreased. |
| TEST(DelayManagerIATScalingTest, StretchTest) { |
| using IATVector = DelayManager::IATVector; |
| // Test a straightforward 60ms to 20ms change. |
| IATVector iat = {12, 0, 0, 0, 0, 0}; |
| IATVector expected_result = {4, 4, 4, 0, 0, 0}; |
| IATVector stretched_iat = DelayManager::ScaleHistogram(iat, 60, 20); |
| EXPECT_EQ(stretched_iat, expected_result); |
| |
| // Test an example where the last bin in the stretched histogram should |
| // contain the sum of the elements that don't fit into the new histogram. |
| iat = {18, 15, 12, 9, 6, 3, 0}; |
| expected_result = {6, 6, 6, 5, 5, 5, 30}; |
| stretched_iat = DelayManager::ScaleHistogram(iat, 60, 20); |
| EXPECT_EQ(stretched_iat, expected_result); |
| |
| // Test a 120ms to 60ms change. |
| iat = {18, 16, 14, 4, 0}; |
| expected_result = {9, 9, 8, 8, 18}; |
| stretched_iat = DelayManager::ScaleHistogram(iat, 120, 60); |
| EXPECT_EQ(stretched_iat, expected_result); |
| |
| // Test a 120ms to 20ms change. |
| iat = {19, 12, 0, 0, 0, 0, 0, 0}; |
| expected_result = {3, 3, 3, 3, 3, 3, 2, 11}; |
| stretched_iat = DelayManager::ScaleHistogram(iat, 120, 20); |
| EXPECT_EQ(stretched_iat, expected_result); |
| |
| // Test a 70ms to 40ms change. |
| iat = {13, 7, 5, 3, 1, 5, 12, 11, 3, 0, 0, 0}; |
| expected_result = {7, 5, 5, 3, 3, 2, 2, 1, 2, 2, 6, 22}; |
| stretched_iat = DelayManager::ScaleHistogram(iat, 70, 40); |
| EXPECT_EQ(stretched_iat, expected_result); |
| |
| // Test a 30ms to 20ms change. |
| iat = {13, 7, 5, 3, 1, 5, 12, 11, 3, 0, 0, 0}; |
| expected_result = {8, 6, 6, 3, 2, 2, 1, 3, 3, 8, 7, 11}; |
| stretched_iat = DelayManager::ScaleHistogram(iat, 30, 20); |
| EXPECT_EQ(stretched_iat, expected_result); |
| } |
| |
| // Test if the histogram is compressed correctly if the packet size is |
| // increased. |
| TEST(DelayManagerIATScalingTest, CompressionTest) { |
| using IATVector = DelayManager::IATVector; |
| // Test a 20 to 60 ms change. |
| IATVector iat = {12, 11, 10, 3, 2, 1}; |
| IATVector expected_result = {33, 6, 0, 0, 0, 0}; |
| IATVector compressed_iat = DelayManager::ScaleHistogram(iat, 20, 60); |
| EXPECT_EQ(compressed_iat, expected_result); |
| |
| // Test a 60ms to 120ms change. |
| iat = {18, 16, 14, 4, 1}; |
| expected_result = {34, 18, 1, 0, 0}; |
| compressed_iat = DelayManager::ScaleHistogram(iat, 60, 120); |
| EXPECT_EQ(compressed_iat, expected_result); |
| |
| // Test a 20ms to 120ms change. |
| iat = {18, 12, 5, 4, 4, 3, 5, 1}; |
| expected_result = {46, 6, 0, 0, 0, 0, 0, 0}; |
| compressed_iat = DelayManager::ScaleHistogram(iat, 20, 120); |
| EXPECT_EQ(compressed_iat, expected_result); |
| |
| // Test a 70ms to 80ms change. |
| iat = {13, 7, 5, 3, 1, 5, 12, 11, 3}; |
| expected_result = {11, 8, 6, 2, 5, 12, 13, 3, 0}; |
| compressed_iat = DelayManager::ScaleHistogram(iat, 70, 80); |
| EXPECT_EQ(compressed_iat, expected_result); |
| |
| // Test a 50ms to 110ms change. |
| iat = {13, 7, 5, 3, 1, 5, 12, 11, 3}; |
| expected_result = {18, 8, 16, 16, 2, 0, 0, 0, 0}; |
| compressed_iat = DelayManager::ScaleHistogram(iat, 50, 110); |
| EXPECT_EQ(compressed_iat, expected_result); |
| } |
| |
| // Test if the histogram scaling function handles overflows correctly. |
| TEST(DelayManagerIATScalingTest, OverflowTest) { |
| using IATVector = DelayManager::IATVector; |
| // Test a compression operation that can cause overflow. |
| IATVector iat = {733544448, 0, 0, 0, 0, 0, 0, 340197376, 0, 0, 0, 0, 0, 0}; |
| IATVector expected_result = {733544448, 340197376, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0}; |
| IATVector scaled_iat = DelayManager::ScaleHistogram(iat, 10, 60); |
| EXPECT_EQ(scaled_iat, expected_result); |
| |
| iat = {655591163, 39962288, 360736736, 1930514, 4003853, 1782764, |
| 114119, 2072996, 0, 2149354, 0}; |
| expected_result = {1056290187, 7717131, 2187115, 2149354, 0, 0, |
| 0, 0, 0, 0, 0}; |
| scaled_iat = DelayManager::ScaleHistogram(iat, 20, 60); |
| EXPECT_EQ(scaled_iat, expected_result); |
| |
| // In this test case we will not be able to add everything to the final bin in |
| // the scaled histogram. Check that the last bin doesn't overflow. |
| iat = {2000000000, 2000000000, 2000000000, |
| 2000000000, 2000000000, 2000000000}; |
| expected_result = {666666666, 666666666, 666666666, |
| 666666667, 666666667, 2147483647}; |
| scaled_iat = DelayManager::ScaleHistogram(iat, 60, 20); |
| EXPECT_EQ(scaled_iat, expected_result); |
| |
| // In this test case we will not be able to add enough to each of the bins, |
| // so the values should be smeared out past the end of the normal range. |
| iat = {2000000000, 2000000000, 2000000000, |
| 2000000000, 2000000000, 2000000000}; |
| expected_result = {2147483647, 2147483647, 2147483647, |
| 2147483647, 2147483647, 1262581765}; |
| scaled_iat = DelayManager::ScaleHistogram(iat, 20, 60); |
| EXPECT_EQ(scaled_iat, expected_result); |
| } |
| |
| } // namespace webrtc |