blob: c68fea778af6b9076234dd1def55453d0ba48d11 [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#include "modules/video_coding/codecs/vp9/vp9_impl.h"
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <vector>
#include "vpx/vpx_encoder.h"
#include "vpx/vpx_decoder.h"
#include "vpx/vp8cx.h"
#include "vpx/vp8dx.h"
#include "common_video/include/video_frame_buffer.h"
#include "common_video/libyuv/include/webrtc_libyuv.h"
#include "modules/video_coding/codecs/vp9/screenshare_layers.h"
#include "rtc_base/checks.h"
#include "rtc_base/keep_ref_until_done.h"
#include "rtc_base/logging.h"
#include "rtc_base/random.h"
#include "rtc_base/timeutils.h"
#include "rtc_base/trace_event.h"
namespace webrtc {
// Only positive speeds, range for real-time coding currently is: 5 - 8.
// Lower means slower/better quality, higher means fastest/lower quality.
int GetCpuSpeed(int width, int height) {
#if defined(WEBRTC_ARCH_ARM) || defined(WEBRTC_ARCH_ARM64) || defined(ANDROID)
return 8;
#else
// For smaller resolutions, use lower speed setting (get some coding gain at
// the cost of increased encoding complexity).
if (width * height <= 352 * 288)
return 5;
else
return 7;
#endif
}
bool VP9Encoder::IsSupported() {
return true;
}
VP9Encoder* VP9Encoder::Create() {
return new VP9EncoderImpl();
}
void VP9EncoderImpl::EncoderOutputCodedPacketCallback(vpx_codec_cx_pkt* pkt,
void* user_data) {
VP9EncoderImpl* enc = static_cast<VP9EncoderImpl*>(user_data);
enc->GetEncodedLayerFrame(pkt);
}
VP9EncoderImpl::VP9EncoderImpl()
: encoded_image_(),
encoded_complete_callback_(nullptr),
inited_(false),
timestamp_(0),
cpu_speed_(3),
rc_max_intra_target_(0),
encoder_(nullptr),
config_(nullptr),
raw_(nullptr),
input_image_(nullptr),
frames_since_kf_(0),
num_temporal_layers_(0),
num_spatial_layers_(0),
is_flexible_mode_(false),
frames_encoded_(0),
// Use two spatial when screensharing with flexible mode.
spatial_layer_(new ScreenshareLayersVP9(2)) {
memset(&codec_, 0, sizeof(codec_));
memset(&svc_params_, 0, sizeof(vpx_svc_extra_cfg_t));
Random random(rtc::TimeMicros());
picture_id_ = random.Rand<uint16_t>() & 0x7FFF;
tl0_pic_idx_ = random.Rand<uint8_t>();
}
VP9EncoderImpl::~VP9EncoderImpl() {
Release();
}
int VP9EncoderImpl::Release() {
if (encoded_image_._buffer != nullptr) {
delete[] encoded_image_._buffer;
encoded_image_._buffer = nullptr;
}
if (encoder_ != nullptr) {
if (vpx_codec_destroy(encoder_)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
delete encoder_;
encoder_ = nullptr;
}
if (config_ != nullptr) {
delete config_;
config_ = nullptr;
}
if (raw_ != nullptr) {
vpx_img_free(raw_);
raw_ = nullptr;
}
inited_ = false;
return WEBRTC_VIDEO_CODEC_OK;
}
bool VP9EncoderImpl::ExplicitlyConfiguredSpatialLayers() const {
// We check target_bitrate_bps of the 0th layer to see if the spatial layers
// (i.e. bitrates) were explicitly configured.
return num_spatial_layers_ > 1 &&
codec_.spatialLayers[0].target_bitrate_bps > 0;
}
bool VP9EncoderImpl::SetSvcRates() {
uint8_t i = 0;
if (ExplicitlyConfiguredSpatialLayers()) {
if (num_temporal_layers_ > 1) {
RTC_LOG(LS_ERROR) << "Multiple temporal layers when manually specifying "
"spatial layers not implemented yet!";
return false;
}
int total_bitrate_bps = 0;
for (i = 0; i < num_spatial_layers_; ++i)
total_bitrate_bps += codec_.spatialLayers[i].target_bitrate_bps;
// If total bitrate differs now from what has been specified at the
// beginning, update the bitrates in the same ratio as before.
for (i = 0; i < num_spatial_layers_; ++i) {
config_->ss_target_bitrate[i] = config_->layer_target_bitrate[i] =
static_cast<int>(static_cast<int64_t>(config_->rc_target_bitrate) *
codec_.spatialLayers[i].target_bitrate_bps /
total_bitrate_bps);
}
} else {
float rate_ratio[VPX_MAX_LAYERS] = {0};
float total = 0;
for (i = 0; i < num_spatial_layers_; ++i) {
if (svc_params_.scaling_factor_num[i] <= 0 ||
svc_params_.scaling_factor_den[i] <= 0) {
RTC_LOG(LS_ERROR) << "Scaling factors not specified!";
return false;
}
rate_ratio[i] =
static_cast<float>(svc_params_.scaling_factor_num[i]) /
svc_params_.scaling_factor_den[i];
total += rate_ratio[i];
}
for (i = 0; i < num_spatial_layers_; ++i) {
config_->ss_target_bitrate[i] = static_cast<unsigned int>(
config_->rc_target_bitrate * rate_ratio[i] / total);
if (num_temporal_layers_ == 1) {
config_->layer_target_bitrate[i] = config_->ss_target_bitrate[i];
} else if (num_temporal_layers_ == 2) {
config_->layer_target_bitrate[i * num_temporal_layers_] =
config_->ss_target_bitrate[i] * 2 / 3;
config_->layer_target_bitrate[i * num_temporal_layers_ + 1] =
config_->ss_target_bitrate[i];
} else if (num_temporal_layers_ == 3) {
config_->layer_target_bitrate[i * num_temporal_layers_] =
config_->ss_target_bitrate[i] / 2;
config_->layer_target_bitrate[i * num_temporal_layers_ + 1] =
config_->layer_target_bitrate[i * num_temporal_layers_] +
(config_->ss_target_bitrate[i] / 4);
config_->layer_target_bitrate[i * num_temporal_layers_ + 2] =
config_->ss_target_bitrate[i];
} else {
RTC_LOG(LS_ERROR) << "Unsupported number of temporal layers: "
<< num_temporal_layers_;
return false;
}
}
}
// For now, temporal layers only supported when having one spatial layer.
if (num_spatial_layers_ == 1) {
for (i = 0; i < num_temporal_layers_; ++i) {
config_->ts_target_bitrate[i] = config_->layer_target_bitrate[i];
}
}
return true;
}
int VP9EncoderImpl::SetRateAllocation(
const BitrateAllocation& bitrate_allocation,
uint32_t frame_rate) {
if (!inited_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (encoder_->err) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
if (frame_rate < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Update bit rate
if (codec_.maxBitrate > 0 &&
bitrate_allocation.get_sum_kbps() > codec_.maxBitrate) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// TODO(sprang): Actually use BitrateAllocation layer info.
config_->rc_target_bitrate = bitrate_allocation.get_sum_kbps();
codec_.maxFramerate = frame_rate;
spatial_layer_->ConfigureBitrate(bitrate_allocation.get_sum_kbps(), 0);
if (!SetSvcRates()) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Update encoder context
if (vpx_codec_enc_config_set(encoder_, config_)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9EncoderImpl::InitEncode(const VideoCodec* inst,
int number_of_cores,
size_t /*max_payload_size*/) {
if (inst == nullptr) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->maxFramerate < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// Allow zero to represent an unspecified maxBitRate
if (inst->maxBitrate > 0 && inst->startBitrate > inst->maxBitrate) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->width < 1 || inst->height < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (number_of_cores < 1) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (inst->VP9().numberOfTemporalLayers > 3) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
// libvpx probably does not support more than 3 spatial layers.
if (inst->VP9().numberOfSpatialLayers > 3) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
int ret_val = Release();
if (ret_val < 0) {
return ret_val;
}
if (encoder_ == nullptr) {
encoder_ = new vpx_codec_ctx_t;
}
if (config_ == nullptr) {
config_ = new vpx_codec_enc_cfg_t;
}
timestamp_ = 0;
if (&codec_ != inst) {
codec_ = *inst;
}
num_spatial_layers_ = inst->VP9().numberOfSpatialLayers;
num_temporal_layers_ = inst->VP9().numberOfTemporalLayers;
if (num_temporal_layers_ == 0)
num_temporal_layers_ = 1;
// Allocate memory for encoded image
if (encoded_image_._buffer != nullptr) {
delete[] encoded_image_._buffer;
}
encoded_image_._size =
CalcBufferSize(VideoType::kI420, codec_.width, codec_.height);
encoded_image_._buffer = new uint8_t[encoded_image_._size];
encoded_image_._completeFrame = true;
// Creating a wrapper to the image - setting image data to nullptr. Actual
// pointer will be set in encode. Setting align to 1, as it is meaningless
// (actual memory is not allocated).
raw_ = vpx_img_wrap(nullptr, VPX_IMG_FMT_I420, codec_.width, codec_.height, 1,
nullptr);
// Populate encoder configuration with default values.
if (vpx_codec_enc_config_default(vpx_codec_vp9_cx(), config_, 0)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
config_->g_w = codec_.width;
config_->g_h = codec_.height;
config_->rc_target_bitrate = inst->startBitrate; // in kbit/s
config_->g_error_resilient = inst->VP9().resilienceOn ? 1 : 0;
// Setting the time base of the codec.
config_->g_timebase.num = 1;
config_->g_timebase.den = 90000;
config_->g_lag_in_frames = 0; // 0- no frame lagging
config_->g_threads = 1;
// Rate control settings.
config_->rc_dropframe_thresh = inst->VP9().frameDroppingOn ? 30 : 0;
config_->rc_end_usage = VPX_CBR;
config_->g_pass = VPX_RC_ONE_PASS;
config_->rc_min_quantizer = 2;
config_->rc_max_quantizer = 52;
config_->rc_undershoot_pct = 50;
config_->rc_overshoot_pct = 50;
config_->rc_buf_initial_sz = 500;
config_->rc_buf_optimal_sz = 600;
config_->rc_buf_sz = 1000;
// Set the maximum target size of any key-frame.
rc_max_intra_target_ = MaxIntraTarget(config_->rc_buf_optimal_sz);
if (inst->VP9().keyFrameInterval > 0) {
config_->kf_mode = VPX_KF_AUTO;
config_->kf_max_dist = inst->VP9().keyFrameInterval;
// Needs to be set (in svc mode) to get correct periodic key frame interval
// (will have no effect in non-svc).
config_->kf_min_dist = config_->kf_max_dist;
} else {
config_->kf_mode = VPX_KF_DISABLED;
}
config_->rc_resize_allowed = inst->VP9().automaticResizeOn ? 1 : 0;
// Determine number of threads based on the image size and #cores.
config_->g_threads =
NumberOfThreads(config_->g_w, config_->g_h, number_of_cores);
cpu_speed_ = GetCpuSpeed(config_->g_w, config_->g_h);
// TODO(asapersson): Check configuration of temporal switch up and increase
// pattern length.
is_flexible_mode_ = inst->VP9().flexibleMode;
if (is_flexible_mode_) {
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS;
config_->ts_number_layers = num_temporal_layers_;
if (codec_.mode == kScreensharing)
spatial_layer_->ConfigureBitrate(inst->startBitrate, 0);
} else if (num_temporal_layers_ == 1) {
gof_.SetGofInfoVP9(kTemporalStructureMode1);
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_NOLAYERING;
config_->ts_number_layers = 1;
config_->ts_rate_decimator[0] = 1;
config_->ts_periodicity = 1;
config_->ts_layer_id[0] = 0;
} else if (num_temporal_layers_ == 2) {
gof_.SetGofInfoVP9(kTemporalStructureMode2);
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0101;
config_->ts_number_layers = 2;
config_->ts_rate_decimator[0] = 2;
config_->ts_rate_decimator[1] = 1;
config_->ts_periodicity = 2;
config_->ts_layer_id[0] = 0;
config_->ts_layer_id[1] = 1;
} else if (num_temporal_layers_ == 3) {
gof_.SetGofInfoVP9(kTemporalStructureMode3);
config_->temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_0212;
config_->ts_number_layers = 3;
config_->ts_rate_decimator[0] = 4;
config_->ts_rate_decimator[1] = 2;
config_->ts_rate_decimator[2] = 1;
config_->ts_periodicity = 4;
config_->ts_layer_id[0] = 0;
config_->ts_layer_id[1] = 2;
config_->ts_layer_id[2] = 1;
config_->ts_layer_id[3] = 2;
} else {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
return InitAndSetControlSettings(inst);
}
int VP9EncoderImpl::NumberOfThreads(int width,
int height,
int number_of_cores) {
// Keep the number of encoder threads equal to the possible number of column
// tiles, which is (1, 2, 4, 8). See comments below for VP9E_SET_TILE_COLUMNS.
if (width * height >= 1280 * 720 && number_of_cores > 4) {
return 4;
} else if (width * height >= 640 * 360 && number_of_cores > 2) {
return 2;
} else {
// 1 thread less than VGA.
return 1;
}
}
int VP9EncoderImpl::InitAndSetControlSettings(const VideoCodec* inst) {
// Set QP-min/max per spatial and temporal layer.
int tot_num_layers = num_spatial_layers_ * num_temporal_layers_;
for (int i = 0; i < tot_num_layers; ++i) {
svc_params_.max_quantizers[i] = config_->rc_max_quantizer;
svc_params_.min_quantizers[i] = config_->rc_min_quantizer;
}
config_->ss_number_layers = num_spatial_layers_;
if (ExplicitlyConfiguredSpatialLayers()) {
for (int i = 0; i < num_spatial_layers_; ++i) {
const auto& layer = codec_.spatialLayers[i];
svc_params_.scaling_factor_num[i] = layer.scaling_factor_num;
svc_params_.scaling_factor_den[i] = layer.scaling_factor_den;
}
} else {
int scaling_factor_num = 256;
for (int i = num_spatial_layers_ - 1; i >= 0; --i) {
// 1:2 scaling in each dimension.
svc_params_.scaling_factor_num[i] = scaling_factor_num;
svc_params_.scaling_factor_den[i] = 256;
if (codec_.mode != kScreensharing)
scaling_factor_num /= 2;
}
}
if (!SetSvcRates()) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
if (vpx_codec_enc_init(encoder_, vpx_codec_vp9_cx(), config_, 0)) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
vpx_codec_control(encoder_, VP8E_SET_CPUUSED, cpu_speed_);
vpx_codec_control(encoder_, VP8E_SET_MAX_INTRA_BITRATE_PCT,
rc_max_intra_target_);
vpx_codec_control(encoder_, VP9E_SET_AQ_MODE,
inst->VP9().adaptiveQpMode ? 3 : 0);
vpx_codec_control(encoder_, VP9E_SET_FRAME_PARALLEL_DECODING, 0);
vpx_codec_control(
encoder_, VP9E_SET_SVC,
(num_temporal_layers_ > 1 || num_spatial_layers_ > 1) ? 1 : 0);
if (num_temporal_layers_ > 1 || num_spatial_layers_ > 1) {
vpx_codec_control(encoder_, VP9E_SET_SVC_PARAMETERS,
&svc_params_);
}
// Register callback for getting each spatial layer.
vpx_codec_priv_output_cx_pkt_cb_pair_t cbp = {
VP9EncoderImpl::EncoderOutputCodedPacketCallback,
reinterpret_cast<void*>(this)};
vpx_codec_control(encoder_, VP9E_REGISTER_CX_CALLBACK,
reinterpret_cast<void*>(&cbp));
// Control function to set the number of column tiles in encoding a frame, in
// log2 unit: e.g., 0 = 1 tile column, 1 = 2 tile columns, 2 = 4 tile columns.
// The number tile columns will be capped by the encoder based on image size
// (minimum width of tile column is 256 pixels, maximum is 4096).
vpx_codec_control(encoder_, VP9E_SET_TILE_COLUMNS, (config_->g_threads >> 1));
// Turn on row-based multithreading.
vpx_codec_control(encoder_, VP9E_SET_ROW_MT, 1);
#if !defined(WEBRTC_ARCH_ARM) && !defined(WEBRTC_ARCH_ARM64) && \
!defined(ANDROID)
// Do not enable the denoiser on ARM since optimization is pending.
// Denoiser is on by default on other platforms.
vpx_codec_control(encoder_, VP9E_SET_NOISE_SENSITIVITY,
inst->VP9().denoisingOn ? 1 : 0);
#endif
if (codec_.mode == kScreensharing) {
// Adjust internal parameters to screen content.
vpx_codec_control(encoder_, VP9E_SET_TUNE_CONTENT, 1);
}
// Enable encoder skip of static/low content blocks.
vpx_codec_control(encoder_, VP8E_SET_STATIC_THRESHOLD, 1);
inited_ = true;
return WEBRTC_VIDEO_CODEC_OK;
}
uint32_t VP9EncoderImpl::MaxIntraTarget(uint32_t optimal_buffer_size) {
// Set max to the optimal buffer level (normalized by target BR),
// and scaled by a scale_par.
// Max target size = scale_par * optimal_buffer_size * targetBR[Kbps].
// This value is presented in percentage of perFrameBw:
// perFrameBw = targetBR[Kbps] * 1000 / framerate.
// The target in % is as follows:
float scale_par = 0.5;
uint32_t target_pct =
optimal_buffer_size * scale_par * codec_.maxFramerate / 10;
// Don't go below 3 times the per frame bandwidth.
const uint32_t min_intra_size = 300;
return (target_pct < min_intra_size) ? min_intra_size : target_pct;
}
int VP9EncoderImpl::Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) {
if (!inited_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (encoded_complete_callback_ == nullptr) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
FrameType frame_type = kVideoFrameDelta;
// We only support one stream at the moment.
if (frame_types && frame_types->size() > 0) {
frame_type = (*frame_types)[0];
}
RTC_DCHECK_EQ(input_image.width(), raw_->d_w);
RTC_DCHECK_EQ(input_image.height(), raw_->d_h);
// Set input image for use in the callback.
// This was necessary since you need some information from input_image.
// You can save only the necessary information (such as timestamp) instead of
// doing this.
input_image_ = &input_image;
rtc::scoped_refptr<I420BufferInterface> i420_buffer =
input_image.video_frame_buffer()->ToI420();
// Image in vpx_image_t format.
// Input image is const. VPX's raw image is not defined as const.
raw_->planes[VPX_PLANE_Y] = const_cast<uint8_t*>(i420_buffer->DataY());
raw_->planes[VPX_PLANE_U] = const_cast<uint8_t*>(i420_buffer->DataU());
raw_->planes[VPX_PLANE_V] = const_cast<uint8_t*>(i420_buffer->DataV());
raw_->stride[VPX_PLANE_Y] = i420_buffer->StrideY();
raw_->stride[VPX_PLANE_U] = i420_buffer->StrideU();
raw_->stride[VPX_PLANE_V] = i420_buffer->StrideV();
vpx_enc_frame_flags_t flags = 0;
bool send_keyframe = (frame_type == kVideoFrameKey);
if (send_keyframe) {
// Key frame request from caller.
flags = VPX_EFLAG_FORCE_KF;
}
if (is_flexible_mode_) {
SuperFrameRefSettings settings;
// These structs are copied when calling vpx_codec_control,
// therefore it is ok for them to go out of scope.
vpx_svc_ref_frame_config enc_layer_conf;
vpx_svc_layer_id layer_id;
if (codec_.mode == kRealtimeVideo) {
// Real time video not yet implemented in flexible mode.
RTC_NOTREACHED();
} else {
settings = spatial_layer_->GetSuperFrameSettings(input_image.timestamp(),
send_keyframe);
}
enc_layer_conf = GenerateRefsAndFlags(settings);
layer_id.temporal_layer_id = 0;
layer_id.spatial_layer_id = settings.start_layer;
vpx_codec_control(encoder_, VP9E_SET_SVC_LAYER_ID, &layer_id);
vpx_codec_control(encoder_, VP9E_SET_SVC_REF_FRAME_CONFIG, &enc_layer_conf);
}
RTC_CHECK_GT(codec_.maxFramerate, 0);
uint32_t duration = 90000 / codec_.maxFramerate;
if (vpx_codec_encode(encoder_, raw_, timestamp_, duration, flags,
VPX_DL_REALTIME)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
timestamp_ += duration;
return WEBRTC_VIDEO_CODEC_OK;
}
void VP9EncoderImpl::PopulateCodecSpecific(CodecSpecificInfo* codec_specific,
const vpx_codec_cx_pkt& pkt,
uint32_t timestamp) {
RTC_CHECK(codec_specific != nullptr);
codec_specific->codecType = kVideoCodecVP9;
codec_specific->codec_name = ImplementationName();
CodecSpecificInfoVP9* vp9_info = &(codec_specific->codecSpecific.VP9);
// TODO(asapersson): Set correct value.
vp9_info->inter_pic_predicted =
(pkt.data.frame.flags & VPX_FRAME_IS_KEY) ? false : true;
vp9_info->flexible_mode = codec_.VP9()->flexibleMode;
vp9_info->ss_data_available =
((pkt.data.frame.flags & VPX_FRAME_IS_KEY) && !codec_.VP9()->flexibleMode)
? true
: false;
vpx_svc_layer_id_t layer_id = {0};
vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id);
RTC_CHECK_GT(num_temporal_layers_, 0);
RTC_CHECK_GT(num_spatial_layers_, 0);
if (num_temporal_layers_ == 1) {
RTC_CHECK_EQ(layer_id.temporal_layer_id, 0);
vp9_info->temporal_idx = kNoTemporalIdx;
} else {
vp9_info->temporal_idx = layer_id.temporal_layer_id;
}
if (num_spatial_layers_ == 1) {
RTC_CHECK_EQ(layer_id.spatial_layer_id, 0);
vp9_info->spatial_idx = kNoSpatialIdx;
} else {
vp9_info->spatial_idx = layer_id.spatial_layer_id;
}
if (layer_id.spatial_layer_id != 0) {
vp9_info->ss_data_available = false;
}
// TODO(asapersson): this info has to be obtained from the encoder.
vp9_info->temporal_up_switch = false;
bool is_first_frame = false;
if (is_flexible_mode_) {
is_first_frame =
layer_id.spatial_layer_id == spatial_layer_->GetStartLayer();
} else {
is_first_frame = layer_id.spatial_layer_id == 0;
}
if (is_first_frame) {
picture_id_ = (picture_id_ + 1) & 0x7FFF;
// TODO(asapersson): this info has to be obtained from the encoder.
vp9_info->inter_layer_predicted = false;
++frames_since_kf_;
} else {
// TODO(asapersson): this info has to be obtained from the encoder.
vp9_info->inter_layer_predicted = true;
}
if (pkt.data.frame.flags & VPX_FRAME_IS_KEY) {
frames_since_kf_ = 0;
}
vp9_info->picture_id = picture_id_;
if (!vp9_info->flexible_mode) {
if (layer_id.temporal_layer_id == 0 && layer_id.spatial_layer_id == 0) {
tl0_pic_idx_++;
}
vp9_info->tl0_pic_idx = tl0_pic_idx_;
}
// Always populate this, so that the packetizer can properly set the marker
// bit.
vp9_info->num_spatial_layers = num_spatial_layers_;
vp9_info->num_ref_pics = 0;
if (vp9_info->flexible_mode) {
vp9_info->gof_idx = kNoGofIdx;
vp9_info->num_ref_pics = num_ref_pics_[layer_id.spatial_layer_id];
for (int i = 0; i < num_ref_pics_[layer_id.spatial_layer_id]; ++i) {
vp9_info->p_diff[i] = p_diff_[layer_id.spatial_layer_id][i];
}
} else {
vp9_info->gof_idx =
static_cast<uint8_t>(frames_since_kf_ % gof_.num_frames_in_gof);
vp9_info->temporal_up_switch = gof_.temporal_up_switch[vp9_info->gof_idx];
}
if (vp9_info->ss_data_available) {
vp9_info->spatial_layer_resolution_present = true;
for (size_t i = 0; i < vp9_info->num_spatial_layers; ++i) {
vp9_info->width[i] = codec_.width *
svc_params_.scaling_factor_num[i] /
svc_params_.scaling_factor_den[i];
vp9_info->height[i] = codec_.height *
svc_params_.scaling_factor_num[i] /
svc_params_.scaling_factor_den[i];
}
if (!vp9_info->flexible_mode) {
vp9_info->gof.CopyGofInfoVP9(gof_);
}
}
}
int VP9EncoderImpl::GetEncodedLayerFrame(const vpx_codec_cx_pkt* pkt) {
RTC_DCHECK_EQ(pkt->kind, VPX_CODEC_CX_FRAME_PKT);
if (pkt->data.frame.sz > encoded_image_._size) {
delete[] encoded_image_._buffer;
encoded_image_._size = pkt->data.frame.sz;
encoded_image_._buffer = new uint8_t[encoded_image_._size];
}
memcpy(encoded_image_._buffer, pkt->data.frame.buf, pkt->data.frame.sz);
encoded_image_._length = pkt->data.frame.sz;
// No data partitioning in VP9, so 1 partition only.
int part_idx = 0;
RTPFragmentationHeader frag_info;
frag_info.VerifyAndAllocateFragmentationHeader(1);
frag_info.fragmentationOffset[part_idx] = 0;
frag_info.fragmentationLength[part_idx] = pkt->data.frame.sz;
frag_info.fragmentationPlType[part_idx] = 0;
frag_info.fragmentationTimeDiff[part_idx] = 0;
vpx_svc_layer_id_t layer_id = {0};
vpx_codec_control(encoder_, VP9E_GET_SVC_LAYER_ID, &layer_id);
if (is_flexible_mode_ && codec_.mode == kScreensharing)
spatial_layer_->LayerFrameEncoded(
static_cast<unsigned int>(encoded_image_._length),
layer_id.spatial_layer_id);
// End of frame.
// Check if encoded frame is a key frame.
encoded_image_._frameType = kVideoFrameDelta;
if (pkt->data.frame.flags & VPX_FRAME_IS_KEY) {
encoded_image_._frameType = kVideoFrameKey;
}
RTC_DCHECK_LE(encoded_image_._length, encoded_image_._size);
CodecSpecificInfo codec_specific;
PopulateCodecSpecific(&codec_specific, *pkt, input_image_->timestamp());
if (encoded_image_._length > 0) {
TRACE_COUNTER1("webrtc", "EncodedFrameSize", encoded_image_._length);
encoded_image_._timeStamp = input_image_->timestamp();
encoded_image_.capture_time_ms_ = input_image_->render_time_ms();
encoded_image_.rotation_ = input_image_->rotation();
encoded_image_.content_type_ = (codec_.mode == kScreensharing)
? VideoContentType::SCREENSHARE
: VideoContentType::UNSPECIFIED;
encoded_image_._encodedHeight = raw_->d_h;
encoded_image_._encodedWidth = raw_->d_w;
encoded_image_.timing_.flags = TimingFrameFlags::kInvalid;
int qp = -1;
vpx_codec_control(encoder_, VP8E_GET_LAST_QUANTIZER, &qp);
encoded_image_.qp_ = qp;
encoded_complete_callback_->OnEncodedImage(encoded_image_, &codec_specific,
&frag_info);
}
return WEBRTC_VIDEO_CODEC_OK;
}
vpx_svc_ref_frame_config VP9EncoderImpl::GenerateRefsAndFlags(
const SuperFrameRefSettings& settings) {
static const vpx_enc_frame_flags_t kAllFlags =
VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_LAST |
VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_GF;
vpx_svc_ref_frame_config sf_conf = {};
if (settings.is_keyframe) {
// Used later on to make sure we don't make any invalid references.
memset(buffer_updated_at_frame_, -1, sizeof(buffer_updated_at_frame_));
for (int layer = settings.start_layer; layer <= settings.stop_layer;
++layer) {
num_ref_pics_[layer] = 0;
buffer_updated_at_frame_[settings.layer[layer].upd_buf] = frames_encoded_;
// When encoding a keyframe only the alt_fb_idx is used
// to specify which layer ends up in which buffer.
sf_conf.alt_fb_idx[layer] = settings.layer[layer].upd_buf;
}
} else {
for (int layer_idx = settings.start_layer; layer_idx <= settings.stop_layer;
++layer_idx) {
vpx_enc_frame_flags_t layer_flags = kAllFlags;
num_ref_pics_[layer_idx] = 0;
int8_t refs[3] = {settings.layer[layer_idx].ref_buf1,
settings.layer[layer_idx].ref_buf2,
settings.layer[layer_idx].ref_buf3};
for (unsigned int ref_idx = 0; ref_idx < kMaxVp9RefPics; ++ref_idx) {
if (refs[ref_idx] == -1)
continue;
RTC_DCHECK_GE(refs[ref_idx], 0);
RTC_DCHECK_LE(refs[ref_idx], 7);
// Easier to remove flags from all flags rather than having to
// build the flags from 0.
switch (num_ref_pics_[layer_idx]) {
case 0: {
sf_conf.lst_fb_idx[layer_idx] = refs[ref_idx];
layer_flags &= ~VP8_EFLAG_NO_REF_LAST;
break;
}
case 1: {
sf_conf.gld_fb_idx[layer_idx] = refs[ref_idx];
layer_flags &= ~VP8_EFLAG_NO_REF_GF;
break;
}
case 2: {
sf_conf.alt_fb_idx[layer_idx] = refs[ref_idx];
layer_flags &= ~VP8_EFLAG_NO_REF_ARF;
break;
}
}
// Make sure we don't reference a buffer that hasn't been
// used at all or hasn't been used since a keyframe.
RTC_DCHECK_NE(buffer_updated_at_frame_[refs[ref_idx]], -1);
p_diff_[layer_idx][num_ref_pics_[layer_idx]] =
frames_encoded_ - buffer_updated_at_frame_[refs[ref_idx]];
num_ref_pics_[layer_idx]++;
}
bool upd_buf_same_as_a_ref = false;
if (settings.layer[layer_idx].upd_buf != -1) {
for (unsigned int ref_idx = 0; ref_idx < kMaxVp9RefPics; ++ref_idx) {
if (settings.layer[layer_idx].upd_buf == refs[ref_idx]) {
switch (ref_idx) {
case 0: {
layer_flags &= ~VP8_EFLAG_NO_UPD_LAST;
break;
}
case 1: {
layer_flags &= ~VP8_EFLAG_NO_UPD_GF;
break;
}
case 2: {
layer_flags &= ~VP8_EFLAG_NO_UPD_ARF;
break;
}
}
upd_buf_same_as_a_ref = true;
break;
}
}
if (!upd_buf_same_as_a_ref) {
// If we have three references and a buffer is specified to be
// updated, then that buffer must be the same as one of the
// three references.
RTC_CHECK_LT(num_ref_pics_[layer_idx], kMaxVp9RefPics);
sf_conf.alt_fb_idx[layer_idx] = settings.layer[layer_idx].upd_buf;
layer_flags ^= VP8_EFLAG_NO_UPD_ARF;
}
int updated_buffer = settings.layer[layer_idx].upd_buf;
buffer_updated_at_frame_[updated_buffer] = frames_encoded_;
sf_conf.frame_flags[layer_idx] = layer_flags;
}
}
}
++frames_encoded_;
return sf_conf;
}
int VP9EncoderImpl::SetChannelParameters(uint32_t packet_loss, int64_t rtt) {
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9EncoderImpl::RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) {
encoded_complete_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
const char* VP9EncoderImpl::ImplementationName() const {
return "libvpx";
}
bool VP9Decoder::IsSupported() {
return true;
}
VP9Decoder* VP9Decoder::Create() {
return new VP9DecoderImpl();
}
VP9DecoderImpl::VP9DecoderImpl()
: decode_complete_callback_(nullptr),
inited_(false),
decoder_(nullptr),
key_frame_required_(true) {
memset(&codec_, 0, sizeof(codec_));
}
VP9DecoderImpl::~VP9DecoderImpl() {
inited_ = true; // in order to do the actual release
Release();
int num_buffers_in_use = frame_buffer_pool_.GetNumBuffersInUse();
if (num_buffers_in_use > 0) {
// The frame buffers are reference counted and frames are exposed after
// decoding. There may be valid usage cases where previous frames are still
// referenced after ~VP9DecoderImpl that is not a leak.
RTC_LOG(LS_INFO) << num_buffers_in_use << " Vp9FrameBuffers are still "
<< "referenced during ~VP9DecoderImpl.";
}
}
int VP9DecoderImpl::InitDecode(const VideoCodec* inst, int number_of_cores) {
if (inst == nullptr) {
return WEBRTC_VIDEO_CODEC_ERR_PARAMETER;
}
int ret_val = Release();
if (ret_val < 0) {
return ret_val;
}
if (decoder_ == nullptr) {
decoder_ = new vpx_codec_ctx_t;
}
vpx_codec_dec_cfg_t cfg;
// Setting number of threads to a constant value (1)
cfg.threads = 1;
cfg.h = cfg.w = 0; // set after decode
vpx_codec_flags_t flags = 0;
if (vpx_codec_dec_init(decoder_, vpx_codec_vp9_dx(), &cfg, flags)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
if (&codec_ != inst) {
// Save VideoCodec instance for later; mainly for duplicating the decoder.
codec_ = *inst;
}
if (!frame_buffer_pool_.InitializeVpxUsePool(decoder_)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
inited_ = true;
// Always start with a complete key frame.
key_frame_required_ = true;
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::Decode(const EncodedImage& input_image,
bool missing_frames,
const RTPFragmentationHeader* fragmentation,
const CodecSpecificInfo* codec_specific_info,
int64_t /*render_time_ms*/) {
if (!inited_) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
if (decode_complete_callback_ == nullptr) {
return WEBRTC_VIDEO_CODEC_UNINITIALIZED;
}
// Always start with a complete key frame.
if (key_frame_required_) {
if (input_image._frameType != kVideoFrameKey)
return WEBRTC_VIDEO_CODEC_ERROR;
// We have a key frame - is it complete?
if (input_image._completeFrame) {
key_frame_required_ = false;
} else {
return WEBRTC_VIDEO_CODEC_ERROR;
}
}
vpx_codec_iter_t iter = nullptr;
vpx_image_t* img;
uint8_t* buffer = input_image._buffer;
if (input_image._length == 0) {
buffer = nullptr; // Triggers full frame concealment.
}
// During decode libvpx may get and release buffers from |frame_buffer_pool_|.
// In practice libvpx keeps a few (~3-4) buffers alive at a time.
if (vpx_codec_decode(decoder_, buffer,
static_cast<unsigned int>(input_image._length), 0,
VPX_DL_REALTIME)) {
return WEBRTC_VIDEO_CODEC_ERROR;
}
// |img->fb_priv| contains the image data, a reference counted Vp9FrameBuffer.
// It may be released by libvpx during future vpx_codec_decode or
// vpx_codec_destroy calls.
img = vpx_codec_get_frame(decoder_, &iter);
int qp;
vpx_codec_err_t vpx_ret =
vpx_codec_control(decoder_, VPXD_GET_LAST_QUANTIZER, &qp);
RTC_DCHECK_EQ(vpx_ret, VPX_CODEC_OK);
int ret =
ReturnFrame(img, input_image._timeStamp, input_image.ntp_time_ms_, qp);
if (ret != 0) {
return ret;
}
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::ReturnFrame(const vpx_image_t* img,
uint32_t timestamp,
int64_t ntp_time_ms,
int qp) {
if (img == nullptr) {
// Decoder OK and nullptr image => No show frame.
return WEBRTC_VIDEO_CODEC_NO_OUTPUT;
}
// This buffer contains all of |img|'s image data, a reference counted
// Vp9FrameBuffer. (libvpx is done with the buffers after a few
// vpx_codec_decode calls or vpx_codec_destroy).
Vp9FrameBufferPool::Vp9FrameBuffer* img_buffer =
static_cast<Vp9FrameBufferPool::Vp9FrameBuffer*>(img->fb_priv);
// The buffer can be used directly by the VideoFrame (without copy) by
// using a WrappedI420Buffer.
rtc::scoped_refptr<WrappedI420Buffer> img_wrapped_buffer(
new rtc::RefCountedObject<webrtc::WrappedI420Buffer>(
img->d_w, img->d_h, img->planes[VPX_PLANE_Y],
img->stride[VPX_PLANE_Y], img->planes[VPX_PLANE_U],
img->stride[VPX_PLANE_U], img->planes[VPX_PLANE_V],
img->stride[VPX_PLANE_V],
// WrappedI420Buffer's mechanism for allowing the release of its frame
// buffer is through a callback function. This is where we should
// release |img_buffer|.
rtc::KeepRefUntilDone(img_buffer)));
VideoFrame decoded_image(img_wrapped_buffer, timestamp,
0 /* render_time_ms */, webrtc::kVideoRotation_0);
decoded_image.set_ntp_time_ms(ntp_time_ms);
decode_complete_callback_->Decoded(decoded_image, rtc::Optional<int32_t>(),
rtc::Optional<uint8_t>(qp));
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::RegisterDecodeCompleteCallback(
DecodedImageCallback* callback) {
decode_complete_callback_ = callback;
return WEBRTC_VIDEO_CODEC_OK;
}
int VP9DecoderImpl::Release() {
if (decoder_ != nullptr) {
// When a codec is destroyed libvpx will release any buffers of
// |frame_buffer_pool_| it is currently using.
if (vpx_codec_destroy(decoder_)) {
return WEBRTC_VIDEO_CODEC_MEMORY;
}
delete decoder_;
decoder_ = nullptr;
}
// Releases buffers from the pool. Any buffers not in use are deleted. Buffers
// still referenced externally are deleted once fully released, not returning
// to the pool.
frame_buffer_pool_.ClearPool();
inited_ = false;
return WEBRTC_VIDEO_CODEC_OK;
}
const char* VP9DecoderImpl::ImplementationName() const {
return "libvpx";
}
} // namespace webrtc