blob: 2f7b7463a041ff82f6e5c3b8a4de69443b469903 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <list>
#include <map>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/event.h"
#include "webrtc/base/optional.h"
#include "webrtc/base/rate_limiter.h"
#include "webrtc/call.h"
#include "webrtc/call/transport_adapter.h"
#include "webrtc/common_video/include/frame_callback.h"
#include "webrtc/modules/include/module_common_types.h"
#include "webrtc/modules/rtp_rtcp/include/rtp_rtcp.h"
#include "webrtc/modules/rtp_rtcp/source/byte_io.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/nack.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/rapid_resync_request.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_utility.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_utility.h"
#include "webrtc/modules/video_coding/codecs/h264/include/h264.h"
#include "webrtc/modules/video_coding/codecs/vp8/include/vp8.h"
#include "webrtc/modules/video_coding/codecs/vp9/include/vp9.h"
#include "webrtc/modules/video_coding/include/video_coding_defines.h"
#include "webrtc/system_wrappers/include/metrics.h"
#include "webrtc/system_wrappers/include/metrics_default.h"
#include "webrtc/system_wrappers/include/sleep.h"
#include "webrtc/test/call_test.h"
#include "webrtc/test/direct_transport.h"
#include "webrtc/test/encoder_settings.h"
#include "webrtc/test/fake_decoder.h"
#include "webrtc/test/fake_encoder.h"
#include "webrtc/test/frame_generator.h"
#include "webrtc/test/frame_generator_capturer.h"
#include "webrtc/test/null_transport.h"
#include "webrtc/test/rtcp_packet_parser.h"
#include "webrtc/test/rtp_rtcp_observer.h"
#include "webrtc/test/testsupport/fileutils.h"
#include "webrtc/test/testsupport/perf_test.h"
#include "webrtc/video_encoder.h"
namespace webrtc {
static const int kSilenceTimeoutMs = 2000;
class EndToEndTest : public test::CallTest {
public:
EndToEndTest() {}
virtual ~EndToEndTest() {
EXPECT_EQ(nullptr, video_send_stream_);
EXPECT_TRUE(video_receive_streams_.empty());
}
protected:
class UnusedTransport : public Transport {
private:
bool SendRtp(const uint8_t* packet,
size_t length,
const PacketOptions& options) override {
ADD_FAILURE() << "Unexpected RTP sent.";
return false;
}
bool SendRtcp(const uint8_t* packet, size_t length) override {
ADD_FAILURE() << "Unexpected RTCP sent.";
return false;
}
};
class RequiredTransport : public Transport {
public:
RequiredTransport(bool rtp_required, bool rtcp_required)
: need_rtp_(rtp_required), need_rtcp_(rtcp_required) {}
~RequiredTransport() {
if (need_rtp_) {
ADD_FAILURE() << "Expected RTP packet not sent.";
}
if (need_rtcp_) {
ADD_FAILURE() << "Expected RTCP packet not sent.";
}
}
private:
bool SendRtp(const uint8_t* packet,
size_t length,
const PacketOptions& options) override {
rtc::CritScope lock(&crit_);
need_rtp_ = false;
return true;
}
bool SendRtcp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
need_rtcp_ = false;
return true;
}
bool need_rtp_;
bool need_rtcp_;
rtc::CriticalSection crit_;
};
void DecodesRetransmittedFrame(bool enable_rtx, bool enable_red);
void ReceivesPliAndRecovers(int rtp_history_ms);
void RespectsRtcpMode(RtcpMode rtcp_mode);
void TestXrReceiverReferenceTimeReport(bool enable_rrtr);
void TestSendsSetSsrcs(size_t num_ssrcs, bool send_single_ssrc_first);
void TestRtpStatePreservation(bool use_rtx, bool provoke_rtcpsr_before_rtp);
void VerifyHistogramStats(bool use_rtx, bool use_red, bool screenshare);
void VerifyNewVideoSendStreamsRespectNetworkState(
MediaType network_to_bring_down,
VideoEncoder* encoder,
Transport* transport);
void VerifyNewVideoReceiveStreamsRespectNetworkState(
MediaType network_to_bring_down,
Transport* transport);
};
TEST_F(EndToEndTest, ReceiverCanBeStartedTwice) {
CreateCalls(Call::Config(), Call::Config());
test::NullTransport transport;
CreateSendConfig(1, 0, &transport);
CreateMatchingReceiveConfigs(&transport);
CreateVideoStreams();
video_receive_streams_[0]->Start();
video_receive_streams_[0]->Start();
DestroyStreams();
}
TEST_F(EndToEndTest, ReceiverCanBeStoppedTwice) {
CreateCalls(Call::Config(), Call::Config());
test::NullTransport transport;
CreateSendConfig(1, 0, &transport);
CreateMatchingReceiveConfigs(&transport);
CreateVideoStreams();
video_receive_streams_[0]->Stop();
video_receive_streams_[0]->Stop();
DestroyStreams();
}
TEST_F(EndToEndTest, RendersSingleDelayedFrame) {
static const int kWidth = 320;
static const int kHeight = 240;
// This constant is chosen to be higher than the timeout in the video_render
// module. This makes sure that frames aren't dropped if there are no other
// frames in the queue.
static const int kDelayRenderCallbackMs = 1000;
class Renderer : public rtc::VideoSinkInterface<VideoFrame> {
public:
Renderer() : event_(false, false) {}
void OnFrame(const VideoFrame& video_frame) override { event_.Set(); }
bool Wait() { return event_.Wait(kDefaultTimeoutMs); }
rtc::Event event_;
} renderer;
class TestFrameCallback : public I420FrameCallback {
public:
TestFrameCallback() : event_(false, false) {}
bool Wait() { return event_.Wait(kDefaultTimeoutMs); }
private:
void FrameCallback(VideoFrame* frame) override {
SleepMs(kDelayRenderCallbackMs);
event_.Set();
}
rtc::Event event_;
};
CreateCalls(Call::Config(), Call::Config());
test::DirectTransport sender_transport(sender_call_.get());
test::DirectTransport receiver_transport(receiver_call_.get());
sender_transport.SetReceiver(receiver_call_->Receiver());
receiver_transport.SetReceiver(sender_call_->Receiver());
CreateSendConfig(1, 0, &sender_transport);
CreateMatchingReceiveConfigs(&receiver_transport);
TestFrameCallback pre_render_callback;
video_receive_configs_[0].pre_render_callback = &pre_render_callback;
video_receive_configs_[0].renderer = &renderer;
CreateVideoStreams();
Start();
// Create frames that are smaller than the send width/height, this is done to
// check that the callbacks are done after processing video.
std::unique_ptr<test::FrameGenerator> frame_generator(
test::FrameGenerator::CreateChromaGenerator(kWidth, kHeight));
test::FrameForwarder frame_forwarder;
video_send_stream_->SetSource(&frame_forwarder);
frame_forwarder.IncomingCapturedFrame(*frame_generator->NextFrame());
EXPECT_TRUE(pre_render_callback.Wait())
<< "Timed out while waiting for pre-render callback.";
EXPECT_TRUE(renderer.Wait())
<< "Timed out while waiting for the frame to render.";
Stop();
sender_transport.StopSending();
receiver_transport.StopSending();
DestroyStreams();
}
TEST_F(EndToEndTest, TransmitsFirstFrame) {
class Renderer : public rtc::VideoSinkInterface<VideoFrame> {
public:
Renderer() : event_(false, false) {}
void OnFrame(const VideoFrame& video_frame) override { event_.Set(); }
bool Wait() { return event_.Wait(kDefaultTimeoutMs); }
rtc::Event event_;
} renderer;
CreateCalls(Call::Config(), Call::Config());
test::DirectTransport sender_transport(sender_call_.get());
test::DirectTransport receiver_transport(receiver_call_.get());
sender_transport.SetReceiver(receiver_call_->Receiver());
receiver_transport.SetReceiver(sender_call_->Receiver());
CreateSendConfig(1, 0, &sender_transport);
CreateMatchingReceiveConfigs(&receiver_transport);
video_receive_configs_[0].renderer = &renderer;
CreateVideoStreams();
Start();
std::unique_ptr<test::FrameGenerator> frame_generator(
test::FrameGenerator::CreateChromaGenerator(
video_encoder_config_.streams[0].width,
video_encoder_config_.streams[0].height));
test::FrameForwarder frame_forwarder;
video_send_stream_->SetSource(&frame_forwarder);
frame_forwarder.IncomingCapturedFrame(*frame_generator->NextFrame());
EXPECT_TRUE(renderer.Wait())
<< "Timed out while waiting for the frame to render.";
Stop();
sender_transport.StopSending();
receiver_transport.StopSending();
DestroyStreams();
}
class CodecObserver : public test::EndToEndTest,
public rtc::VideoSinkInterface<VideoFrame> {
public:
CodecObserver(int no_frames_to_wait_for,
VideoRotation rotation_to_test,
const std::string& payload_name,
webrtc::VideoEncoder* encoder,
webrtc::VideoDecoder* decoder)
: EndToEndTest(2 * webrtc::EndToEndTest::kDefaultTimeoutMs),
no_frames_to_wait_for_(no_frames_to_wait_for),
expected_rotation_(rotation_to_test),
payload_name_(payload_name),
encoder_(encoder),
decoder_(decoder),
frame_counter_(0) {}
void PerformTest() override {
EXPECT_TRUE(Wait())
<< "Timed out while waiting for enough frames to be decoded.";
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->encoder_settings.encoder = encoder_.get();
send_config->encoder_settings.payload_name = payload_name_;
send_config->encoder_settings.payload_type = 126;
encoder_config->streams[0].min_bitrate_bps = 50000;
encoder_config->streams[0].target_bitrate_bps =
encoder_config->streams[0].max_bitrate_bps = 2000000;
(*receive_configs)[0].renderer = this;
(*receive_configs)[0].decoders.resize(1);
(*receive_configs)[0].decoders[0].payload_type =
send_config->encoder_settings.payload_type;
(*receive_configs)[0].decoders[0].payload_name =
send_config->encoder_settings.payload_name;
(*receive_configs)[0].decoders[0].decoder = decoder_.get();
}
void OnFrame(const VideoFrame& video_frame) override {
EXPECT_EQ(expected_rotation_, video_frame.rotation());
if (++frame_counter_ == no_frames_to_wait_for_)
observation_complete_.Set();
}
void OnFrameGeneratorCapturerCreated(
test::FrameGeneratorCapturer* frame_generator_capturer) override {
frame_generator_capturer->SetFakeRotation(expected_rotation_);
}
private:
int no_frames_to_wait_for_;
VideoRotation expected_rotation_;
std::string payload_name_;
std::unique_ptr<webrtc::VideoEncoder> encoder_;
std::unique_ptr<webrtc::VideoDecoder> decoder_;
int frame_counter_;
};
TEST_F(EndToEndTest, SendsAndReceivesVP8Rotation90) {
CodecObserver test(5, kVideoRotation_90, "VP8",
VideoEncoder::Create(VideoEncoder::kVp8),
VP8Decoder::Create());
RunBaseTest(&test);
}
#if !defined(RTC_DISABLE_VP9)
TEST_F(EndToEndTest, SendsAndReceivesVP9) {
CodecObserver test(500, kVideoRotation_0, "VP9",
VideoEncoder::Create(VideoEncoder::kVp9),
VP9Decoder::Create());
RunBaseTest(&test);
}
TEST_F(EndToEndTest, SendsAndReceivesVP9VideoRotation90) {
CodecObserver test(5, kVideoRotation_90, "VP9",
VideoEncoder::Create(VideoEncoder::kVp9),
VP9Decoder::Create());
RunBaseTest(&test);
}
#endif // !defined(RTC_DISABLE_VP9)
#if defined(WEBRTC_END_TO_END_H264_TESTS)
TEST_F(EndToEndTest, SendsAndReceivesH264) {
CodecObserver test(500, kVideoRotation_0, "H264",
VideoEncoder::Create(VideoEncoder::kH264),
H264Decoder::Create());
RunBaseTest(&test);
}
TEST_F(EndToEndTest, SendsAndReceivesH264VideoRotation90) {
CodecObserver test(5, kVideoRotation_90, "H264",
VideoEncoder::Create(VideoEncoder::kH264),
H264Decoder::Create());
RunBaseTest(&test);
}
#endif // defined(WEBRTC_END_TO_END_H264_TESTS)
TEST_F(EndToEndTest, ReceiverUsesLocalSsrc) {
class SyncRtcpObserver : public test::EndToEndTest {
public:
SyncRtcpObserver() : EndToEndTest(kDefaultTimeoutMs) {}
Action OnReceiveRtcp(const uint8_t* packet, size_t length) override {
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
uint32_t ssrc = 0;
ssrc |= static_cast<uint32_t>(packet[4]) << 24;
ssrc |= static_cast<uint32_t>(packet[5]) << 16;
ssrc |= static_cast<uint32_t>(packet[6]) << 8;
ssrc |= static_cast<uint32_t>(packet[7]) << 0;
EXPECT_EQ(kReceiverLocalVideoSsrc, ssrc);
observation_complete_.Set();
return SEND_PACKET;
}
void PerformTest() override {
EXPECT_TRUE(Wait())
<< "Timed out while waiting for a receiver RTCP packet to be sent.";
}
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, ReceivesAndRetransmitsNack) {
static const int kNumberOfNacksToObserve = 2;
static const int kLossBurstSize = 2;
static const int kPacketsBetweenLossBursts = 9;
class NackObserver : public test::EndToEndTest {
public:
NackObserver()
: EndToEndTest(kLongTimeoutMs),
sent_rtp_packets_(0),
packets_left_to_drop_(0),
nacks_left_(kNumberOfNacksToObserve) {}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
// Never drop retransmitted packets.
if (dropped_packets_.find(header.sequenceNumber) !=
dropped_packets_.end()) {
retransmitted_packets_.insert(header.sequenceNumber);
if (nacks_left_ <= 0 &&
retransmitted_packets_.size() == dropped_packets_.size()) {
observation_complete_.Set();
}
return SEND_PACKET;
}
++sent_rtp_packets_;
// Enough NACKs received, stop dropping packets.
if (nacks_left_ <= 0)
return SEND_PACKET;
// Check if it's time for a new loss burst.
if (sent_rtp_packets_ % kPacketsBetweenLossBursts == 0)
packets_left_to_drop_ = kLossBurstSize;
// Never drop padding packets as those won't be retransmitted.
if (packets_left_to_drop_ > 0 && header.paddingLength == 0) {
--packets_left_to_drop_;
dropped_packets_.insert(header.sequenceNumber);
return DROP_PACKET;
}
return SEND_PACKET;
}
Action OnReceiveRtcp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
while (packet_type != RTCPUtility::RTCPPacketTypes::kInvalid) {
if (packet_type == RTCPUtility::RTCPPacketTypes::kRtpfbNack) {
--nacks_left_;
break;
}
packet_type = parser.Iterate();
}
return SEND_PACKET;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[0].rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
}
void PerformTest() override {
EXPECT_TRUE(Wait())
<< "Timed out waiting for packets to be NACKed, retransmitted and "
"rendered.";
}
rtc::CriticalSection crit_;
std::set<uint16_t> dropped_packets_;
std::set<uint16_t> retransmitted_packets_;
uint64_t sent_rtp_packets_;
int packets_left_to_drop_;
int nacks_left_ GUARDED_BY(&crit_);
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, ReceivesNackAndRetransmitsAudio) {
class NackObserver : public test::EndToEndTest {
public:
NackObserver()
: EndToEndTest(kLongTimeoutMs),
local_ssrc_(0),
remote_ssrc_(0),
receive_transport_(nullptr) {}
private:
size_t GetNumVideoStreams() const override { return 0; }
size_t GetNumAudioStreams() const override { return 1; }
test::PacketTransport* CreateReceiveTransport() override {
test::PacketTransport* receive_transport = new test::PacketTransport(
nullptr, this, test::PacketTransport::kReceiver,
FakeNetworkPipe::Config());
receive_transport_ = receive_transport;
return receive_transport;
}
Action OnSendRtp(const uint8_t* packet, size_t length) override {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
if (!sequence_number_to_retransmit_) {
sequence_number_to_retransmit_ =
rtc::Optional<uint16_t>(header.sequenceNumber);
// Don't ask for retransmission straight away, may be deduped in pacer.
} else if (header.sequenceNumber == *sequence_number_to_retransmit_) {
observation_complete_.Set();
} else {
// Send a NACK as often as necessary until retransmission is received.
rtcp::Nack nack;
nack.From(local_ssrc_);
nack.To(remote_ssrc_);
uint16_t nack_list[] = {*sequence_number_to_retransmit_};
nack.WithList(nack_list, 1);
rtc::Buffer buffer = nack.Build();
EXPECT_TRUE(receive_transport_->SendRtcp(buffer.data(), buffer.size()));
}
return SEND_PACKET;
}
void ModifyAudioConfigs(
AudioSendStream::Config* send_config,
std::vector<AudioReceiveStream::Config>* receive_configs) override {
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[0].rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
local_ssrc_ = (*receive_configs)[0].rtp.local_ssrc;
remote_ssrc_ = (*receive_configs)[0].rtp.remote_ssrc;
}
void PerformTest() override {
EXPECT_TRUE(Wait())
<< "Timed out waiting for packets to be NACKed, retransmitted and "
"rendered.";
}
uint32_t local_ssrc_;
uint32_t remote_ssrc_;
Transport* receive_transport_;
rtc::Optional<uint16_t> sequence_number_to_retransmit_;
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, CanReceiveFec) {
class FecRenderObserver : public test::EndToEndTest,
public rtc::VideoSinkInterface<VideoFrame> {
public:
FecRenderObserver()
: EndToEndTest(kDefaultTimeoutMs), state_(kFirstPacket) {}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
int encapsulated_payload_type = -1;
if (header.payloadType == kRedPayloadType) {
encapsulated_payload_type =
static_cast<int>(packet[header.headerLength]);
if (encapsulated_payload_type != kFakeVideoSendPayloadType)
EXPECT_EQ(kUlpfecPayloadType, encapsulated_payload_type);
} else {
EXPECT_EQ(kFakeVideoSendPayloadType, header.payloadType);
}
if (protected_sequence_numbers_.count(header.sequenceNumber) != 0) {
// Retransmitted packet, should not count.
protected_sequence_numbers_.erase(header.sequenceNumber);
EXPECT_GT(protected_timestamps_.count(header.timestamp), 0u);
protected_timestamps_.erase(header.timestamp);
return SEND_PACKET;
}
switch (state_) {
case kFirstPacket:
state_ = kDropEveryOtherPacketUntilFec;
break;
case kDropEveryOtherPacketUntilFec:
if (encapsulated_payload_type == kUlpfecPayloadType) {
state_ = kDropNextMediaPacket;
return SEND_PACKET;
}
if (header.sequenceNumber % 2 == 0)
return DROP_PACKET;
break;
case kDropNextMediaPacket:
if (encapsulated_payload_type == kFakeVideoSendPayloadType) {
protected_sequence_numbers_.insert(header.sequenceNumber);
protected_timestamps_.insert(header.timestamp);
state_ = kDropEveryOtherPacketUntilFec;
return DROP_PACKET;
}
break;
}
return SEND_PACKET;
}
void OnFrame(const VideoFrame& video_frame) override {
rtc::CritScope lock(&crit_);
// Rendering frame with timestamp of packet that was dropped -> FEC
// protection worked.
if (protected_timestamps_.count(video_frame.timestamp()) != 0)
observation_complete_.Set();
}
enum {
kFirstPacket,
kDropEveryOtherPacketUntilFec,
kDropNextMediaPacket,
} state_;
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
// TODO(pbos): Run this test with combined NACK/FEC enabled as well.
// int rtp_history_ms = 1000;
// (*receive_configs)[0].rtp.nack.rtp_history_ms = rtp_history_ms;
// send_config->rtp.nack.rtp_history_ms = rtp_history_ms;
send_config->rtp.fec.red_payload_type = kRedPayloadType;
send_config->rtp.fec.ulpfec_payload_type = kUlpfecPayloadType;
(*receive_configs)[0].rtp.fec.red_payload_type = kRedPayloadType;
(*receive_configs)[0].rtp.fec.ulpfec_payload_type = kUlpfecPayloadType;
(*receive_configs)[0].renderer = this;
}
void PerformTest() override {
EXPECT_TRUE(Wait())
<< "Timed out waiting for dropped frames frames to be rendered.";
}
rtc::CriticalSection crit_;
std::set<uint32_t> protected_sequence_numbers_ GUARDED_BY(crit_);
std::set<uint32_t> protected_timestamps_ GUARDED_BY(crit_);
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, ReceivedFecPacketsNotNacked) {
class FecNackObserver : public test::EndToEndTest {
public:
FecNackObserver()
: EndToEndTest(kDefaultTimeoutMs),
state_(kFirstPacket),
fec_sequence_number_(0),
has_last_sequence_number_(false),
last_sequence_number_(0),
encoder_(VideoEncoder::Create(VideoEncoder::EncoderType::kVp8)),
decoder_(VP8Decoder::Create()) {}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock_(&crit_);
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
int encapsulated_payload_type = -1;
if (header.payloadType == kRedPayloadType) {
encapsulated_payload_type =
static_cast<int>(packet[header.headerLength]);
if (encapsulated_payload_type != kFakeVideoSendPayloadType)
EXPECT_EQ(kUlpfecPayloadType, encapsulated_payload_type);
} else {
EXPECT_EQ(kFakeVideoSendPayloadType, header.payloadType);
}
if (has_last_sequence_number_ &&
!IsNewerSequenceNumber(header.sequenceNumber,
last_sequence_number_)) {
// Drop retransmitted packets.
return DROP_PACKET;
}
last_sequence_number_ = header.sequenceNumber;
has_last_sequence_number_ = true;
bool fec_packet = encapsulated_payload_type == kUlpfecPayloadType;
switch (state_) {
case kFirstPacket:
state_ = kDropEveryOtherPacketUntilFec;
break;
case kDropEveryOtherPacketUntilFec:
if (fec_packet) {
state_ = kDropAllMediaPacketsUntilFec;
} else if (header.sequenceNumber % 2 == 0) {
return DROP_PACKET;
}
break;
case kDropAllMediaPacketsUntilFec:
if (!fec_packet)
return DROP_PACKET;
fec_sequence_number_ = header.sequenceNumber;
state_ = kDropOneMediaPacket;
break;
case kDropOneMediaPacket:
if (fec_packet)
return DROP_PACKET;
state_ = kPassOneMediaPacket;
return DROP_PACKET;
break;
case kPassOneMediaPacket:
if (fec_packet)
return DROP_PACKET;
// Pass one media packet after dropped packet after last FEC,
// otherwise receiver might never see a seq_no after
// |fec_sequence_number_|
state_ = kVerifyFecPacketNotInNackList;
break;
case kVerifyFecPacketNotInNackList:
// Continue to drop packets. Make sure no frame can be decoded.
if (fec_packet || header.sequenceNumber % 2 == 0)
return DROP_PACKET;
break;
}
return SEND_PACKET;
}
Action OnReceiveRtcp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock_(&crit_);
if (state_ == kVerifyFecPacketNotInNackList) {
test::RtcpPacketParser rtcp_parser;
rtcp_parser.Parse(packet, length);
const std::vector<uint16_t>& nacks = rtcp_parser.nack()->packet_ids();
EXPECT_TRUE(std::find(nacks.begin(), nacks.end(),
fec_sequence_number_) == nacks.end())
<< "Got nack for FEC packet";
if (!nacks.empty() &&
IsNewerSequenceNumber(nacks.back(), fec_sequence_number_)) {
observation_complete_.Set();
}
}
return SEND_PACKET;
}
test::PacketTransport* CreateSendTransport(Call* sender_call) override {
// At low RTT (< kLowRttNackMs) -> NACK only, no FEC.
// Configure some network delay.
const int kNetworkDelayMs = 50;
FakeNetworkPipe::Config config;
config.queue_delay_ms = kNetworkDelayMs;
return new test::PacketTransport(sender_call, this,
test::PacketTransport::kSender, config);
}
// TODO(holmer): Investigate why we don't send FEC packets when the bitrate
// is 10 kbps.
Call::Config GetSenderCallConfig() override {
Call::Config config;
const int kMinBitrateBps = 30000;
config.bitrate_config.min_bitrate_bps = kMinBitrateBps;
return config;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
// Configure hybrid NACK/FEC.
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
send_config->rtp.fec.red_payload_type = kRedPayloadType;
send_config->rtp.fec.ulpfec_payload_type = kUlpfecPayloadType;
// Set codec to VP8, otherwise NACK/FEC hybrid will be disabled.
send_config->encoder_settings.encoder = encoder_.get();
send_config->encoder_settings.payload_name = "VP8";
send_config->encoder_settings.payload_type = kFakeVideoSendPayloadType;
encoder_config->streams[0].min_bitrate_bps = 50000;
encoder_config->streams[0].max_bitrate_bps =
encoder_config->streams[0].target_bitrate_bps = 2000000;
(*receive_configs)[0].rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[0].rtp.fec.red_payload_type = kRedPayloadType;
(*receive_configs)[0].rtp.fec.ulpfec_payload_type = kUlpfecPayloadType;
(*receive_configs)[0].decoders.resize(1);
(*receive_configs)[0].decoders[0].payload_type =
send_config->encoder_settings.payload_type;
(*receive_configs)[0].decoders[0].payload_name =
send_config->encoder_settings.payload_name;
(*receive_configs)[0].decoders[0].decoder = decoder_.get();
}
void PerformTest() override {
EXPECT_TRUE(Wait())
<< "Timed out while waiting for FEC packets to be received.";
}
enum {
kFirstPacket,
kDropEveryOtherPacketUntilFec,
kDropAllMediaPacketsUntilFec,
kDropOneMediaPacket,
kPassOneMediaPacket,
kVerifyFecPacketNotInNackList,
} state_;
rtc::CriticalSection crit_;
uint16_t fec_sequence_number_ GUARDED_BY(&crit_);
bool has_last_sequence_number_;
uint16_t last_sequence_number_;
std::unique_ptr<webrtc::VideoEncoder> encoder_;
std::unique_ptr<webrtc::VideoDecoder> decoder_;
} test;
RunBaseTest(&test);
}
// This test drops second RTP packet with a marker bit set, makes sure it's
// retransmitted and renders. Retransmission SSRCs are also checked.
void EndToEndTest::DecodesRetransmittedFrame(bool enable_rtx, bool enable_red) {
static const int kDroppedFrameNumber = 10;
class RetransmissionObserver : public test::EndToEndTest,
public I420FrameCallback {
public:
RetransmissionObserver(bool enable_rtx, bool enable_red)
: EndToEndTest(kDefaultTimeoutMs),
payload_type_(GetPayloadType(false, enable_red)),
retransmission_ssrc_(enable_rtx ? kSendRtxSsrcs[0]
: kVideoSendSsrcs[0]),
retransmission_payload_type_(GetPayloadType(enable_rtx, enable_red)),
encoder_(VideoEncoder::Create(VideoEncoder::EncoderType::kVp8)),
marker_bits_observed_(0),
retransmitted_timestamp_(0) {}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
// Ignore padding-only packets over RTX.
if (header.payloadType != payload_type_) {
EXPECT_EQ(retransmission_ssrc_, header.ssrc);
if (length == header.headerLength + header.paddingLength)
return SEND_PACKET;
}
if (header.timestamp == retransmitted_timestamp_) {
EXPECT_EQ(retransmission_ssrc_, header.ssrc);
EXPECT_EQ(retransmission_payload_type_, header.payloadType);
return SEND_PACKET;
}
// Found the final packet of the frame to inflict loss to, drop this and
// expect a retransmission.
if (header.payloadType == payload_type_ && header.markerBit &&
++marker_bits_observed_ == kDroppedFrameNumber) {
// This should be the only dropped packet.
EXPECT_EQ(0u, retransmitted_timestamp_);
retransmitted_timestamp_ = header.timestamp;
if (std::find(rendered_timestamps_.begin(), rendered_timestamps_.end(),
retransmitted_timestamp_) != rendered_timestamps_.end()) {
// Frame was rendered before last packet was scheduled for sending.
// This is extremly rare but possible scenario because prober able to
// resend packet before it was send.
// TODO(danilchap): Remove this corner case when prober would not be
// able to sneak in between packet saved to history for resending and
// pacer notified about existance of that packet for sending.
// See https://bugs.chromium.org/p/webrtc/issues/detail?id=5540 for
// details.
observation_complete_.Set();
}
return DROP_PACKET;
}
return SEND_PACKET;
}
void FrameCallback(VideoFrame* frame) override {
rtc::CritScope lock(&crit_);
if (frame->timestamp() == retransmitted_timestamp_)
observation_complete_.Set();
rendered_timestamps_.push_back(frame->timestamp());
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[0].pre_render_callback = this;
(*receive_configs)[0].rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
if (payload_type_ == kRedPayloadType) {
send_config->rtp.fec.ulpfec_payload_type = kUlpfecPayloadType;
send_config->rtp.fec.red_payload_type = kRedPayloadType;
if (retransmission_ssrc_ == kSendRtxSsrcs[0])
send_config->rtp.fec.red_rtx_payload_type = kRtxRedPayloadType;
(*receive_configs)[0].rtp.fec.ulpfec_payload_type =
send_config->rtp.fec.ulpfec_payload_type;
(*receive_configs)[0].rtp.fec.red_payload_type =
send_config->rtp.fec.red_payload_type;
(*receive_configs)[0].rtp.fec.red_rtx_payload_type =
send_config->rtp.fec.red_rtx_payload_type;
}
if (retransmission_ssrc_ == kSendRtxSsrcs[0]) {
send_config->rtp.rtx.ssrcs.push_back(kSendRtxSsrcs[0]);
send_config->rtp.rtx.payload_type = kSendRtxPayloadType;
(*receive_configs)[0].rtp.rtx[payload_type_].ssrc = kSendRtxSsrcs[0];
(*receive_configs)[0].rtp.rtx[payload_type_].payload_type =
kSendRtxPayloadType;
}
// Configure encoding and decoding with VP8, since generic packetization
// doesn't support FEC with NACK.
RTC_DCHECK_EQ(1u, (*receive_configs)[0].decoders.size());
send_config->encoder_settings.encoder = encoder_.get();
send_config->encoder_settings.payload_name = "VP8";
(*receive_configs)[0].decoders[0].payload_name = "VP8";
}
void PerformTest() override {
EXPECT_TRUE(Wait())
<< "Timed out while waiting for retransmission to render.";
}
int GetPayloadType(bool use_rtx, bool use_red) {
if (use_red) {
if (use_rtx)
return kRtxRedPayloadType;
return kRedPayloadType;
}
if (use_rtx)
return kSendRtxPayloadType;
return kFakeVideoSendPayloadType;
}
rtc::CriticalSection crit_;
const int payload_type_;
const uint32_t retransmission_ssrc_;
const int retransmission_payload_type_;
std::unique_ptr<VideoEncoder> encoder_;
const std::string payload_name_;
int marker_bits_observed_;
uint32_t retransmitted_timestamp_ GUARDED_BY(&crit_);
std::vector<uint32_t> rendered_timestamps_ GUARDED_BY(&crit_);
} test(enable_rtx, enable_red);
RunBaseTest(&test);
}
TEST_F(EndToEndTest, DecodesRetransmittedFrame) {
DecodesRetransmittedFrame(false, false);
}
TEST_F(EndToEndTest, DecodesRetransmittedFrameOverRtx) {
DecodesRetransmittedFrame(true, false);
}
TEST_F(EndToEndTest, DecodesRetransmittedFrameByRed) {
DecodesRetransmittedFrame(false, true);
}
TEST_F(EndToEndTest, DecodesRetransmittedFrameByRedOverRtx) {
DecodesRetransmittedFrame(true, true);
}
void EndToEndTest::ReceivesPliAndRecovers(int rtp_history_ms) {
static const int kPacketsToDrop = 1;
class PliObserver : public test::EndToEndTest,
public rtc::VideoSinkInterface<VideoFrame> {
public:
explicit PliObserver(int rtp_history_ms)
: EndToEndTest(kLongTimeoutMs),
rtp_history_ms_(rtp_history_ms),
nack_enabled_(rtp_history_ms > 0),
highest_dropped_timestamp_(0),
frames_to_drop_(0),
received_pli_(false) {}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
// Drop all retransmitted packets to force a PLI.
if (header.timestamp <= highest_dropped_timestamp_)
return DROP_PACKET;
if (frames_to_drop_ > 0) {
highest_dropped_timestamp_ = header.timestamp;
--frames_to_drop_;
return DROP_PACKET;
}
return SEND_PACKET;
}
Action OnReceiveRtcp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
for (RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
packet_type != RTCPUtility::RTCPPacketTypes::kInvalid;
packet_type = parser.Iterate()) {
if (!nack_enabled_)
EXPECT_NE(packet_type, RTCPUtility::RTCPPacketTypes::kRtpfbNack);
if (packet_type == RTCPUtility::RTCPPacketTypes::kPsfbPli) {
received_pli_ = true;
break;
}
}
return SEND_PACKET;
}
void OnFrame(const VideoFrame& video_frame) override {
rtc::CritScope lock(&crit_);
if (received_pli_ &&
video_frame.timestamp() > highest_dropped_timestamp_) {
observation_complete_.Set();
}
if (!received_pli_)
frames_to_drop_ = kPacketsToDrop;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->rtp.nack.rtp_history_ms = rtp_history_ms_;
(*receive_configs)[0].rtp.nack.rtp_history_ms = rtp_history_ms_;
(*receive_configs)[0].renderer = this;
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out waiting for PLI to be "
"received and a frame to be "
"rendered afterwards.";
}
rtc::CriticalSection crit_;
int rtp_history_ms_;
bool nack_enabled_;
uint32_t highest_dropped_timestamp_ GUARDED_BY(&crit_);
int frames_to_drop_ GUARDED_BY(&crit_);
bool received_pli_ GUARDED_BY(&crit_);
} test(rtp_history_ms);
RunBaseTest(&test);
}
TEST_F(EndToEndTest, ReceivesPliAndRecoversWithNack) {
ReceivesPliAndRecovers(1000);
}
TEST_F(EndToEndTest, ReceivesPliAndRecoversWithoutNack) {
ReceivesPliAndRecovers(0);
}
TEST_F(EndToEndTest, UnknownRtpPacketGivesUnknownSsrcReturnCode) {
class PacketInputObserver : public PacketReceiver {
public:
explicit PacketInputObserver(PacketReceiver* receiver)
: receiver_(receiver), delivered_packet_(false, false) {}
bool Wait() { return delivered_packet_.Wait(kDefaultTimeoutMs); }
private:
DeliveryStatus DeliverPacket(MediaType media_type,
const uint8_t* packet,
size_t length,
const PacketTime& packet_time) override {
if (RtpHeaderParser::IsRtcp(packet, length)) {
return receiver_->DeliverPacket(media_type, packet, length,
packet_time);
} else {
DeliveryStatus delivery_status =
receiver_->DeliverPacket(media_type, packet, length, packet_time);
EXPECT_EQ(DELIVERY_UNKNOWN_SSRC, delivery_status);
delivered_packet_.Set();
return delivery_status;
}
}
PacketReceiver* receiver_;
rtc::Event delivered_packet_;
};
CreateCalls(Call::Config(), Call::Config());
test::DirectTransport send_transport(sender_call_.get());
test::DirectTransport receive_transport(receiver_call_.get());
PacketInputObserver input_observer(receiver_call_->Receiver());
send_transport.SetReceiver(&input_observer);
receive_transport.SetReceiver(sender_call_->Receiver());
CreateSendConfig(1, 0, &send_transport);
CreateMatchingReceiveConfigs(&receive_transport);
CreateVideoStreams();
CreateFrameGeneratorCapturer();
Start();
receiver_call_->DestroyVideoReceiveStream(video_receive_streams_[0]);
video_receive_streams_.clear();
// Wait() waits for a received packet.
EXPECT_TRUE(input_observer.Wait());
Stop();
DestroyStreams();
send_transport.StopSending();
receive_transport.StopSending();
}
void EndToEndTest::RespectsRtcpMode(RtcpMode rtcp_mode) {
static const int kNumCompoundRtcpPacketsToObserve = 10;
class RtcpModeObserver : public test::EndToEndTest {
public:
explicit RtcpModeObserver(RtcpMode rtcp_mode)
: EndToEndTest(kDefaultTimeoutMs),
rtcp_mode_(rtcp_mode),
sent_rtp_(0),
sent_rtcp_(0) {}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
if (++sent_rtp_ % 3 == 0)
return DROP_PACKET;
return SEND_PACKET;
}
Action OnReceiveRtcp(const uint8_t* packet, size_t length) override {
++sent_rtcp_;
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
bool has_report_block = false;
while (packet_type != RTCPUtility::RTCPPacketTypes::kInvalid) {
EXPECT_NE(RTCPUtility::RTCPPacketTypes::kSr, packet_type);
if (packet_type == RTCPUtility::RTCPPacketTypes::kRr) {
has_report_block = true;
break;
}
packet_type = parser.Iterate();
}
switch (rtcp_mode_) {
case RtcpMode::kCompound:
if (!has_report_block) {
ADD_FAILURE() << "Received RTCP packet without receiver report for "
"RtcpMode::kCompound.";
observation_complete_.Set();
}
if (sent_rtcp_ >= kNumCompoundRtcpPacketsToObserve)
observation_complete_.Set();
break;
case RtcpMode::kReducedSize:
if (!has_report_block)
observation_complete_.Set();
break;
case RtcpMode::kOff:
RTC_NOTREACHED();
break;
}
return SEND_PACKET;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[0].rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[0].rtp.rtcp_mode = rtcp_mode_;
}
void PerformTest() override {
EXPECT_TRUE(Wait())
<< (rtcp_mode_ == RtcpMode::kCompound
? "Timed out before observing enough compound packets."
: "Timed out before receiving a non-compound RTCP packet.");
}
RtcpMode rtcp_mode_;
int sent_rtp_;
int sent_rtcp_;
} test(rtcp_mode);
RunBaseTest(&test);
}
TEST_F(EndToEndTest, UsesRtcpCompoundMode) {
RespectsRtcpMode(RtcpMode::kCompound);
}
TEST_F(EndToEndTest, UsesRtcpReducedSizeMode) {
RespectsRtcpMode(RtcpMode::kReducedSize);
}
// Test sets up a Call multiple senders with different resolutions and SSRCs.
// Another is set up to receive all three of these with different renderers.
class MultiStreamTest {
public:
static const size_t kNumStreams = 3;
struct CodecSettings {
uint32_t ssrc;
int width;
int height;
} codec_settings[kNumStreams];
MultiStreamTest() {
// TODO(sprang): Cleanup when msvc supports explicit initializers for array.
codec_settings[0] = {1, 640, 480};
codec_settings[1] = {2, 320, 240};
codec_settings[2] = {3, 240, 160};
}
virtual ~MultiStreamTest() {}
void RunTest() {
std::unique_ptr<Call> sender_call(Call::Create(Call::Config()));
std::unique_ptr<Call> receiver_call(Call::Create(Call::Config()));
std::unique_ptr<test::DirectTransport> sender_transport(
CreateSendTransport(sender_call.get()));
std::unique_ptr<test::DirectTransport> receiver_transport(
CreateReceiveTransport(receiver_call.get()));
sender_transport->SetReceiver(receiver_call->Receiver());
receiver_transport->SetReceiver(sender_call->Receiver());
std::unique_ptr<VideoEncoder> encoders[kNumStreams];
for (size_t i = 0; i < kNumStreams; ++i)
encoders[i].reset(VideoEncoder::Create(VideoEncoder::kVp8));
VideoSendStream* send_streams[kNumStreams];
VideoReceiveStream* receive_streams[kNumStreams];
test::FrameGeneratorCapturer* frame_generators[kNumStreams];
std::vector<std::unique_ptr<VideoDecoder>> allocated_decoders;
for (size_t i = 0; i < kNumStreams; ++i) {
uint32_t ssrc = codec_settings[i].ssrc;
int width = codec_settings[i].width;
int height = codec_settings[i].height;
VideoSendStream::Config send_config(sender_transport.get());
send_config.rtp.ssrcs.push_back(ssrc);
send_config.encoder_settings.encoder = encoders[i].get();
send_config.encoder_settings.payload_name = "VP8";
send_config.encoder_settings.payload_type = 124;
VideoEncoderConfig encoder_config;
encoder_config.streams = test::CreateVideoStreams(1);
VideoStream* stream = &encoder_config.streams[0];
stream->width = width;
stream->height = height;
stream->max_framerate = 5;
stream->min_bitrate_bps = stream->target_bitrate_bps =
stream->max_bitrate_bps = 100000;
UpdateSendConfig(i, &send_config, &encoder_config, &frame_generators[i]);
send_streams[i] = sender_call->CreateVideoSendStream(
send_config.Copy(), encoder_config.Copy());
send_streams[i]->Start();
VideoReceiveStream::Config receive_config(receiver_transport.get());
receive_config.rtp.remote_ssrc = ssrc;
receive_config.rtp.local_ssrc = test::CallTest::kReceiverLocalVideoSsrc;
VideoReceiveStream::Decoder decoder =
test::CreateMatchingDecoder(send_config.encoder_settings);
allocated_decoders.push_back(
std::unique_ptr<VideoDecoder>(decoder.decoder));
receive_config.decoders.push_back(decoder);
UpdateReceiveConfig(i, &receive_config);
receive_streams[i] =
receiver_call->CreateVideoReceiveStream(std::move(receive_config));
receive_streams[i]->Start();
frame_generators[i] = test::FrameGeneratorCapturer::Create(
width, height, 30, Clock::GetRealTimeClock());
send_streams[i]->SetSource(frame_generators[i]);
frame_generators[i]->Start();
}
Wait();
for (size_t i = 0; i < kNumStreams; ++i) {
frame_generators[i]->Stop();
sender_call->DestroyVideoSendStream(send_streams[i]);
receiver_call->DestroyVideoReceiveStream(receive_streams[i]);
delete frame_generators[i];
}
sender_transport->StopSending();
receiver_transport->StopSending();
}
protected:
virtual void Wait() = 0;
// Note: frame_generator is a point-to-pointer, since the actual instance
// hasn't been created at the time of this call. Only when packets/frames
// start flowing should this be dereferenced.
virtual void UpdateSendConfig(
size_t stream_index,
VideoSendStream::Config* send_config,
VideoEncoderConfig* encoder_config,
test::FrameGeneratorCapturer** frame_generator) {}
virtual void UpdateReceiveConfig(size_t stream_index,
VideoReceiveStream::Config* receive_config) {
}
virtual test::DirectTransport* CreateSendTransport(Call* sender_call) {
return new test::DirectTransport(sender_call);
}
virtual test::DirectTransport* CreateReceiveTransport(Call* receiver_call) {
return new test::DirectTransport(receiver_call);
}
};
// Each renderer verifies that it receives the expected resolution, and as soon
// as every renderer has received a frame, the test finishes.
TEST_F(EndToEndTest, SendsAndReceivesMultipleStreams) {
class VideoOutputObserver : public rtc::VideoSinkInterface<VideoFrame> {
public:
VideoOutputObserver(const MultiStreamTest::CodecSettings& settings,
uint32_t ssrc,
test::FrameGeneratorCapturer** frame_generator)
: settings_(settings),
ssrc_(ssrc),
frame_generator_(frame_generator),
done_(false, false) {}
void OnFrame(const VideoFrame& video_frame) override {
EXPECT_EQ(settings_.width, video_frame.width());
EXPECT_EQ(settings_.height, video_frame.height());
(*frame_generator_)->Stop();
done_.Set();
}
uint32_t Ssrc() { return ssrc_; }
bool Wait() { return done_.Wait(kDefaultTimeoutMs); }
private:
const MultiStreamTest::CodecSettings& settings_;
const uint32_t ssrc_;
test::FrameGeneratorCapturer** const frame_generator_;
rtc::Event done_;
};
class Tester : public MultiStreamTest {
public:
Tester() {}
virtual ~Tester() {}
protected:
void Wait() override {
for (const auto& observer : observers_) {
EXPECT_TRUE(observer->Wait()) << "Time out waiting for from on ssrc "
<< observer->Ssrc();
}
}
void UpdateSendConfig(
size_t stream_index,
VideoSendStream::Config* send_config,
VideoEncoderConfig* encoder_config,
test::FrameGeneratorCapturer** frame_generator) override {
observers_[stream_index].reset(new VideoOutputObserver(
codec_settings[stream_index], send_config->rtp.ssrcs.front(),
frame_generator));
}
void UpdateReceiveConfig(
size_t stream_index,
VideoReceiveStream::Config* receive_config) override {
receive_config->renderer = observers_[stream_index].get();
}
private:
std::unique_ptr<VideoOutputObserver> observers_[kNumStreams];
} tester;
tester.RunTest();
}
TEST_F(EndToEndTest, AssignsTransportSequenceNumbers) {
static const int kExtensionId = 5;
class RtpExtensionHeaderObserver : public test::DirectTransport {
public:
RtpExtensionHeaderObserver(Call* sender_call,
const uint32_t& first_media_ssrc,
const std::map<uint32_t, uint32_t>& ssrc_map)
: DirectTransport(sender_call),
done_(false, false),
parser_(RtpHeaderParser::Create()),
first_media_ssrc_(first_media_ssrc),
rtx_to_media_ssrcs_(ssrc_map),
padding_observed_(false),
rtx_padding_observed_(false),
retransmit_observed_(false),
started_(false) {
parser_->RegisterRtpHeaderExtension(kRtpExtensionTransportSequenceNumber,
kExtensionId);
}
virtual ~RtpExtensionHeaderObserver() {}
bool SendRtp(const uint8_t* data,
size_t length,
const PacketOptions& options) override {
{
rtc::CritScope cs(&lock_);
if (IsDone())
return false;
if (started_) {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(data, length, &header));
bool drop_packet = false;
EXPECT_TRUE(header.extension.hasTransportSequenceNumber);
EXPECT_EQ(options.packet_id,
header.extension.transportSequenceNumber);
if (!streams_observed_.empty()) {
// Unwrap packet id and verify uniqueness.
int64_t packet_id = unwrapper_.Unwrap(options.packet_id);
EXPECT_TRUE(received_packed_ids_.insert(packet_id).second);
}
// Drop (up to) every 17th packet, so we get retransmits.
// Only drop media, and not on the first stream (otherwise it will be
// hard to distinguish from padding, which is always sent on the first
// stream).
if (header.payloadType != kSendRtxPayloadType &&
header.ssrc != first_media_ssrc_ &&
header.extension.transportSequenceNumber % 17 == 0) {
dropped_seq_[header.ssrc].insert(header.sequenceNumber);
drop_packet = true;
}
size_t payload_length =
length - (header.headerLength + header.paddingLength);
if (payload_length == 0) {
padding_observed_ = true;
} else if (header.payloadType == kSendRtxPayloadType) {
uint16_t original_sequence_number =
ByteReader<uint16_t>::ReadBigEndian(&data[header.headerLength]);
uint32_t original_ssrc =
rtx_to_media_ssrcs_.find(header.ssrc)->second;
std::set<uint16_t>* seq_no_map = &dropped_seq_[original_ssrc];
auto it = seq_no_map->find(original_sequence_number);
if (it != seq_no_map->end()) {
retransmit_observed_ = true;
seq_no_map->erase(it);
} else {
rtx_padding_observed_ = true;
}
} else {
streams_observed_.insert(header.ssrc);
}
if (IsDone())
done_.Set();
if (drop_packet)
return true;
}
}
return test::DirectTransport::SendRtp(data, length, options);
}
bool IsDone() {
bool observed_types_ok =
streams_observed_.size() == MultiStreamTest::kNumStreams &&
padding_observed_ && retransmit_observed_ && rtx_padding_observed_;
if (!observed_types_ok)
return false;
// We should not have any gaps in the sequence number range.
size_t seqno_range =
*received_packed_ids_.rbegin() - *received_packed_ids_.begin() + 1;
return seqno_range == received_packed_ids_.size();
}
bool Wait() {
{
// Can't be sure until this point that rtx_to_media_ssrcs_ etc have
// been initialized and are OK to read.
rtc::CritScope cs(&lock_);
started_ = true;
}
return done_.Wait(kDefaultTimeoutMs);
}
rtc::CriticalSection lock_;
rtc::Event done_;
std::unique_ptr<RtpHeaderParser> parser_;
SequenceNumberUnwrapper unwrapper_;
std::set<int64_t> received_packed_ids_;
std::set<uint32_t> streams_observed_;
std::map<uint32_t, std::set<uint16_t>> dropped_seq_;
const uint32_t& first_media_ssrc_;
const std::map<uint32_t, uint32_t>& rtx_to_media_ssrcs_;
bool padding_observed_;
bool rtx_padding_observed_;
bool retransmit_observed_;
bool started_;
};
class TransportSequenceNumberTester : public MultiStreamTest {
public:
TransportSequenceNumberTester()
: first_media_ssrc_(0), observer_(nullptr) {}
virtual ~TransportSequenceNumberTester() {}
protected:
void Wait() override {
RTC_DCHECK(observer_);
EXPECT_TRUE(observer_->Wait());
}
void UpdateSendConfig(
size_t stream_index,
VideoSendStream::Config* send_config,
VideoEncoderConfig* encoder_config,
test::FrameGeneratorCapturer** frame_generator) override {
send_config->rtp.extensions.clear();
send_config->rtp.extensions.push_back(RtpExtension(
RtpExtension::kTransportSequenceNumberUri, kExtensionId));
// Force some padding to be sent.
const int kPaddingBitrateBps = 50000;
int total_target_bitrate = 0;
for (const VideoStream& stream : encoder_config->streams)
total_target_bitrate += stream.target_bitrate_bps;
encoder_config->min_transmit_bitrate_bps =
total_target_bitrate + kPaddingBitrateBps;
// Configure RTX for redundant payload padding.
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
send_config->rtp.rtx.ssrcs.push_back(kSendRtxSsrcs[stream_index]);
send_config->rtp.rtx.payload_type = kSendRtxPayloadType;
rtx_to_media_ssrcs_[kSendRtxSsrcs[stream_index]] =
send_config->rtp.ssrcs[0];
if (stream_index == 0)
first_media_ssrc_ = send_config->rtp.ssrcs[0];
}
void UpdateReceiveConfig(
size_t stream_index,
VideoReceiveStream::Config* receive_config) override {
receive_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
receive_config->rtp.extensions.clear();
receive_config->rtp.extensions.push_back(RtpExtension(
RtpExtension::kTransportSequenceNumberUri, kExtensionId));
}
test::DirectTransport* CreateSendTransport(Call* sender_call) override {
observer_ = new RtpExtensionHeaderObserver(sender_call, first_media_ssrc_,
rtx_to_media_ssrcs_);
return observer_;
}
private:
uint32_t first_media_ssrc_;
std::map<uint32_t, uint32_t> rtx_to_media_ssrcs_;
RtpExtensionHeaderObserver* observer_;
} tester;
tester.RunTest();
}
class TransportFeedbackTester : public test::EndToEndTest {
public:
explicit TransportFeedbackTester(bool feedback_enabled,
size_t num_video_streams,
size_t num_audio_streams)
: EndToEndTest(::webrtc::EndToEndTest::kDefaultTimeoutMs),
feedback_enabled_(feedback_enabled),
num_video_streams_(num_video_streams),
num_audio_streams_(num_audio_streams),
receiver_call_(nullptr) {
// Only one stream of each supported for now.
EXPECT_LE(num_video_streams, 1u);
EXPECT_LE(num_audio_streams, 1u);
}
protected:
Action OnSendRtcp(const uint8_t* data, size_t length) override {
EXPECT_FALSE(HasTransportFeedback(data, length));
return SEND_PACKET;
}
Action OnReceiveRtcp(const uint8_t* data, size_t length) override {
if (HasTransportFeedback(data, length))
observation_complete_.Set();
return SEND_PACKET;
}
bool HasTransportFeedback(const uint8_t* data, size_t length) const {
RTCPUtility::RTCPParserV2 parser(data, length, true);
EXPECT_TRUE(parser.IsValid());
RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
while (packet_type != RTCPUtility::RTCPPacketTypes::kInvalid) {
if (packet_type == RTCPUtility::RTCPPacketTypes::kTransportFeedback)
return true;
packet_type = parser.Iterate();
}
return false;
}
void PerformTest() override {
const int64_t kDisabledFeedbackTimeoutMs = 5000;
EXPECT_EQ(feedback_enabled_,
observation_complete_.Wait(feedback_enabled_
? test::CallTest::kDefaultTimeoutMs
: kDisabledFeedbackTimeoutMs));
}
void OnCallsCreated(Call* sender_call, Call* receiver_call) override {
receiver_call_ = receiver_call;
}
size_t GetNumVideoStreams() const override { return num_video_streams_; }
size_t GetNumAudioStreams() const override { return num_audio_streams_; }
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->rtp.extensions.clear();
send_config->rtp.extensions.push_back(
RtpExtension(RtpExtension::kTransportSequenceNumberUri, kExtensionId));
(*receive_configs)[0].rtp.extensions = send_config->rtp.extensions;
(*receive_configs)[0].rtp.transport_cc = feedback_enabled_;
}
void ModifyAudioConfigs(
AudioSendStream::Config* send_config,
std::vector<AudioReceiveStream::Config>* receive_configs) override {
send_config->rtp.extensions.clear();
send_config->rtp.extensions.push_back(
RtpExtension(RtpExtension::kTransportSequenceNumberUri, kExtensionId));
(*receive_configs)[0].rtp.extensions.clear();
(*receive_configs)[0].rtp.extensions = send_config->rtp.extensions;
(*receive_configs)[0].rtp.transport_cc = feedback_enabled_;
}
private:
static const int kExtensionId = 5;
const bool feedback_enabled_;
const size_t num_video_streams_;
const size_t num_audio_streams_;
Call* receiver_call_;
};
TEST_F(EndToEndTest, VideoReceivesTransportFeedback) {
TransportFeedbackTester test(true, 1, 0);
RunBaseTest(&test);
}
TEST_F(EndToEndTest, VideoTransportFeedbackNotConfigured) {
TransportFeedbackTester test(false, 1, 0);
RunBaseTest(&test);
}
TEST_F(EndToEndTest, AudioReceivesTransportFeedback) {
TransportFeedbackTester test(true, 0, 1);
RunBaseTest(&test);
}
TEST_F(EndToEndTest, AudioTransportFeedbackNotConfigured) {
TransportFeedbackTester test(false, 0, 1);
RunBaseTest(&test);
}
TEST_F(EndToEndTest, AudioVideoReceivesTransportFeedback) {
TransportFeedbackTester test(true, 1, 1);
RunBaseTest(&test);
}
TEST_F(EndToEndTest, ObserversEncodedFrames) {
class EncodedFrameTestObserver : public EncodedFrameObserver {
public:
EncodedFrameTestObserver()
: length_(0), frame_type_(kEmptyFrame), called_(false, false) {}
virtual ~EncodedFrameTestObserver() {}
virtual void EncodedFrameCallback(const EncodedFrame& encoded_frame) {
frame_type_ = encoded_frame.frame_type_;
length_ = encoded_frame.length_;
buffer_.reset(new uint8_t[length_]);
memcpy(buffer_.get(), encoded_frame.data_, length_);
called_.Set();
}
bool Wait() { return called_.Wait(kDefaultTimeoutMs); }
void ExpectEqualFrames(const EncodedFrameTestObserver& observer) {
ASSERT_EQ(length_, observer.length_)
<< "Observed frames are of different lengths.";
EXPECT_EQ(frame_type_, observer.frame_type_)
<< "Observed frames have different frame types.";
EXPECT_EQ(0, memcmp(buffer_.get(), observer.buffer_.get(), length_))
<< "Observed encoded frames have different content.";
}
private:
std::unique_ptr<uint8_t[]> buffer_;
size_t length_;
FrameType frame_type_;
rtc::Event called_;
};
EncodedFrameTestObserver post_encode_observer;
EncodedFrameTestObserver pre_decode_observer;
CreateCalls(Call::Config(), Call::Config());
test::DirectTransport sender_transport(sender_call_.get());
test::DirectTransport receiver_transport(receiver_call_.get());
sender_transport.SetReceiver(receiver_call_->Receiver());
receiver_transport.SetReceiver(sender_call_->Receiver());
CreateSendConfig(1, 0, &sender_transport);
CreateMatchingReceiveConfigs(&receiver_transport);
video_send_config_.post_encode_callback = &post_encode_observer;
video_receive_configs_[0].pre_decode_callback = &pre_decode_observer;
CreateVideoStreams();
Start();
std::unique_ptr<test::FrameGenerator> frame_generator(
test::FrameGenerator::CreateChromaGenerator(
video_encoder_config_.streams[0].width,
video_encoder_config_.streams[0].height));
test::FrameForwarder forwarder;
video_send_stream_->SetSource(&forwarder);
forwarder.IncomingCapturedFrame(*frame_generator->NextFrame());
EXPECT_TRUE(post_encode_observer.Wait())
<< "Timed out while waiting for send-side encoded-frame callback.";
EXPECT_TRUE(pre_decode_observer.Wait())
<< "Timed out while waiting for pre-decode encoded-frame callback.";
post_encode_observer.ExpectEqualFrames(pre_decode_observer);
Stop();
sender_transport.StopSending();
receiver_transport.StopSending();
DestroyStreams();
}
TEST_F(EndToEndTest, ReceiveStreamSendsRemb) {
class RembObserver : public test::EndToEndTest {
public:
RembObserver() : EndToEndTest(kDefaultTimeoutMs) {}
Action OnReceiveRtcp(const uint8_t* packet, size_t length) override {
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
bool received_psfb = false;
bool received_remb = false;
RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
while (packet_type != RTCPUtility::RTCPPacketTypes::kInvalid) {
if (packet_type == RTCPUtility::RTCPPacketTypes::kPsfbRemb) {
const RTCPUtility::RTCPPacket& packet = parser.Packet();
EXPECT_EQ(packet.PSFBAPP.SenderSSRC, kReceiverLocalVideoSsrc);
received_psfb = true;
} else if (packet_type == RTCPUtility::RTCPPacketTypes::kPsfbRembItem) {
const RTCPUtility::RTCPPacket& packet = parser.Packet();
EXPECT_GT(packet.REMBItem.BitRate, 0u);
EXPECT_EQ(packet.REMBItem.NumberOfSSRCs, 1u);
EXPECT_EQ(packet.REMBItem.SSRCs[0], kVideoSendSsrcs[0]);
received_remb = true;
}
packet_type = parser.Iterate();
}
if (received_psfb && received_remb)
observation_complete_.Set();
return SEND_PACKET;
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out while waiting for a "
"receiver RTCP REMB packet to be "
"sent.";
}
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, VerifyBandwidthStats) {
class RtcpObserver : public test::EndToEndTest {
public:
RtcpObserver()
: EndToEndTest(kDefaultTimeoutMs),
sender_call_(nullptr),
receiver_call_(nullptr),
has_seen_pacer_delay_(false) {}
Action OnSendRtp(const uint8_t* packet, size_t length) override {
Call::Stats sender_stats = sender_call_->GetStats();
Call::Stats receiver_stats = receiver_call_->GetStats();
if (!has_seen_pacer_delay_)
has_seen_pacer_delay_ = sender_stats.pacer_delay_ms > 0;
if (sender_stats.send_bandwidth_bps > 0 &&
receiver_stats.recv_bandwidth_bps > 0 && has_seen_pacer_delay_) {
observation_complete_.Set();
}
return SEND_PACKET;
}
void OnCallsCreated(Call* sender_call, Call* receiver_call) override {
sender_call_ = sender_call;
receiver_call_ = receiver_call;
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out while waiting for "
"non-zero bandwidth stats.";
}
private:
Call* sender_call_;
Call* receiver_call_;
bool has_seen_pacer_delay_;
} test;
RunBaseTest(&test);
}
// Verifies that it's possible to limit the send BWE by sending a REMB.
// This is verified by allowing the send BWE to ramp-up to >1000 kbps,
// then have the test generate a REMB of 500 kbps and verify that the send BWE
// is reduced to exactly 500 kbps. Then a REMB of 1000 kbps is generated and the
// test verifies that the send BWE ramps back up to exactly 1000 kbps.
TEST_F(EndToEndTest, RembWithSendSideBwe) {
class BweObserver : public test::EndToEndTest {
public:
BweObserver()
: EndToEndTest(kDefaultTimeoutMs),
sender_call_(nullptr),
clock_(Clock::GetRealTimeClock()),
sender_ssrc_(0),
remb_bitrate_bps_(1000000),
receive_transport_(nullptr),
event_(false, false),
poller_thread_(&BitrateStatsPollingThread,
this,
"BitrateStatsPollingThread"),
state_(kWaitForFirstRampUp),
retransmission_rate_limiter_(clock_, 1000) {}
~BweObserver() {}
test::PacketTransport* CreateReceiveTransport() override {
receive_transport_ = new test::PacketTransport(
nullptr, this, test::PacketTransport::kReceiver,
FakeNetworkPipe::Config());
return receive_transport_;
}
Call::Config GetSenderCallConfig() override {
Call::Config config;
// Set a high start bitrate to reduce the test completion time.
config.bitrate_config.start_bitrate_bps = remb_bitrate_bps_;
return config;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
ASSERT_EQ(1u, send_config->rtp.ssrcs.size());
send_config->rtp.extensions.clear();
send_config->rtp.extensions.push_back(
RtpExtension(RtpExtension::kTransportSequenceNumberUri,
test::kTransportSequenceNumberExtensionId));
sender_ssrc_ = send_config->rtp.ssrcs[0];
encoder_config->streams[0].max_bitrate_bps =
encoder_config->streams[0].target_bitrate_bps = 2000000;
ASSERT_EQ(1u, receive_configs->size());
(*receive_configs)[0].rtp.remb = false;
(*receive_configs)[0].rtp.transport_cc = true;
(*receive_configs)[0].rtp.extensions = send_config->rtp.extensions;
RtpRtcp::Configuration config;
config.receiver_only = true;
config.clock = clock_;
config.outgoing_transport = receive_transport_;
config.retransmission_rate_limiter = &retransmission_rate_limiter_;
rtp_rtcp_.reset(RtpRtcp::CreateRtpRtcp(config));
rtp_rtcp_->SetRemoteSSRC((*receive_configs)[0].rtp.remote_ssrc);
rtp_rtcp_->SetSSRC((*receive_configs)[0].rtp.local_ssrc);
rtp_rtcp_->SetREMBStatus(true);
rtp_rtcp_->SetSendingStatus(true);
rtp_rtcp_->SetRTCPStatus(RtcpMode::kReducedSize);
}
void OnCallsCreated(Call* sender_call, Call* receiver_call) override {
sender_call_ = sender_call;
}
static bool BitrateStatsPollingThread(void* obj) {
return static_cast<BweObserver*>(obj)->PollStats();
}
bool PollStats() {
if (sender_call_) {
Call::Stats stats = sender_call_->GetStats();
switch (state_) {
case kWaitForFirstRampUp:
if (stats.send_bandwidth_bps >= remb_bitrate_bps_) {
state_ = kWaitForRemb;
remb_bitrate_bps_ /= 2;
rtp_rtcp_->SetREMBData(
remb_bitrate_bps_,
std::vector<uint32_t>(&sender_ssrc_, &sender_ssrc_ + 1));
rtp_rtcp_->SendRTCP(kRtcpRr);
}
break;
case kWaitForRemb:
if (stats.send_bandwidth_bps == remb_bitrate_bps_) {
state_ = kWaitForSecondRampUp;
remb_bitrate_bps_ *= 2;
rtp_rtcp_->SetREMBData(
remb_bitrate_bps_,
std::vector<uint32_t>(&sender_ssrc_, &sender_ssrc_ + 1));
rtp_rtcp_->SendRTCP(kRtcpRr);
}
break;
case kWaitForSecondRampUp:
if (stats.send_bandwidth_bps == remb_bitrate_bps_) {
observation_complete_.Set();
}
break;
}
}
return !event_.Wait(1000);
}
void PerformTest() override {
poller_thread_.Start();
EXPECT_TRUE(Wait())
<< "Timed out while waiting for bitrate to change according to REMB.";
poller_thread_.Stop();
}
private:
enum TestState { kWaitForFirstRampUp, kWaitForRemb, kWaitForSecondRampUp };
Call* sender_call_;
Clock* const clock_;
uint32_t sender_ssrc_;
int remb_bitrate_bps_;
std::unique_ptr<RtpRtcp> rtp_rtcp_;
test::PacketTransport* receive_transport_;
rtc::Event event_;
rtc::PlatformThread poller_thread_;
TestState state_;
RateLimiter retransmission_rate_limiter_;
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, VerifyNackStats) {
static const int kPacketNumberToDrop = 200;
class NackObserver : public test::EndToEndTest {
public:
NackObserver()
: EndToEndTest(kLongTimeoutMs),
sent_rtp_packets_(0),
dropped_rtp_packet_(0),
dropped_rtp_packet_requested_(false),
send_stream_(nullptr),
start_runtime_ms_(-1) {}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
if (++sent_rtp_packets_ == kPacketNumberToDrop) {
std::unique_ptr<RtpHeaderParser> parser(RtpHeaderParser::Create());
RTPHeader header;
EXPECT_TRUE(parser->Parse(packet, length, &header));
dropped_rtp_packet_ = header.sequenceNumber;
return DROP_PACKET;
}
VerifyStats();
return SEND_PACKET;
}
Action OnReceiveRtcp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
test::RtcpPacketParser rtcp_parser;
rtcp_parser.Parse(packet, length);
const std::vector<uint16_t>& nacks = rtcp_parser.nack()->packet_ids();
if (!nacks.empty() && std::find(
nacks.begin(), nacks.end(), dropped_rtp_packet_) != nacks.end()) {
dropped_rtp_packet_requested_ = true;
}
return SEND_PACKET;
}
void VerifyStats() EXCLUSIVE_LOCKS_REQUIRED(&crit_) {
if (!dropped_rtp_packet_requested_)
return;
int send_stream_nack_packets = 0;
int receive_stream_nack_packets = 0;
VideoSendStream::Stats stats = send_stream_->GetStats();
for (std::map<uint32_t, VideoSendStream::StreamStats>::const_iterator it =
stats.substreams.begin(); it != stats.substreams.end(); ++it) {
const VideoSendStream::StreamStats& stream_stats = it->second;
send_stream_nack_packets +=
stream_stats.rtcp_packet_type_counts.nack_packets;
}
for (size_t i = 0; i < receive_streams_.size(); ++i) {
VideoReceiveStream::Stats stats = receive_streams_[i]->GetStats();
receive_stream_nack_packets +=
stats.rtcp_packet_type_counts.nack_packets;
}
if (send_stream_nack_packets >= 1 && receive_stream_nack_packets >= 1) {
// NACK packet sent on receive stream and received on sent stream.
if (MinMetricRunTimePassed())
observation_complete_.Set();
}
}
bool MinMetricRunTimePassed() {
int64_t now = Clock::GetRealTimeClock()->TimeInMilliseconds();
if (start_runtime_ms_ == -1) {
start_runtime_ms_ = now;
return false;
}
int64_t elapsed_sec = (now - start_runtime_ms_) / 1000;
return elapsed_sec > metrics::kMinRunTimeInSeconds;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[0].rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
}
void OnVideoStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) override {
send_stream_ = send_stream;
receive_streams_ = receive_streams;
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out waiting for packet to be NACKed.";
}
rtc::CriticalSection crit_;
uint64_t sent_rtp_packets_;
uint16_t dropped_rtp_packet_ GUARDED_BY(&crit_);
bool dropped_rtp_packet_requested_ GUARDED_BY(&crit_);
std::vector<VideoReceiveStream*> receive_streams_;
VideoSendStream* send_stream_;
int64_t start_runtime_ms_;
} test;
metrics::Reset();
RunBaseTest(&test);
EXPECT_EQ(
1, metrics::NumSamples("WebRTC.Video.UniqueNackRequestsSentInPercent"));
EXPECT_EQ(1, metrics::NumSamples(
"WebRTC.Video.UniqueNackRequestsReceivedInPercent"));
EXPECT_GT(metrics::MinSample("WebRTC.Video.NackPacketsSentPerMinute"), 0);
}
void EndToEndTest::VerifyHistogramStats(bool use_rtx,
bool use_red,
bool screenshare) {
class StatsObserver : public test::EndToEndTest,
public rtc::VideoSinkInterface<VideoFrame> {
public:
StatsObserver(bool use_rtx, bool use_red, bool screenshare)
: EndToEndTest(kLongTimeoutMs),
use_rtx_(use_rtx),
use_red_(use_red),
screenshare_(screenshare),
// This test uses NACK, so to send FEC we can't use a fake encoder.
vp8_encoder_(
use_red ? VideoEncoder::Create(VideoEncoder::EncoderType::kVp8)
: nullptr),
sender_call_(nullptr),
receiver_call_(nullptr),
start_runtime_ms_(-1) {}
private:
void OnFrame(const VideoFrame& video_frame) override {}
Action OnSendRtp(const uint8_t* packet, size_t length) override {
if (MinMetricRunTimePassed())
observation_complete_.Set();
return SEND_PACKET;
}
bool MinMetricRunTimePassed() {
int64_t now = Clock::GetRealTimeClock()->TimeInMilliseconds();
if (start_runtime_ms_ == -1) {
start_runtime_ms_ = now;
return false;
}
int64_t elapsed_sec = (now - start_runtime_ms_) / 1000;
return elapsed_sec > metrics::kMinRunTimeInSeconds * 2;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
static const int kExtensionId = 8;
send_config->rtp.extensions.push_back(RtpExtension(
RtpExtension::kTransportSequenceNumberUri, kExtensionId));
(*receive_configs)[0].rtp.extensions.push_back(RtpExtension(
RtpExtension::kTransportSequenceNumberUri, kExtensionId));
// NACK
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[0].rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[0].renderer = this;
// FEC
if (use_red_) {
send_config->rtp.fec.ulpfec_payload_type = kUlpfecPayloadType;
send_config->rtp.fec.red_payload_type = kRedPayloadType;
send_config->encoder_settings.encoder = vp8_encoder_.get();
send_config->encoder_settings.payload_name = "VP8";
(*receive_configs)[0].decoders[0].payload_name = "VP8";
(*receive_configs)[0].rtp.fec.red_payload_type = kRedPayloadType;
(*receive_configs)[0].rtp.fec.ulpfec_payload_type = kUlpfecPayloadType;
}
// RTX
if (use_rtx_) {
send_config->rtp.rtx.ssrcs.push_back(kSendRtxSsrcs[0]);
send_config->rtp.rtx.payload_type = kSendRtxPayloadType;
(*receive_configs)[0].rtp.rtx[kFakeVideoSendPayloadType].ssrc =
kSendRtxSsrcs[0];
(*receive_configs)[0].rtp.rtx[kFakeVideoSendPayloadType].payload_type =
kSendRtxPayloadType;
}
encoder_config->content_type =
screenshare_ ? VideoEncoderConfig::ContentType::kScreen
: VideoEncoderConfig::ContentType::kRealtimeVideo;
}
void OnCallsCreated(Call* sender_call, Call* receiver_call) override {
sender_call_ = sender_call;
receiver_call_ = receiver_call;
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out waiting for packet to be NACKed.";
}
const bool use_rtx_;
const bool use_red_;
const bool screenshare_;
const std::unique_ptr<VideoEncoder> vp8_encoder_;
Call* sender_call_;
Call* receiver_call_;
int64_t start_runtime_ms_;
} test(use_rtx, use_red, screenshare);
metrics::Reset();
RunBaseTest(&test);
// Delete the call for Call stats to be reported.
sender_call_.reset();
receiver_call_.reset();
std::string video_prefix =
screenshare ? "WebRTC.Video.Screenshare." : "WebRTC.Video.";
// Verify that stats have been updated once.
EXPECT_EQ(2, metrics::NumSamples("WebRTC.Call.LifetimeInSeconds"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Call.VideoBitrateReceivedInKbps"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Call.RtcpBitrateReceivedInBps"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Call.BitrateReceivedInKbps"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Call.EstimatedSendBitrateInKbps"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Call.PacerBitrateInKbps"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.SendStreamLifetimeInSeconds"));
EXPECT_EQ(1,
metrics::NumSamples("WebRTC.Video.ReceiveStreamLifetimeInSeconds"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.NackPacketsSentPerMinute"));
EXPECT_EQ(1,
metrics::NumSamples(video_prefix + "NackPacketsReceivedPerMinute"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.FirPacketsSentPerMinute"));
EXPECT_EQ(1,
metrics::NumSamples(video_prefix + "FirPacketsReceivedPerMinute"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.PliPacketsSentPerMinute"));
EXPECT_EQ(1,
metrics::NumSamples(video_prefix + "PliPacketsReceivedPerMinute"));
EXPECT_EQ(1, metrics::NumSamples(video_prefix + "KeyFramesSentInPermille"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.KeyFramesReceivedInPermille"));
EXPECT_EQ(1, metrics::NumSamples(video_prefix + "SentPacketsLostInPercent"));
EXPECT_EQ(1,
metrics::NumSamples("WebRTC.Video.ReceivedPacketsLostInPercent"));
EXPECT_EQ(1, metrics::NumSamples(video_prefix + "InputWidthInPixels"));
EXPECT_EQ(1, metrics::NumSamples(video_prefix + "InputHeightInPixels"));
EXPECT_EQ(1, metrics::NumSamples(video_prefix + "SentWidthInPixels"));
EXPECT_EQ(1, metrics::NumSamples(video_prefix + "SentHeightInPixels"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.ReceivedWidthInPixels"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.ReceivedHeightInPixels"));
EXPECT_EQ(1, metrics::NumEvents(
video_prefix + "InputWidthInPixels",
static_cast<int>(video_encoder_config_.streams[0].width)));
EXPECT_EQ(1, metrics::NumEvents(
video_prefix + "InputHeightInPixels",
static_cast<int>(video_encoder_config_.streams[0].height)));
EXPECT_EQ(1, metrics::NumEvents(
video_prefix + "SentWidthInPixels",
static_cast<int>(video_encoder_config_.streams[0].width)));
EXPECT_EQ(1, metrics::NumEvents(
video_prefix + "SentHeightInPixels",
static_cast<int>(video_encoder_config_.streams[0].height)));
EXPECT_EQ(1, metrics::NumEvents(
"WebRTC.Video.ReceivedWidthInPixels",
static_cast<int>(video_encoder_config_.streams[0].width)));
EXPECT_EQ(1, metrics::NumEvents(
"WebRTC.Video.ReceivedHeightInPixels",
static_cast<int>(video_encoder_config_.streams[0].height)));
EXPECT_EQ(1, metrics::NumSamples(video_prefix + "InputFramesPerSecond"));
EXPECT_EQ(1, metrics::NumSamples(video_prefix + "SentFramesPerSecond"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.DecodedFramesPerSecond"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.RenderFramesPerSecond"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.JitterBufferDelayInMs"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.TargetDelayInMs"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.CurrentDelayInMs"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.OnewayDelayInMs"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.RenderSqrtPixelsPerSecond"));
EXPECT_EQ(1, metrics::NumSamples(video_prefix + "EncodeTimeInMs"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.DecodeTimeInMs"));
EXPECT_EQ(1, metrics::NumSamples(video_prefix + "BitrateSentInKbps"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.BitrateReceivedInKbps"));
EXPECT_EQ(1, metrics::NumSamples(video_prefix + "MediaBitrateSentInKbps"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.MediaBitrateReceivedInKbps"));
EXPECT_EQ(1, metrics::NumSamples(video_prefix + "PaddingBitrateSentInKbps"));
EXPECT_EQ(1,
metrics::NumSamples("WebRTC.Video.PaddingBitrateReceivedInKbps"));
EXPECT_EQ(
1, metrics::NumSamples(video_prefix + "RetransmittedBitrateSentInKbps"));
EXPECT_EQ(1, metrics::NumSamples(
"WebRTC.Video.RetransmittedBitrateReceivedInKbps"));
EXPECT_EQ(1, metrics::NumSamples("WebRTC.Video.SendDelayInMs"));
EXPECT_EQ(1, metrics::NumSamples(video_prefix + "SendSideDelayInMs"));
EXPECT_EQ(1, metrics::NumSamples(video_prefix + "SendSideDelayMaxInMs"));
int num_rtx_samples = use_rtx ? 1 : 0;
EXPECT_EQ(num_rtx_samples,
metrics::NumSamples("WebRTC.Video.RtxBitrateSentInKbps"));
EXPECT_EQ(num_rtx_samples,
metrics::NumSamples("WebRTC.Video.RtxBitrateReceivedInKbps"));
int num_red_samples = use_red ? 1 : 0;
EXPECT_EQ(num_red_samples,
metrics::NumSamples("WebRTC.Video.FecBitrateSentInKbps"));
EXPECT_EQ(num_red_samples,
metrics::NumSamples("WebRTC.Video.FecBitrateReceivedInKbps"));
EXPECT_EQ(num_red_samples,
metrics::NumSamples("WebRTC.Video.ReceivedFecPacketsInPercent"));
}
TEST_F(EndToEndTest, VerifyHistogramStatsWithRtx) {
const bool kEnabledRtx = true;
const bool kEnabledRed = false;
const bool kScreenshare = false;
VerifyHistogramStats(kEnabledRtx, kEnabledRed, kScreenshare);
}
TEST_F(EndToEndTest, VerifyHistogramStatsWithRed) {
const bool kEnabledRtx = false;
const bool kEnabledRed = true;
const bool kScreenshare = false;
VerifyHistogramStats(kEnabledRtx, kEnabledRed, kScreenshare);
}
TEST_F(EndToEndTest, VerifyHistogramStatsWithScreenshare) {
const bool kEnabledRtx = false;
const bool kEnabledRed = false;
const bool kScreenshare = true;
VerifyHistogramStats(kEnabledRtx, kEnabledRed, kScreenshare);
}
void EndToEndTest::TestXrReceiverReferenceTimeReport(bool enable_rrtr) {
static const int kNumRtcpReportPacketsToObserve = 5;
class RtcpXrObserver : public test::EndToEndTest {
public:
explicit RtcpXrObserver(bool enable_rrtr)
: EndToEndTest(kDefaultTimeoutMs),
enable_rrtr_(enable_rrtr),
sent_rtcp_sr_(0),
sent_rtcp_rr_(0),
sent_rtcp_rrtr_(0),
sent_rtcp_dlrr_(0) {}
private:
// Receive stream should send RR packets (and RRTR packets if enabled).
Action OnReceiveRtcp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
while (packet_type != RTCPUtility::RTCPPacketTypes::kInvalid) {
if (packet_type == RTCPUtility::RTCPPacketTypes::kRr) {
++sent_rtcp_rr_;
} else if (packet_type ==
RTCPUtility::RTCPPacketTypes::kXrReceiverReferenceTime) {
++sent_rtcp_rrtr_;
}
EXPECT_NE(packet_type, RTCPUtility::RTCPPacketTypes::kSr);
EXPECT_NE(packet_type,
RTCPUtility::RTCPPacketTypes::kXrDlrrReportBlockItem);
packet_type = parser.Iterate();
}
return SEND_PACKET;
}
// Send stream should send SR packets (and DLRR packets if enabled).
Action OnSendRtcp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
while (packet_type != RTCPUtility::RTCPPacketTypes::kInvalid) {
if (packet_type == RTCPUtility::RTCPPacketTypes::kSr) {
++sent_rtcp_sr_;
} else if (packet_type ==
RTCPUtility::RTCPPacketTypes::kXrDlrrReportBlockItem) {
++sent_rtcp_dlrr_;
}
EXPECT_NE(packet_type,
RTCPUtility::RTCPPacketTypes::kXrReceiverReferenceTime);
packet_type = parser.Iterate();
}
if (sent_rtcp_sr_ > kNumRtcpReportPacketsToObserve &&
sent_rtcp_rr_ > kNumRtcpReportPacketsToObserve) {
if (enable_rrtr_) {
EXPECT_GT(sent_rtcp_rrtr_, 0);
EXPECT_GT(sent_rtcp_dlrr_, 0);
} else {
EXPECT_EQ(0, sent_rtcp_rrtr_);
EXPECT_EQ(0, sent_rtcp_dlrr_);
}
observation_complete_.Set();
}
return SEND_PACKET;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
(*receive_configs)[0].rtp.rtcp_mode = RtcpMode::kReducedSize;
(*receive_configs)[0].rtp.rtcp_xr.receiver_reference_time_report =
enable_rrtr_;
}
void PerformTest() override {
EXPECT_TRUE(Wait())
<< "Timed out while waiting for RTCP SR/RR packets to be sent.";
}
rtc::CriticalSection crit_;
bool enable_rrtr_;
int sent_rtcp_sr_;
int sent_rtcp_rr_ GUARDED_BY(&crit_);
int sent_rtcp_rrtr_ GUARDED_BY(&crit_);
int sent_rtcp_dlrr_;
} test(enable_rrtr);
RunBaseTest(&test);
}
void EndToEndTest::TestSendsSetSsrcs(size_t num_ssrcs,
bool send_single_ssrc_first) {
class SendsSetSsrcs : public test::EndToEndTest {
public:
SendsSetSsrcs(const uint32_t* ssrcs,
size_t num_ssrcs,
bool send_single_ssrc_first)
: EndToEndTest(kDefaultTimeoutMs),
num_ssrcs_(num_ssrcs),
send_single_ssrc_first_(send_single_ssrc_first),
ssrcs_to_observe_(num_ssrcs),
expect_single_ssrc_(send_single_ssrc_first),
send_stream_(nullptr) {
for (size_t i = 0; i < num_ssrcs; ++i)
valid_ssrcs_[ssrcs[i]] = true;
}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
EXPECT_TRUE(valid_ssrcs_[header.ssrc])
<< "Received unknown SSRC: " << header.ssrc;
if (!valid_ssrcs_[header.ssrc])
observation_complete_.Set();
if (!is_observed_[header.ssrc]) {
is_observed_[header.ssrc] = true;
--ssrcs_to_observe_;
if (expect_single_ssrc_) {
expect_single_ssrc_ = false;
observation_complete_.Set();
}
}
if (ssrcs_to_observe_ == 0)
observation_complete_.Set();
return SEND_PACKET;
}
size_t GetNumVideoStreams() const override { return num_ssrcs_; }
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
if (num_ssrcs_ > 1) {
// Set low simulcast bitrates to not have to wait for bandwidth ramp-up.
for (size_t i = 0; i < encoder_config->streams.size(); ++i) {
encoder_config->streams[i].min_bitrate_bps = 10000;
encoder_config->streams[i].target_bitrate_bps = 15000;
encoder_config->streams[i].max_bitrate_bps = 20000;
}
}
video_encoder_config_all_streams_ = encoder_config->Copy();
if (send_single_ssrc_first_)
encoder_config->streams.resize(1);
}
void OnVideoStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) override {
send_stream_ = send_stream;
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out while waiting for "
<< (send_single_ssrc_first_ ? "first SSRC."
: "SSRCs.");
if (send_single_ssrc_first_) {
// Set full simulcast and continue with the rest of the SSRCs.
send_stream_->ReconfigureVideoEncoder(
std::move(video_encoder_config_all_streams_));
EXPECT_TRUE(Wait()) << "Timed out while waiting on additional SSRCs.";
}
}
private:
std::map<uint32_t, bool> valid_ssrcs_;
std::map<uint32_t, bool> is_observed_;
const size_t num_ssrcs_;
const bool send_single_ssrc_first_;
size_t ssrcs_to_observe_;
bool expect_single_ssrc_;
VideoSendStream* send_stream_;
VideoEncoderConfig video_encoder_config_all_streams_;
} test(kVideoSendSsrcs, num_ssrcs, send_single_ssrc_first);
RunBaseTest(&test);
}
TEST_F(EndToEndTest, ReportsSetEncoderRates) {
class EncoderRateStatsTest : public test::EndToEndTest,
public test::FakeEncoder {
public:
EncoderRateStatsTest()
: EndToEndTest(kDefaultTimeoutMs),
FakeEncoder(Clock::GetRealTimeClock()),
send_stream_(nullptr),
bitrate_kbps_(0) {}
void OnVideoStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) override {
send_stream_ = send_stream;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->encoder_settings.encoder = this;
RTC_DCHECK_EQ(1u, encoder_config->streams.size());
}
int32_t SetRates(uint32_t new_target_bitrate, uint32_t framerate) override {
// Make sure not to trigger on any default zero bitrates.
if (new_target_bitrate == 0)
return 0;
rtc::CritScope lock(&crit_);
bitrate_kbps_ = new_target_bitrate;
observation_complete_.Set();
return 0;
}
void PerformTest() override {
ASSERT_TRUE(Wait())
<< "Timed out while waiting for encoder SetRates() call.";
WaitForEncoderTargetBitrateMatchStats();
send_stream_->Stop();
WaitForStatsReportZeroTargetBitrate();
send_stream_->Start();
WaitForEncoderTargetBitrateMatchStats();
}
void WaitForEncoderTargetBitrateMatchStats() {
for (int i = 0; i < kDefaultTimeoutMs; ++i) {
VideoSendStream::Stats stats = send_stream_->GetStats();
{
rtc::CritScope lock(&crit_);
if ((stats.target_media_bitrate_bps + 500) / 1000 ==
static_cast<int>(bitrate_kbps_)) {
return;
}
}
SleepMs(1);
}
FAIL()
<< "Timed out waiting for stats reporting the currently set bitrate.";
}
void WaitForStatsReportZeroTargetBitrate() {
for (int i = 0; i < kDefaultTimeoutMs; ++i) {
if (send_stream_->GetStats().target_media_bitrate_bps == 0) {
return;
}
SleepMs(1);
}
FAIL() << "Timed out waiting for stats reporting zero bitrate.";
}
private:
rtc::CriticalSection crit_;
VideoSendStream* send_stream_;
uint32_t bitrate_kbps_ GUARDED_BY(crit_);
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, GetStats) {
static const int kStartBitrateBps = 3000000;
static const int kExpectedRenderDelayMs = 20;
class ReceiveStreamRenderer : public rtc::VideoSinkInterface<VideoFrame> {
public:
ReceiveStreamRenderer() {}
private:
void OnFrame(const VideoFrame& video_frame) override {}
};
class StatsObserver : public test::EndToEndTest,
public rtc::VideoSinkInterface<VideoFrame> {
public:
StatsObserver()
: EndToEndTest(kLongTimeoutMs),
encoder_(Clock::GetRealTimeClock(), 10),
send_stream_(nullptr),
expected_send_ssrcs_(),
check_stats_event_(false, false) {}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
// Drop every 25th packet => 4% loss.
static const int kPacketLossFrac = 25;
RTPHeader header;
RtpUtility::RtpHeaderParser parser(packet, length);
if (parser.Parse(&header) &&
expected_send_ssrcs_.find(header.ssrc) !=
expected_send_ssrcs_.end() &&
header.sequenceNumber % kPacketLossFrac == 0) {
return DROP_PACKET;
}
check_stats_event_.Set();
return SEND_PACKET;
}
Action OnSendRtcp(const uint8_t* packet, size_t length) override {
check_stats_event_.Set();
return SEND_PACKET;
}
Action OnReceiveRtp(const uint8_t* packet, size_t length) override {
check_stats_event_.Set();
return SEND_PACKET;
}
Action OnReceiveRtcp(const uint8_t* packet, size_t length) override {
check_stats_event_.Set();
return SEND_PACKET;
}
void OnFrame(const VideoFrame& video_frame) override {
// Ensure that we have at least 5ms send side delay.
SleepMs(5);
}
bool CheckReceiveStats() {
for (size_t i = 0; i < receive_streams_.size(); ++i) {
VideoReceiveStream::Stats stats = receive_streams_[i]->GetStats();
EXPECT_EQ(expected_receive_ssrcs_[i], stats.ssrc);
// Make sure all fields have been populated.
// TODO(pbos): Use CompoundKey if/when we ever know that all stats are
// always filled for all receivers.
receive_stats_filled_["IncomingRate"] |=
stats.network_frame_rate != 0 || stats.total_bitrate_bps != 0;
send_stats_filled_["DecoderImplementationName"] |=
stats.decoder_implementation_name ==
test::FakeDecoder::kImplementationName;
receive_stats_filled_["RenderDelayAsHighAsExpected"] |=
stats.render_delay_ms >= kExpectedRenderDelayMs;
receive_stats_filled_["FrameCallback"] |= stats.decode_frame_rate != 0;
receive_stats_filled_["FrameRendered"] |= stats.render_frame_rate != 0;
receive_stats_filled_["StatisticsUpdated"] |=
stats.rtcp_stats.cumulative_lost != 0 ||
stats.rtcp_stats.extended_max_sequence_number != 0 ||
stats.rtcp_stats.fraction_lost != 0 || stats.rtcp_stats.jitter != 0;
receive_stats_filled_["DataCountersUpdated"] |=
stats.rtp_stats.transmitted.payload_bytes != 0 ||
stats.rtp_stats.fec.packets != 0 ||
stats.rtp_stats.transmitted.header_bytes != 0 ||
stats.rtp_stats.transmitted.packets != 0 ||
stats.rtp_stats.transmitted.padding_bytes != 0 ||
stats.rtp_stats.retransmitted.packets != 0;
receive_stats_filled_["CodecStats"] |=
stats.target_delay_ms != 0 || stats.discarded_packets != 0;
receive_stats_filled_["FrameCounts"] |=
stats.frame_counts.key_frames != 0 ||
stats.frame_counts.delta_frames != 0;
receive_stats_filled_["CName"] |= !stats.c_name.empty();
receive_stats_filled_["RtcpPacketTypeCount"] |=
stats.rtcp_packet_type_counts.fir_packets != 0 ||
stats.rtcp_packet_type_counts.nack_packets != 0 ||
stats.rtcp_packet_type_counts.pli_packets != 0 ||
stats.rtcp_packet_type_counts.nack_requests != 0 ||
stats.rtcp_packet_type_counts.unique_nack_requests != 0;
assert(stats.current_payload_type == -1 ||
stats.current_payload_type == kFakeVideoSendPayloadType);
receive_stats_filled_["IncomingPayloadType"] |=
stats.current_payload_type == kFakeVideoSendPayloadType;
}
return AllStatsFilled(receive_stats_filled_);
}
bool CheckSendStats() {
RTC_DCHECK(send_stream_);
VideoSendStream::Stats stats = send_stream_->GetStats();
send_stats_filled_["NumStreams"] |=
stats.substreams.size() == expected_send_ssrcs_.size();
send_stats_filled_["CpuOveruseMetrics"] |=
stats.avg_encode_time_ms != 0 && stats.encode_usage_percent != 0;
send_stats_filled_["EncoderImplementationName"] |=
stats.encoder_implementation_name ==
test::FakeEncoder::kImplementationName;
for (std::map<uint32_t, VideoSendStream::StreamStats>::const_iterator it =
stats.substreams.begin();
it != stats.substreams.end(); ++it) {
if (expected_send_ssrcs_.find(it->first) == expected_send_ssrcs_.end())
continue; // Probably RTX.
send_stats_filled_[CompoundKey("CapturedFrameRate", it->first)] |=
stats.input_frame_rate != 0;
const VideoSendStream::StreamStats& stream_stats = it->second;
send_stats_filled_[CompoundKey("StatisticsUpdated", it->first)] |=
stream_stats.rtcp_stats.cumulative_lost != 0 ||
stream_stats.rtcp_stats.extended_max_sequence_number != 0 ||
stream_stats.rtcp_stats.fraction_lost != 0;
send_stats_filled_[CompoundKey("DataCountersUpdated", it->first)] |=
stream_stats.rtp_stats.fec.packets != 0 ||
stream_stats.rtp_stats.transmitted.padding_bytes != 0 ||
stream_stats.rtp_stats.retransmitted.packets != 0 ||
stream_stats.rtp_stats.transmitted.packets != 0;
send_stats_filled_[CompoundKey("BitrateStatisticsObserver.Total",
it->first)] |=
stream_stats.total_bitrate_bps != 0;
send_stats_filled_[CompoundKey("BitrateStatisticsObserver.Retransmit",
it->first)] |=
stream_stats.retransmit_bitrate_bps != 0;
send_stats_filled_[CompoundKey("FrameCountObserver", it->first)] |=
stream_stats.frame_counts.delta_frames != 0 ||
stream_stats.frame_counts.key_frames != 0;
send_stats_filled_[CompoundKey("OutgoingRate", it->first)] |=
stats.encode_frame_rate != 0;
send_stats_filled_[CompoundKey("Delay", it->first)] |=
stream_stats.avg_delay_ms != 0 || stream_stats.max_delay_ms != 0;
// TODO(pbos): Use CompoundKey when the test makes sure that all SSRCs
// report dropped packets.
send_stats_filled_["RtcpPacketTypeCount"] |=
stream_stats.rtcp_packet_type_counts.fir_packets != 0 ||
stream_stats.rtcp_packet_type_counts.nack_packets != 0 ||
stream_stats.rtcp_packet_type_counts.pli_packets != 0 ||
stream_stats.rtcp_packet_type_counts.nack_requests != 0 ||
stream_stats.rtcp_packet_type_counts.unique_nack_requests != 0;
}
return AllStatsFilled(send_stats_filled_);
}
std::string CompoundKey(const char* name, uint32_t ssrc) {
std::ostringstream oss;
oss << name << "_" << ssrc;
return oss.str();
}
bool AllStatsFilled(const std::map<std::string, bool>& stats_map) {
for (const auto& stat : stats_map) {
if (!stat.second)
return false;
}
return true;
}
test::PacketTransport* CreateSendTransport(Call* sender_call) override {
FakeNetworkPipe::Config network_config;
network_config.loss_percent = 5;
return new test::PacketTransport(
sender_call, this, test::PacketTransport::kSender, network_config);
}
Call::Config GetSenderCallConfig() override {
Call::Config config = EndToEndTest::GetSenderCallConfig();
config.bitrate_config.start_bitrate_bps = kStartBitrateBps;
return config;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
// Set low rates to avoid waiting for rampup.
for (size_t i = 0; i < encoder_config->streams.size(); ++i) {
encoder_config->streams[i].min_bitrate_bps = 10000;
encoder_config->streams[i].target_bitrate_bps = 15000;
encoder_config->streams[i].max_bitrate_bps = 20000;
}
send_config->pre_encode_callback = this; // Used to inject delay.
expected_cname_ = send_config->rtp.c_name = "SomeCName";
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
send_config->rtp.rtx.payload_type = kSendRtxPayloadType;
const std::vector<uint32_t>& ssrcs = send_config->rtp.ssrcs;
for (size_t i = 0; i < ssrcs.size(); ++i) {
expected_send_ssrcs_.insert(ssrcs[i]);
expected_receive_ssrcs_.push_back(
(*receive_configs)[i].rtp.remote_ssrc);
(*receive_configs)[i].render_delay_ms = kExpectedRenderDelayMs;
(*receive_configs)[i].renderer = &receive_stream_renderer_;
(*receive_configs)[i].rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
(*receive_configs)[i].rtp.rtx[kFakeVideoSendPayloadType].ssrc =
kSendRtxSsrcs[i];
(*receive_configs)[i].rtp.rtx[kFakeVideoSendPayloadType].payload_type =
kSendRtxPayloadType;
}
for (size_t i = 0; i < kNumSsrcs; ++i)
send_config->rtp.rtx.ssrcs.push_back(kSendRtxSsrcs[i]);
// Use a delayed encoder to make sure we see CpuOveruseMetrics stats that
// are non-zero.
send_config->encoder_settings.encoder = &encoder_;
}
size_t GetNumVideoStreams() const override { return kNumSsrcs; }
void OnVideoStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) override {
send_stream_ = send_stream;
receive_streams_ = receive_streams;
}
void PerformTest() override {
Clock* clock = Clock::GetRealTimeClock();
int64_t now = clock->TimeInMilliseconds();
int64_t stop_time = now + test::CallTest::kLongTimeoutMs;
bool receive_ok = false;
bool send_ok = false;
while (now < stop_time) {
if (!receive_ok)
receive_ok = CheckReceiveStats();
if (!send_ok)
send_ok = CheckSendStats();
if (receive_ok && send_ok)
return;
int64_t time_until_timout_ = stop_time - now;
if (time_until_timout_ > 0)
check_stats_event_.Wait(time_until_timout_);
now = clock->TimeInMilliseconds();
}
ADD_FAILURE() << "Timed out waiting for filled stats.";
for (std::map<std::string, bool>::const_iterator it =
receive_stats_filled_.begin();
it != receive_stats_filled_.end();
++it) {
if (!it->second) {
ADD_FAILURE() << "Missing receive stats: " << it->first;
}
}
for (std::map<std::string, bool>::const_iterator it =
send_stats_filled_.begin();
it != send_stats_filled_.end();
++it) {
if (!it->second) {
ADD_FAILURE() << "Missing send stats: " << it->first;
}
}
}
test::DelayedEncoder encoder_;
std::vector<VideoReceiveStream*> receive_streams_;
std::map<std::string, bool> receive_stats_filled_;
VideoSendStream* send_stream_;
std::map<std::string, bool> send_stats_filled_;
std::vector<uint32_t> expected_receive_ssrcs_;
std::set<uint32_t> expected_send_ssrcs_;
std::string expected_cname_;
rtc::Event check_stats_event_;
ReceiveStreamRenderer receive_stream_renderer_;
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, ReceiverReferenceTimeReportEnabled) {
TestXrReceiverReferenceTimeReport(true);
}
TEST_F(EndToEndTest, ReceiverReferenceTimeReportDisabled) {
TestXrReceiverReferenceTimeReport(false);
}
TEST_F(EndToEndTest, TestReceivedRtpPacketStats) {
static const size_t kNumRtpPacketsToSend = 5;
class ReceivedRtpStatsObserver : public test::EndToEndTest {
public:
ReceivedRtpStatsObserver()
: EndToEndTest(kDefaultTimeoutMs),
receive_stream_(nullptr),
sent_rtp_(0) {}
private:
void OnVideoStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) override {
receive_stream_ = receive_streams[0];
}
Action OnSendRtp(const uint8_t* packet, size_t length) override {
if (sent_rtp_ >= kNumRtpPacketsToSend) {
VideoReceiveStream::Stats stats = receive_stream_->GetStats();
if (kNumRtpPacketsToSend == stats.rtp_stats.transmitted.packets) {
observation_complete_.Set();
}
return DROP_PACKET;
}
++sent_rtp_;
return SEND_PACKET;
}
void PerformTest() override {
EXPECT_TRUE(Wait())
<< "Timed out while verifying number of received RTP packets.";
}
VideoReceiveStream* receive_stream_;
uint32_t sent_rtp_;
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, SendsSetSsrc) { TestSendsSetSsrcs(1, false); }
TEST_F(EndToEndTest, SendsSetSimulcastSsrcs) {
TestSendsSetSsrcs(kNumSsrcs, false);
}
TEST_F(EndToEndTest, CanSwitchToUseAllSsrcs) {
TestSendsSetSsrcs(kNumSsrcs, true);
}
TEST_F(EndToEndTest, DISABLED_RedundantPayloadsTransmittedOnAllSsrcs) {
class ObserveRedundantPayloads: public test::EndToEndTest {
public:
ObserveRedundantPayloads()
: EndToEndTest(kDefaultTimeoutMs), ssrcs_to_observe_(kNumSsrcs) {
for (size_t i = 0; i < kNumSsrcs; ++i) {
registered_rtx_ssrc_[kSendRtxSsrcs[i]] = true;
}
}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
if (!registered_rtx_ssrc_[header.ssrc])
return SEND_PACKET;
EXPECT_LE(header.headerLength + header.paddingLength, length);
const bool packet_is_redundant_payload =
header.headerLength + header.paddingLength < length;
if (!packet_is_redundant_payload)
return SEND_PACKET;
if (!observed_redundant_retransmission_[header.ssrc]) {
observed_redundant_retransmission_[header.ssrc] = true;
if (--ssrcs_to_observe_ == 0)
observation_complete_.Set();
}
return SEND_PACKET;
}
size_t GetNumVideoStreams() const override { return kNumSsrcs; }
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
// Set low simulcast bitrates to not have to wait for bandwidth ramp-up.
for (size_t i = 0; i < encoder_config->streams.size(); ++i) {
encoder_config->streams[i].min_bitrate_bps = 10000;
encoder_config->streams[i].target_bitrate_bps = 15000;
encoder_config->streams[i].max_bitrate_bps = 20000;
}
send_config->rtp.rtx.payload_type = kSendRtxPayloadType;
for (size_t i = 0; i < kNumSsrcs; ++i)
send_config->rtp.rtx.ssrcs.push_back(kSendRtxSsrcs[i]);
// Significantly higher than max bitrates for all video streams -> forcing
// padding to trigger redundant padding on all RTX SSRCs.
encoder_config->min_transmit_bitrate_bps = 100000;
}
void PerformTest() override {
EXPECT_TRUE(Wait())
<< "Timed out while waiting for redundant payloads on all SSRCs.";
}
private:
size_t ssrcs_to_observe_;
std::map<uint32_t, bool> observed_redundant_retransmission_;
std::map<uint32_t, bool> registered_rtx_ssrc_;
} test;
RunBaseTest(&test);
}
void EndToEndTest::TestRtpStatePreservation(bool use_rtx,
bool provoke_rtcpsr_before_rtp) {
class RtpSequenceObserver : public test::RtpRtcpObserver {
public:
explicit RtpSequenceObserver(bool use_rtx)
: test::RtpRtcpObserver(kDefaultTimeoutMs),
ssrcs_to_observe_(kNumSsrcs) {
for (size_t i = 0; i < kNumSsrcs; ++i) {
ssrc_is_rtx_[kVideoSendSsrcs[i]] = false;
if (use_rtx)
ssrc_is_rtx_[kSendRtxSsrcs[i]] = true;
}
}
void ResetExpectedSsrcs(size_t num_expected_ssrcs) {
rtc::CritScope lock(&crit_);
ssrc_observed_.clear();
ssrcs_to_observe_ = num_expected_ssrcs;
}
private:
void ValidateTimestampGap(uint32_t ssrc,
uint32_t timestamp,
bool only_padding)
EXCLUSIVE_LOCKS_REQUIRED(crit_) {
static const int32_t kMaxTimestampGap = kDefaultTimeoutMs * 90;
auto timestamp_it = last_observed_timestamp_.find(ssrc);
if (timestamp_it == last_observed_timestamp_.end()) {
EXPECT_FALSE(only_padding);
last_observed_timestamp_[ssrc] = timestamp;
} else {
// Verify timestamps are reasonably close.
uint32_t latest_observed = timestamp_it->second;
// Wraparound handling is unnecessary here as long as an int variable
// is used to store the result.
int32_t timestamp_gap = timestamp - latest_observed;
EXPECT_LE(std::abs(timestamp_gap), kMaxTimestampGap)
<< "Gap in timestamps (" << latest_observed << " -> " << timestamp
<< ") too large for SSRC: " << ssrc << ".";
timestamp_it->second = timestamp;
}
}
Action OnSendRtp(const uint8_t* packet, size_t length) override {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
const uint32_t ssrc = header.ssrc;
const int64_t sequence_number =
seq_numbers_unwrapper_.Unwrap(header.sequenceNumber);
const uint32_t timestamp = header.timestamp;
const bool only_padding =
header.headerLength + header.paddingLength == length;
EXPECT_TRUE(ssrc_is_rtx_.find(ssrc) != ssrc_is_rtx_.end())
<< "Received SSRC that wasn't configured: " << ssrc;
static const int64_t kMaxSequenceNumberGap = 100;
std::list<int64_t>* seq_numbers = &last_observed_seq_numbers_[ssrc];
if (seq_numbers->empty()) {
seq_numbers->push_back(sequence_number);
} else {
// We shouldn't get replays of previous sequence numbers.
for (int64_t observed : *seq_numbers) {
EXPECT_NE(observed, sequence_number)
<< "Received sequence number " << sequence_number
<< " for SSRC " << ssrc << " 2nd time.";
}
// Verify sequence numbers are reasonably close.
int64_t latest_observed = seq_numbers->back();
int64_t sequence_number_gap = sequence_number - latest_observed;
EXPECT_LE(std::abs(sequence_number_gap), kMaxSequenceNumberGap)
<< "Gap in sequence numbers (" << latest_observed << " -> "
<< sequence_number << ") too large for SSRC: " << ssrc << ".";
seq_numbers->push_back(sequence_number);
if (seq_numbers->size() >= kMaxSequenceNumberGap) {
seq_numbers->pop_front();
}
}
if (!ssrc_is_rtx_[ssrc]) {
rtc::CritScope lock(&crit_);
ValidateTimestampGap(ssrc, timestamp, only_padding);
// Wait for media packets on all ssrcs.
if (!ssrc_observed_[ssrc] && !only_padding) {
ssrc_observed_[ssrc] = true;
if (--ssrcs_to_observe_ == 0)
observation_complete_.Set();
}
}
return SEND_PACKET;
}
Action OnSendRtcp(const uint8_t* packet, size_t length) override {
test::RtcpPacketParser rtcp_parser;
rtcp_parser.Parse(packet, length);
if (rtcp_parser.sender_report()->num_packets() > 0) {
uint32_t ssrc = rtcp_parser.sender_report()->sender_ssrc();
uint32_t rtcp_timestamp = rtcp_parser.sender_report()->rtp_timestamp();
rtc::CritScope lock(&crit_);
ValidateTimestampGap(ssrc, rtcp_timestamp, false);
}
return SEND_PACKET;
}
SequenceNumberUnwrapper seq_numbers_unwrapper_;
std::map<uint32_t, std::list<int64_t>> last_observed_seq_numbers_;
std::map<uint32_t, uint32_t> last_observed_timestamp_;
std::map<uint32_t, bool> ssrc_is_rtx_;
rtc::CriticalSection crit_;
size_t ssrcs_to_observe_ GUARDED_BY(crit_);
std::map<uint32_t, bool> ssrc_observed_ GUARDED_BY(crit_);
} observer(use_rtx);
CreateCalls(Call::Config(), Call::Config());
test::PacketTransport send_transport(sender_call_.get(), &observer,
test::PacketTransport::kSender,
FakeNetworkPipe::Config());
test::PacketTransport receive_transport(nullptr, &observer,
test::PacketTransport::kReceiver,
FakeNetworkPipe::Config());
send_transport.SetReceiver(receiver_call_->Receiver());
receive_transport.SetReceiver(sender_call_->Receiver());
CreateSendConfig(kNumSsrcs, 0, &send_transport);
if (use_rtx) {
for (size_t i = 0; i < kNumSsrcs; ++i) {
video_send_config_.rtp.rtx.ssrcs.push_back(kSendRtxSsrcs[i]);
}
video_send_config_.rtp.rtx.payload_type = kSendRtxPayloadType;
}
// Lower bitrates so that all streams send initially.
for (size_t i = 0; i < video_encoder_config_.streams.size(); ++i) {
video_encoder_config_.streams[i].min_bitrate_bps = 10000;
video_encoder_config_.streams[i].target_bitrate_bps = 15000;
video_encoder_config_.streams[i].max_bitrate_bps = 20000;
}
// Use the same total bitrates when sending a single stream to avoid lowering
// the bitrate estimate and requiring a subsequent rampup.
VideoEncoderConfig one_stream = video_encoder_config_.Copy();
one_stream.streams.resize(1);
for (size_t i = 1; i < video_encoder_config_.streams.size(); ++i) {
one_stream.streams.front().min_bitrate_bps +=
video_encoder_config_.streams[i].min_bitrate_bps;
one_stream.streams.front().target_bitrate_bps +=
video_encoder_config_.streams[i].target_bitrate_bps;
one_stream.streams.front().max_bitrate_bps +=
video_encoder_config_.streams[i].max_bitrate_bps;
}
CreateMatchingReceiveConfigs(&receive_transport);
CreateVideoStreams();
CreateFrameGeneratorCapturer();
Start();
EXPECT_TRUE(observer.Wait())
<< "Timed out waiting for all SSRCs to send packets.";
// Test stream resetting more than once to make sure that the state doesn't
// get set once (this could be due to using std::map::insert for instance).
for (size_t i = 0; i < 3; ++i) {
frame_generator_capturer_->Stop();
sender_call_->DestroyVideoSendStream(video_send_stream_);
// Re-create VideoSendStream with only one stream.
video_send_stream_ = sender_call_->CreateVideoSendStream(
video_send_config_.Copy(), one_stream.Copy());
video_send_stream_->Start();
if (provoke_rtcpsr_before_rtp) {
// Rapid Resync Request forces sending RTCP Sender Report back.
// Using this request speeds up this test because then there is no need
// to wait for a second for periodic Sender Report.
rtcp::RapidResyncRequest force_send_sr_back_request;
rtc::Buffer packet = force_send_sr_back_request.Build();
static_cast<webrtc::test::DirectTransport&>(receive_transport)
.SendRtcp(packet.data(), packet.size());
}
CreateFrameGeneratorCapturer();
frame_generator_capturer_->Start();
observer.ResetExpectedSsrcs(1);
EXPECT_TRUE(observer.Wait()) << "Timed out waiting for single RTP packet.";
// Reconfigure back to use all streams.
video_send_stream_->ReconfigureVideoEncoder(video_encoder_config_.Copy());
observer.ResetExpectedSsrcs(kNumSsrcs);
EXPECT_TRUE(observer.Wait())
<< "Timed out waiting for all SSRCs to send packets.";
// Reconfigure down to one stream.
video_send_stream_->ReconfigureVideoEncoder(one_stream.Copy());
observer.ResetExpectedSsrcs(1);
EXPECT_TRUE(observer.Wait()) << "Timed out waiting for single RTP packet.";
// Reconfigure back to use all streams.
video_send_stream_->ReconfigureVideoEncoder(video_encoder_config_.Copy());
observer.ResetExpectedSsrcs(kNumSsrcs);
EXPECT_TRUE(observer.Wait())
<< "Timed out waiting for all SSRCs to send packets.";
}
send_transport.StopSending();
receive_transport.StopSending();
Stop();
DestroyStreams();
}
TEST_F(EndToEndTest, RestartingSendStreamPreservesRtpState) {
TestRtpStatePreservation(false, false);
}
TEST_F(EndToEndTest, RestartingSendStreamPreservesRtpStatesWithRtx) {
TestRtpStatePreservation(true, false);
}
TEST_F(EndToEndTest, RestartingSendStreamKeepsRtpAndRtcpTimestampsSynced) {
TestRtpStatePreservation(true, true);
}
TEST_F(EndToEndTest, RespectsNetworkState) {
// TODO(pbos): Remove accepted downtime packets etc. when signaling network
// down blocks until no more packets will be sent.
// Pacer will send from its packet list and then send required padding before
// checking paused_ again. This should be enough for one round of pacing,
// otherwise increase.
static const int kNumAcceptedDowntimeRtp = 5;
// A single RTCP may be in the pipeline.
static const int kNumAcceptedDowntimeRtcp = 1;
class NetworkStateTest : public test::EndToEndTest, public test::FakeEncoder {
public:
NetworkStateTest()
: EndToEndTest(kDefaultTimeoutMs),
FakeEncoder(Clock::GetRealTimeClock()),
encoded_frames_(false, false),
packet_event_(false, false),
sender_call_(nullptr),
receiver_call_(nullptr),
sender_state_(kNetworkUp),
sender_rtp_(0),
sender_rtcp_(0),
receiver_rtcp_(0),
down_frames_(0) {}
Action OnSendRtp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&test_crit_);
++sender_rtp_;
packet_event_.Set();
return SEND_PACKET;
}
Action OnSendRtcp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&test_crit_);
++sender_rtcp_;
packet_event_.Set();
return SEND_PACKET;
}
Action OnReceiveRtp(const uint8_t* packet, size_t length) override {
ADD_FAILURE() << "Unexpected receiver RTP, should not be sending.";
return SEND_PACKET;
}
Action OnReceiveRtcp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&test_crit_);
++receiver_rtcp_;
packet_event_.Set();
return SEND_PACKET;
}
void OnCallsCreated(Call* sender_call, Call* receiver_call) override {
sender_call_ = sender_call;
receiver_call_ = receiver_call;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->encoder_settings.encoder = this;
}
void PerformTest() override {
EXPECT_TRUE(encoded_frames_.Wait(kDefaultTimeoutMs))
<< "No frames received by the encoder.";
// Wait for packets from both sender/receiver.
WaitForPacketsOrSilence(false, false);
// Sender-side network down for audio; there should be no effect on video
sender_call_->SignalChannelNetworkState(MediaType::AUDIO, kNetworkDown);
WaitForPacketsOrSilence(false, false);
// Receiver-side network down for audio; no change expected
receiver_call_->SignalChannelNetworkState(MediaType::AUDIO, kNetworkDown);
WaitForPacketsOrSilence(false, false);
// Sender-side network down.
sender_call_->SignalChannelNetworkState(MediaType::VIDEO, kNetworkDown);
{
rtc::CritScope lock(&test_crit_);
// After network goes down we shouldn't be encoding more frames.
sender_state_ = kNetworkDown;
}
// Wait for receiver-packets and no sender packets.
WaitForPacketsOrSilence(true, false);
// Receiver-side network down.
receiver_call_->SignalChannelNetworkState(MediaType::VIDEO, kNetworkDown);
WaitForPacketsOrSilence(true, true);
// Network up for audio for both sides; video is still not expected to
// start
sender_call_->SignalChannelNetworkState(MediaType::AUDIO, kNetworkUp);
receiver_call_->SignalChannelNetworkState(MediaType::AUDIO, kNetworkUp);
WaitForPacketsOrSilence(true, true);
// Network back up again for both.
{
rtc::CritScope lock(&test_crit_);
// It's OK to encode frames again, as we're about to bring up the
// network.
sender_state_ = kNetworkUp;
}
sender_call_->SignalChannelNetworkState(MediaType::VIDEO, kNetworkUp);
receiver_call_->SignalChannelNetworkState(MediaType::VIDEO, kNetworkUp);
WaitForPacketsOrSilence(false, false);
// TODO(skvlad): add tests to verify that the audio streams are stopped
// when the network goes down for audio once the workaround in
// paced_sender.cc is removed.
}
int32_t Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) override {
{
rtc::CritScope lock(&test_crit_);
if (sender_state_ == kNetworkDown) {
++down_frames_;
EXPECT_LE(down_frames_, 1)
<< "Encoding more than one frame while network is down.";
if (down_frames_ > 1)
encoded_frames_.Set();
} else {
encoded_frames_.Set();
}
}
return test::FakeEncoder::Encode(
input_image, codec_specific_info, frame_types);
}
private:
void WaitForPacketsOrSilence(bool sender_down, bool receiver_down) {
int64_t initial_time_ms = clock_->TimeInMilliseconds();
int initial_sender_rtp;
int initial_sender_rtcp;
int initial_receiver_rtcp;
{
rtc::CritScope lock(&test_crit_);
initial_sender_rtp = sender_rtp_;
initial_sender_rtcp = sender_rtcp_;
initial_receiver_rtcp = receiver_rtcp_;
}
bool sender_done = false;
bool receiver_done = false;
while (!sender_done || !receiver_done) {
packet_event_.Wait(kSilenceTimeoutMs);
int64_t time_now_ms = clock_->TimeInMilliseconds();
rtc::CritScope lock(&test_crit_);
if (sender_down) {
ASSERT_LE(sender_rtp_ - initial_sender_rtp, kNumAcceptedDowntimeRtp)
<< "RTP sent during sender-side downtime.";
ASSERT_LE(sender_rtcp_ - initial_sender_rtcp,
kNumAcceptedDowntimeRtcp)
<< "RTCP sent during sender-side downtime.";
if (time_now_ms - initial_time_ms >=
static_cast<int64_t>(kSilenceTimeoutMs)) {
sender_done = true;
}
} else {
if (sender_rtp_ > initial_sender_rtp + kNumAcceptedDowntimeRtp)
sender_done = true;
}
if (receiver_down) {
ASSERT_LE(receiver_rtcp_ - initial_receiver_rtcp,
kNumAcceptedDowntimeRtcp)
<< "RTCP sent during receiver-side downtime.";
if (time_now_ms - initial_time_ms >=
static_cast<int64_t>(kSilenceTimeoutMs)) {
receiver_done = true;
}
} else {
if (receiver_rtcp_ > initial_receiver_rtcp + kNumAcceptedDowntimeRtcp)
receiver_done = true;
}
}
}
rtc::CriticalSection test_crit_;
rtc::Event encoded_frames_;
rtc::Event packet_event_;
Call* sender_call_;
Call* receiver_call_;
NetworkState sender_state_ GUARDED_BY(test_crit_);
int sender_rtp_ GUARDED_BY(test_crit_);
int sender_rtcp_ GUARDED_BY(test_crit_);
int receiver_rtcp_ GUARDED_BY(test_crit_);
int down_frames_ GUARDED_BY(test_crit_);
} test;
RunBaseTest(&test);
}
TEST_F(EndToEndTest, CallReportsRttForSender) {
static const int kSendDelayMs = 30;
static const int kReceiveDelayMs = 70;
CreateCalls(Call::Config(), Call::Config());
FakeNetworkPipe::Config config;
config.queue_delay_ms = kSendDelayMs;
test::DirectTransport sender_transport(config, sender_call_.get());
config.queue_delay_ms = kReceiveDelayMs;
test::DirectTransport receiver_transport(config, receiver_call_.get());
sender_transport.SetReceiver(receiver_call_->Receiver());
receiver_transport.SetReceiver(sender_call_->Receiver());
CreateSendConfig(1, 0, &sender_transport);
CreateMatchingReceiveConfigs(&receiver_transport);
CreateVideoStreams();
CreateFrameGeneratorCapturer();
Start();
int64_t start_time_ms = clock_->TimeInMilliseconds();
while (true) {
Call::Stats stats = sender_call_->GetStats();
ASSERT_GE(start_time_ms + kDefaultTimeoutMs,
clock_->TimeInMilliseconds())
<< "No RTT stats before timeout!";
if (stats.rtt_ms != -1) {
// To avoid failures caused by rounding or minor ntp clock adjustments,
// relax expectation by 1ms.
constexpr int kAllowedErrorMs = 1;
EXPECT_GE(stats.rtt_ms, kSendDelayMs + kReceiveDelayMs - kAllowedErrorMs);
break;
}
SleepMs(10);
}
Stop();
DestroyStreams();
}
void EndToEndTest::VerifyNewVideoSendStreamsRespectNetworkState(
MediaType network_to_bring_down,
VideoEncoder* encoder,
Transport* transport) {
CreateSenderCall(Call::Config());
sender_call_->SignalChannelNetworkState(network_to_bring_down, kNetworkDown);
CreateSendConfig(1, 0, transport);
video_send_config_.encoder_settings.encoder = encoder;
CreateVideoStreams();
CreateFrameGeneratorCapturer();
Start();
SleepMs(kSilenceTimeoutMs);
Stop();
DestroyStreams();
}
void EndToEndTest::VerifyNewVideoReceiveStreamsRespectNetworkState(
MediaType network_to_bring_down,
Transport* transport) {
CreateCalls(Call::Config(), Call::Config());
receiver_call_->SignalChannelNetworkState(network_to_bring_down,
kNetworkDown);
test::DirectTransport sender_transport(sender_call_.get());
sender_transport.SetReceiver(receiver_call_->Receiver());
CreateSendConfig(1, 0, &sender_transport);
CreateMatchingReceiveConfigs(transport);
CreateVideoStreams();
CreateFrameGeneratorCapturer();
Start();
SleepMs(kSilenceTimeoutMs);
Stop();
sender_transport.StopSending();
DestroyStreams();
}
TEST_F(EndToEndTest, NewVideoSendStreamsRespectVideoNetworkDown) {
class UnusedEncoder : public test::FakeEncoder {
public:
UnusedEncoder() : FakeEncoder(Clock::GetRealTimeClock()) {}
int32_t InitEncode(const VideoCodec* config,
int32_t number_of_cores,
size_t max_payload_size) override {
EXPECT_GT(config->startBitrate, 0u);
return 0;
}
int32_t Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) override {
ADD_FAILURE() << "Unexpected frame encode.";
return test::FakeEncoder::Encode(input_image, codec_specific_info,
frame_types);
}
};
UnusedEncoder unused_encoder;
UnusedTransport unused_transport;
VerifyNewVideoSendStreamsRespectNetworkState(
MediaType::VIDEO, &unused_encoder, &unused_transport);
}
TEST_F(EndToEndTest, NewVideoSendStreamsIgnoreAudioNetworkDown) {
class RequiredEncoder : public test::FakeEncoder {
public:
RequiredEncoder()
: FakeEncoder(Clock::GetRealTimeClock()), encoded_frame_(false) {}
~RequiredEncoder() {
if (!encoded_frame_) {
ADD_FAILURE() << "Didn't encode an expected frame";
}
}
int32_t Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) override {
encoded_frame_ = true;
return test::FakeEncoder::Encode(input_image, codec_specific_info,
frame_types);
}
private:
bool encoded_frame_;
};
RequiredTransport required_transport(true /*rtp*/, false /*rtcp*/);
RequiredEncoder required_encoder;
VerifyNewVideoSendStreamsRespectNetworkState(
MediaType::AUDIO, &required_encoder, &required_transport);
}
TEST_F(EndToEndTest, NewVideoReceiveStreamsRespectVideoNetworkDown) {
UnusedTransport transport;
VerifyNewVideoReceiveStreamsRespectNetworkState(MediaType::VIDEO, &transport);
}
TEST_F(EndToEndTest, NewVideoReceiveStreamsIgnoreAudioNetworkDown) {
RequiredTransport transport(false /*rtp*/, true /*rtcp*/);
VerifyNewVideoReceiveStreamsRespectNetworkState(MediaType::AUDIO, &transport);
}
void VerifyEmptyNackConfig(const NackConfig& config) {
EXPECT_EQ(0, config.rtp_history_ms)
<< "Enabling NACK requires rtcp-fb: nack negotiation.";
}
void VerifyEmptyFecConfig(const FecConfig& config) {
EXPECT_EQ(-1, config.ulpfec_payload_type)
<< "Enabling FEC requires rtpmap: ulpfec negotiation.";
EXPECT_EQ(-1, config.red_payload_type)
<< "Enabling FEC requires rtpmap: red negotiation.";
EXPECT_EQ(-1, config.red_rtx_payload_type)
<< "Enabling RTX in FEC requires rtpmap: rtx negotiation.";
}
TEST_F(EndToEndTest, VerifyDefaultSendConfigParameters) {
VideoSendStream::Config default_send_config(nullptr);
EXPECT_EQ(0, default_send_config.rtp.nack.rtp_history_ms)
<< "Enabling NACK require rtcp-fb: nack negotiation.";
EXPECT_TRUE(default_send_config.rtp.rtx.ssrcs.empty())
<< "Enabling RTX requires rtpmap: rtx negotiation.";
EXPECT_TRUE(default_send_config.rtp.extensions.empty())
<< "Enabling RTP extensions require negotiation.";
VerifyEmptyNackConfig(default_send_config.rtp.nack);
VerifyEmptyFecConfig(default_send_config.rtp.fec);
}
TEST_F(EndToEndTest, VerifyDefaultReceiveConfigParameters) {
VideoReceiveStream::Config default_receive_config(nullptr);
EXPECT_EQ(RtcpMode::kCompound, default_receive_config.rtp.rtcp_mode)
<< "Reduced-size RTCP require rtcp-rsize to be negotiated.";
EXPECT_FALSE(default_receive_config.rtp.remb)
<< "REMB require rtcp-fb: goog-remb to be negotiated.";
EXPECT_FALSE(
default_receive_config.rtp.rtcp_xr.receiver_reference_time_report)
<< "RTCP XR settings require rtcp-xr to be negotiated.";
EXPECT_TRUE(default_receive_config.rtp.rtx.empty())
<< "Enabling RTX requires rtpmap: rtx negotiation.";
EXPECT_TRUE(default_receive_config.rtp.extensions.empty())
<< "Enabling RTP extensions require negotiation.";
VerifyEmptyNackConfig(default_receive_config.rtp.nack);
VerifyEmptyFecConfig(default_receive_config.rtp.fec);
}
TEST_F(EndToEndTest, TransportSeqNumOnAudioAndVideo) {
static const int kExtensionId = 8;
class TransportSequenceNumberTest : public test::EndToEndTest {
public:
TransportSequenceNumberTest()
: EndToEndTest(kDefaultTimeoutMs),
video_observed_(false),
audio_observed_(false) {
parser_->RegisterRtpHeaderExtension(kRtpExtensionTransportSequenceNumber,
kExtensionId);
}
size_t GetNumVideoStreams() const override { return 1; }
size_t GetNumAudioStreams() const override { return 1; }
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->rtp.extensions.clear();
send_config->rtp.extensions.push_back(RtpExtension(
RtpExtension::kTransportSequenceNumberUri, kExtensionId));
(*receive_configs)[0].rtp.extensions = send_config->rtp.extensions;
}
void ModifyAudioConfigs(
AudioSendStream::Config* send_config,
std::vector<AudioReceiveStream::Config>* receive_configs) override {
send_config->rtp.extensions.clear();
send_config->rtp.extensions.push_back(RtpExtension(
RtpExtension::kTransportSequenceNumberUri, kExtensionId));
(*receive_configs)[0].rtp.extensions.clear();
(*receive_configs)[0].rtp.extensions = send_config->rtp.extensions;
}
Action OnSendRtp(const uint8_t* packet, size_t length) override {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
EXPECT_TRUE(header.extension.hasTransportSequenceNumber);
// Unwrap packet id and verify uniqueness.
int64_t packet_id =
unwrapper_.Unwrap(header.extension.transportSequenceNumber);
EXPECT_TRUE(received_packet_ids_.insert(packet_id).second);
if (header.ssrc == kVideoSendSsrcs[0])
video_observed_ = true;
if (header.ssrc == kAudioSendSsrc)
audio_observed_ = true;
if (audio_observed_ && video_observed_ &&
received_packet_ids_.size() == 50) {
size_t packet_id_range =
*received_packet_ids_.rbegin() - *received_packet_ids_.begin() + 1;
EXPECT_EQ(received_packet_ids_.size(), packet_id_range);
observation_complete_.Set();
}
return SEND_PACKET;
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out while waiting for audio and video "
"packets with transport sequence number.";
}
private:
bool video_observed_;
bool audio_observed_;
SequenceNumberUnwrapper unwrapper_;
std::set<int64_t> received_packet_ids_;
} test;
RunBaseTest(&test);
}
} // namespace webrtc