blob: e1dbe05858db5dbc3425c1effac232cc71083b1f [file] [log] [blame]
/*
* Copyright 2011 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include <string>
#include "rtc_base/fakesslidentity.h"
#include "rtc_base/gunit.h"
#include "rtc_base/helpers.h"
#include "rtc_base/ssladapter.h"
#include "rtc_base/sslfingerprint.h"
#include "rtc_base/sslidentity.h"
#include "rtc_base/stringutils.h"
using rtc::SSLIdentity;
const char kTestCertificate[] = "-----BEGIN CERTIFICATE-----\n"
"MIIB6TCCAVICAQYwDQYJKoZIhvcNAQEEBQAwWzELMAkGA1UEBhMCQVUxEzARBgNV\n"
"BAgTClF1ZWVuc2xhbmQxGjAYBgNVBAoTEUNyeXB0U29mdCBQdHkgTHRkMRswGQYD\n"
"VQQDExJUZXN0IENBICgxMDI0IGJpdCkwHhcNMDAxMDE2MjIzMTAzWhcNMDMwMTE0\n"
"MjIzMTAzWjBjMQswCQYDVQQGEwJBVTETMBEGA1UECBMKUXVlZW5zbGFuZDEaMBgG\n"
"A1UEChMRQ3J5cHRTb2Z0IFB0eSBMdGQxIzAhBgNVBAMTGlNlcnZlciB0ZXN0IGNl\n"
"cnQgKDUxMiBiaXQpMFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAJ+zw4Qnlf8SMVIP\n"
"Fe9GEcStgOY2Ww/dgNdhjeD8ckUJNP5VZkVDTGiXav6ooKXfX3j/7tdkuD8Ey2//\n"
"Kv7+ue0CAwEAATANBgkqhkiG9w0BAQQFAAOBgQCT0grFQeZaqYb5EYfk20XixZV4\n"
"GmyAbXMftG1Eo7qGiMhYzRwGNWxEYojf5PZkYZXvSqZ/ZXHXa4g59jK/rJNnaVGM\n"
"k+xIX8mxQvlV0n5O9PIha5BX5teZnkHKgL8aKKLKW1BK7YTngsfSzzaeame5iKfz\n"
"itAE+OjGF+PFKbwX8Q==\n"
"-----END CERTIFICATE-----\n";
const unsigned char kTestCertSha1[] = {
0xA6, 0xC8, 0x59, 0xEA, 0xC3, 0x7E, 0x6D, 0x33,
0xCF, 0xE2, 0x69, 0x9D, 0x74, 0xE6, 0xF6, 0x8A,
0x9E, 0x47, 0xA7, 0xCA};
const unsigned char kTestCertSha224[] = {
0xd4, 0xce, 0xc6, 0xcf, 0x28, 0xcb, 0xe9, 0x77,
0x38, 0x36, 0xcf, 0xb1, 0x3b, 0x4a, 0xd7, 0xbd,
0xae, 0x24, 0x21, 0x08, 0xcf, 0x6a, 0x44, 0x0d,
0x3f, 0x94, 0x2a, 0x5b};
const unsigned char kTestCertSha256[] = {
0x41, 0x6b, 0xb4, 0x93, 0x47, 0x79, 0x77, 0x24,
0x77, 0x0b, 0x8b, 0x2e, 0xa6, 0x2b, 0xe0, 0xf9,
0x0a, 0xed, 0x1f, 0x31, 0xa6, 0xf7, 0x5c, 0xa1,
0x5a, 0xc4, 0xb0, 0xa2, 0xa4, 0x78, 0xb9, 0x76};
const unsigned char kTestCertSha384[] = {
0x42, 0x31, 0x9a, 0x79, 0x1d, 0xd6, 0x08, 0xbf,
0x3b, 0xba, 0x36, 0xd8, 0x37, 0x4a, 0x9a, 0x75,
0xd3, 0x25, 0x6e, 0x28, 0x92, 0xbe, 0x06, 0xb7,
0xc5, 0xa0, 0x83, 0xe3, 0x86, 0xb1, 0x03, 0xfc,
0x64, 0x47, 0xd6, 0xd8, 0xaa, 0xd9, 0x36, 0x60,
0x04, 0xcc, 0xbe, 0x7d, 0x6a, 0xe8, 0x34, 0x49};
const unsigned char kTestCertSha512[] = {
0x51, 0x1d, 0xec, 0x02, 0x3d, 0x51, 0x45, 0xd3,
0xd8, 0x1d, 0xa4, 0x9d, 0x43, 0xc9, 0xee, 0x32,
0x6f, 0x4f, 0x37, 0xee, 0xab, 0x3f, 0x25, 0xdf,
0x72, 0xfc, 0x61, 0x1a, 0xd5, 0x92, 0xff, 0x6b,
0x28, 0x71, 0x58, 0xb3, 0xe1, 0x8a, 0x18, 0xcf,
0x61, 0x33, 0x0e, 0x14, 0xc3, 0x04, 0xaa, 0x07,
0xf6, 0xa5, 0xda, 0xdc, 0x42, 0x42, 0x22, 0x35,
0xce, 0x26, 0x58, 0x4a, 0x33, 0x6d, 0xbc, 0xb6};
// These PEM strings were created by generating an identity with
// |SSLIdentity::Generate| and invoking |identity->PrivateKeyToPEMString()|,
// |identity->PublicKeyToPEMString()| and
// |identity->certificate().ToPEMString()|. If the crypto library is updated,
// and the update changes the string form of the keys, these will have to be
// updated too. The fingerprint, fingerprint algorithm and base64 certificate
// were created by calling |identity->certificate().GetStats()|.
static const char kRSA_PRIVATE_KEY_PEM[] =
"-----BEGIN PRIVATE KEY-----\n"
"MIICdQIBADANBgkqhkiG9w0BAQEFAASCAl8wggJbAgEAAoGBAMQPqDStRlYeDpkX\n"
"erRmv+a1naM8vSVSY0gG2plnrnofViWRW3MRqWC+020MsIj3hPZeSAnt/y/FL/nr\n"
"4Ea7NXcwdRo1/1xEK7U/f/cjSg1aunyvHCHwcFcMr31HLFvHr0ZgcFwbgIuFLNEl\n"
"7kK5HMO9APz1ntUjek8BmBj8yMl9AgMBAAECgYA8FWBC5GcNtSBcIinkZyigF0A7\n"
"6j081sa+J/uNz4xUuI257ZXM6biygUhhvuXK06/XoIULJfhyN0fAm1yb0HtNhiUs\n"
"kMOYeon6b8FqFaPjrQf7Gr9FMiIHXNK19uegTMKztXyPZoUWlX84X0iawY95x0Y3\n"
"73f6P2rN2UOjlVVjAQJBAOKy3l2w3Zj2w0oAJox0eMwl+RxBNt1C42SHrob2mFUT\n"
"rytpVVYOasr8CoDI0kjacjI94sLum+buJoXXX6YTGO0CQQDdZwlYIEkoS3ftfxPa\n"
"Ai0YTBzAWvHJg0r8Gk/TkHo6IM+LSsZ9ZYUv/vBe4BKLw1I4hZ+bQvBiq+f8ROtk\n"
"+TDRAkAPL3ghwoU1h+IRBO2QHwUwd6K2N9AbBi4BP+168O3HVSg4ujeTKigRLMzv\n"
"T4R2iNt5bhfQgvdCgtVlxcWMdF8JAkBwDCg3eEdt5BuyjwBt8XH+/O4ED0KUWCTH\n"
"x00k5dZlupsuhE5Fwe4QpzXg3gekwdnHjyCCQ/NCDHvgOMTkmhQxAkA9V03KRX9b\n"
"bhvEzY/fu8gEp+EzsER96/D79az5z1BaMGL5OPM2xHBPJATKlswnAa7Lp3QKGZGk\n"
"TxslfL18J71s\n"
"-----END PRIVATE KEY-----\n";
static const char kRSA_PUBLIC_KEY_PEM[] =
"-----BEGIN PUBLIC KEY-----\n"
"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDED6g0rUZWHg6ZF3q0Zr/mtZ2j\n"
"PL0lUmNIBtqZZ656H1YlkVtzEalgvtNtDLCI94T2XkgJ7f8vxS/56+BGuzV3MHUa\n"
"Nf9cRCu1P3/3I0oNWrp8rxwh8HBXDK99Ryxbx69GYHBcG4CLhSzRJe5CuRzDvQD8\n"
"9Z7VI3pPAZgY/MjJfQIDAQAB\n"
"-----END PUBLIC KEY-----\n";
static const char kRSA_CERT_PEM[] =
"-----BEGIN CERTIFICATE-----\n"
"MIIBnDCCAQWgAwIBAgIJAOEHLgeWYwrpMA0GCSqGSIb3DQEBCwUAMBAxDjAMBgNV\n"
"BAMMBXRlc3QxMB4XDTE2MDQyNDE4MTAyMloXDTE2MDUyNTE4MTAyMlowEDEOMAwG\n"
"A1UEAwwFdGVzdDEwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMQPqDStRlYe\n"
"DpkXerRmv+a1naM8vSVSY0gG2plnrnofViWRW3MRqWC+020MsIj3hPZeSAnt/y/F\n"
"L/nr4Ea7NXcwdRo1/1xEK7U/f/cjSg1aunyvHCHwcFcMr31HLFvHr0ZgcFwbgIuF\n"
"LNEl7kK5HMO9APz1ntUjek8BmBj8yMl9AgMBAAEwDQYJKoZIhvcNAQELBQADgYEA\n"
"C3ehaZFl+oEYN069C2ht/gMzuC77L854RF/x7xRtNZzkcg9TVgXXdM3auUvJi8dx\n"
"yTpU3ixErjQvoZew5ngXTEvTY8BSQUijJEaLWh8n6NDKRbEGTdAk8nPAmq9hdCFq\n"
"e3UkexqNHm3g/VxG4NUC1Y+w29ai0/Rgh+VvgbDwK+Q=\n"
"-----END CERTIFICATE-----\n";
static const char kRSA_FINGERPRINT[] =
"3C:E8:B2:70:09:CF:A9:09:5A:F4:EF:8F:8D:8A:32:FF:EA:04:91:BA:6E:D4:17:78:16"
":2A:EE:F9:9A:DD:E2:2B";
static const char kRSA_FINGERPRINT_ALGORITHM[] =
"sha-256";
static const char kRSA_BASE64_CERTIFICATE[] =
"MIIBnDCCAQWgAwIBAgIJAOEHLgeWYwrpMA0GCSqGSIb3DQEBCwUAMBAxDjAMBgNVBAMMBXRlc3"
"QxMB4XDTE2MDQyNDE4MTAyMloXDTE2MDUyNTE4MTAyMlowEDEOMAwGA1UEAwwFdGVzdDEwgZ8w"
"DQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMQPqDStRlYeDpkXerRmv+a1naM8vSVSY0gG2plnrn"
"ofViWRW3MRqWC+020MsIj3hPZeSAnt/y/FL/nr4Ea7NXcwdRo1/1xEK7U/f/cjSg1aunyvHCHw"
"cFcMr31HLFvHr0ZgcFwbgIuFLNEl7kK5HMO9APz1ntUjek8BmBj8yMl9AgMBAAEwDQYJKoZIhv"
"cNAQELBQADgYEAC3ehaZFl+oEYN069C2ht/gMzuC77L854RF/x7xRtNZzkcg9TVgXXdM3auUvJ"
"i8dxyTpU3ixErjQvoZew5ngXTEvTY8BSQUijJEaLWh8n6NDKRbEGTdAk8nPAmq9hdCFqe3Ukex"
"qNHm3g/VxG4NUC1Y+w29ai0/Rgh+VvgbDwK+Q=";
static const char kECDSA_PRIVATE_KEY_PEM[] =
"-----BEGIN PRIVATE KEY-----\n"
"MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQg/AkEA2hklq7dQ2rN\n"
"ZxYL6hOUACL4pn7P4FYlA3ZQhIChRANCAAR7YgdO3utP/8IqVRq8G4VZKreMAxeN\n"
"rUa12twthv4uFjuHAHa9D9oyAjncmn+xvZZRyVmKrA56jRzENcEEHoAg\n"
"-----END PRIVATE KEY-----\n";
static const char kECDSA_PUBLIC_KEY_PEM[] =
"-----BEGIN PUBLIC KEY-----\n"
"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEe2IHTt7rT//CKlUavBuFWSq3jAMX\n"
"ja1GtdrcLYb+LhY7hwB2vQ/aMgI53Jp/sb2WUclZiqwOeo0cxDXBBB6AIA==\n"
"-----END PUBLIC KEY-----\n";
static const char kECDSA_CERT_PEM[] =
"-----BEGIN CERTIFICATE-----\n"
"MIIBFDCBu6ADAgECAgkArpkxjw62sW4wCgYIKoZIzj0EAwIwEDEOMAwGA1UEAwwF\n"
"dGVzdDMwHhcNMTYwNDI0MTgxNDM4WhcNMTYwNTI1MTgxNDM4WjAQMQ4wDAYDVQQD\n"
"DAV0ZXN0MzBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABHtiB07e60//wipVGrwb\n"
"hVkqt4wDF42tRrXa3C2G/i4WO4cAdr0P2jICOdyaf7G9llHJWYqsDnqNHMQ1wQQe\n"
"gCAwCgYIKoZIzj0EAwIDSAAwRQIhANyreQ/K5yuPPpirsd0e/4WGLHou6bIOSQks\n"
"DYzo56NmAiAKOr3u8ol3LmygbUCwEvtWrS8QcJDygxHPACo99hkekw==\n"
"-----END CERTIFICATE-----\n";
static const char kECDSA_FINGERPRINT[] =
"9F:47:FA:88:76:3D:18:B8:00:A0:59:9D:C3:5D:34:0B:1F:B8:99:9E:68:DA:F3:A5:DA"
":50:33:A9:FF:4D:31:89";
static const char kECDSA_FINGERPRINT_ALGORITHM[] =
"sha-256";
static const char kECDSA_BASE64_CERTIFICATE[] =
"MIIBFDCBu6ADAgECAgkArpkxjw62sW4wCgYIKoZIzj0EAwIwEDEOMAwGA1UEAwwFdGVzdDMwHh"
"cNMTYwNDI0MTgxNDM4WhcNMTYwNTI1MTgxNDM4WjAQMQ4wDAYDVQQDDAV0ZXN0MzBZMBMGByqG"
"SM49AgEGCCqGSM49AwEHA0IABHtiB07e60//wipVGrwbhVkqt4wDF42tRrXa3C2G/i4WO4cAdr"
"0P2jICOdyaf7G9llHJWYqsDnqNHMQ1wQQegCAwCgYIKoZIzj0EAwIDSAAwRQIhANyreQ/K5yuP"
"Ppirsd0e/4WGLHou6bIOSQksDYzo56NmAiAKOr3u8ol3LmygbUCwEvtWrS8QcJDygxHPACo99h"
"kekw==";
struct IdentityAndInfo {
std::unique_ptr<rtc::SSLIdentity> identity;
std::vector<std::string> ders;
std::vector<std::string> pems;
std::vector<std::string> fingerprints;
};
IdentityAndInfo CreateFakeIdentityAndInfoFromDers(
const std::vector<std::string>& ders) {
RTC_CHECK(!ders.empty());
IdentityAndInfo info;
info.ders = ders;
for (const std::string& der : ders) {
info.pems.push_back(rtc::SSLIdentity::DerToPem(
"CERTIFICATE",
reinterpret_cast<const unsigned char*>(der.c_str()),
der.length()));
}
info.identity.reset(new rtc::FakeSSLIdentity(info.pems));
// Strip header/footer and newline characters of PEM strings.
for (size_t i = 0; i < info.pems.size(); ++i) {
rtc::replace_substrs("-----BEGIN CERTIFICATE-----", 27,
"", 0, &info.pems[i]);
rtc::replace_substrs("-----END CERTIFICATE-----", 25,
"", 0, &info.pems[i]);
rtc::replace_substrs("\n", 1,
"", 0, &info.pems[i]);
}
// Fingerprints for the whole certificate chain, starting with leaf
// certificate.
const rtc::SSLCertChain& chain = info.identity->cert_chain();
std::unique_ptr<rtc::SSLFingerprint> fp;
for (size_t i = 0; i < chain.GetSize(); i++) {
fp.reset(rtc::SSLFingerprint::Create("sha-1", &chain.Get(i)));
EXPECT_TRUE(fp);
info.fingerprints.push_back(fp->GetRfc4572Fingerprint());
}
EXPECT_EQ(info.ders.size(), info.fingerprints.size());
return info;
}
class SSLIdentityTest : public testing::Test {
public:
void SetUp() override {
identity_rsa1_.reset(SSLIdentity::Generate("test1", rtc::KT_RSA));
identity_rsa2_.reset(SSLIdentity::Generate("test2", rtc::KT_RSA));
identity_ecdsa1_.reset(SSLIdentity::Generate("test3", rtc::KT_ECDSA));
identity_ecdsa2_.reset(SSLIdentity::Generate("test4", rtc::KT_ECDSA));
ASSERT_TRUE(identity_rsa1_);
ASSERT_TRUE(identity_rsa2_);
ASSERT_TRUE(identity_ecdsa1_);
ASSERT_TRUE(identity_ecdsa2_);
test_cert_.reset(rtc::SSLCertificate::FromPEMString(kTestCertificate));
ASSERT_TRUE(test_cert_);
}
void TestGetSignatureDigestAlgorithm() {
std::string digest_algorithm;
ASSERT_TRUE(identity_rsa1_->certificate().GetSignatureDigestAlgorithm(
&digest_algorithm));
ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm);
ASSERT_TRUE(identity_rsa2_->certificate().GetSignatureDigestAlgorithm(
&digest_algorithm));
ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm);
ASSERT_TRUE(identity_ecdsa1_->certificate().GetSignatureDigestAlgorithm(
&digest_algorithm));
ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm);
ASSERT_TRUE(identity_ecdsa2_->certificate().GetSignatureDigestAlgorithm(
&digest_algorithm));
ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm);
// The test certificate has an MD5-based signature.
ASSERT_TRUE(test_cert_->GetSignatureDigestAlgorithm(&digest_algorithm));
ASSERT_EQ(rtc::DIGEST_MD5, digest_algorithm);
}
typedef unsigned char DigestType[rtc::MessageDigest::kMaxSize];
void TestDigestHelper(DigestType digest,
const SSLIdentity* identity,
const std::string& algorithm,
size_t expected_len) {
DigestType digest1;
size_t digest_len;
bool rv;
memset(digest, 0, expected_len);
rv = identity->certificate().ComputeDigest(algorithm, digest,
sizeof(DigestType), &digest_len);
EXPECT_TRUE(rv);
EXPECT_EQ(expected_len, digest_len);
// Repeat digest computation for the identity as a sanity check.
memset(digest1, 0xff, expected_len);
rv = identity->certificate().ComputeDigest(algorithm, digest1,
sizeof(DigestType), &digest_len);
EXPECT_TRUE(rv);
EXPECT_EQ(expected_len, digest_len);
EXPECT_EQ(0, memcmp(digest, digest1, expected_len));
}
void TestDigestForGeneratedCert(const std::string& algorithm,
size_t expected_len) {
DigestType digest[4];
ASSERT_TRUE(expected_len <= sizeof(DigestType));
TestDigestHelper(digest[0], identity_rsa1_.get(), algorithm, expected_len);
TestDigestHelper(digest[1], identity_rsa2_.get(), algorithm, expected_len);
TestDigestHelper(digest[2], identity_ecdsa1_.get(), algorithm,
expected_len);
TestDigestHelper(digest[3], identity_ecdsa2_.get(), algorithm,
expected_len);
// Sanity check that all four digests are unique. This could theoretically
// fail, since cryptographic hash collisions have a non-zero probability.
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
if (i != j)
EXPECT_NE(0, memcmp(digest[i], digest[j], expected_len));
}
}
}
void TestDigestForFixedCert(const std::string& algorithm,
size_t expected_len,
const unsigned char* expected_digest) {
bool rv;
DigestType digest;
size_t digest_len;
ASSERT_TRUE(expected_len <= sizeof(DigestType));
rv = test_cert_->ComputeDigest(algorithm, digest, sizeof(digest),
&digest_len);
EXPECT_TRUE(rv);
EXPECT_EQ(expected_len, digest_len);
EXPECT_EQ(0, memcmp(digest, expected_digest, expected_len));
}
void TestCloningIdentity(const SSLIdentity& identity) {
// Convert |identity| to PEM strings and create a new identity by converting
// back from the string format.
std::string priv_pem = identity.PrivateKeyToPEMString();
std::string publ_pem = identity.PublicKeyToPEMString();
std::string cert_pem = identity.certificate().ToPEMString();
std::unique_ptr<SSLIdentity> clone(
SSLIdentity::FromPEMStrings(priv_pem, cert_pem));
EXPECT_TRUE(clone);
// Make sure the clone is identical to the original.
EXPECT_TRUE(identity == *clone);
ASSERT_EQ(identity.certificate().CertificateExpirationTime(),
clone->certificate().CertificateExpirationTime());
// At this point we are confident that the identities are identical. To be
// extra sure, we compare PEM strings of the clone with the original. Note
// that the PEM strings of two identities are not strictly guaranteed to be
// equal (they describe structs whose members could be listed in a different
// order, for example). But because the same function is used to produce
// both PEMs, its a good enough bet that this comparison will work. If the
// assumption stops holding in the future we can always remove this from the
// unittest.
std::string clone_priv_pem = clone->PrivateKeyToPEMString();
std::string clone_publ_pem = clone->PublicKeyToPEMString();
std::string clone_cert_pem = clone->certificate().ToPEMString();
ASSERT_EQ(priv_pem, clone_priv_pem);
ASSERT_EQ(publ_pem, clone_publ_pem);
ASSERT_EQ(cert_pem, clone_cert_pem);
}
protected:
std::unique_ptr<SSLIdentity> identity_rsa1_;
std::unique_ptr<SSLIdentity> identity_rsa2_;
std::unique_ptr<SSLIdentity> identity_ecdsa1_;
std::unique_ptr<SSLIdentity> identity_ecdsa2_;
std::unique_ptr<rtc::SSLCertificate> test_cert_;
};
TEST_F(SSLIdentityTest, FixedDigestSHA1) {
TestDigestForFixedCert(rtc::DIGEST_SHA_1, 20, kTestCertSha1);
}
// HASH_AlgSHA224 is not supported in the chromium linux build.
TEST_F(SSLIdentityTest, FixedDigestSHA224) {
TestDigestForFixedCert(rtc::DIGEST_SHA_224, 28, kTestCertSha224);
}
TEST_F(SSLIdentityTest, FixedDigestSHA256) {
TestDigestForFixedCert(rtc::DIGEST_SHA_256, 32, kTestCertSha256);
}
TEST_F(SSLIdentityTest, FixedDigestSHA384) {
TestDigestForFixedCert(rtc::DIGEST_SHA_384, 48, kTestCertSha384);
}
TEST_F(SSLIdentityTest, FixedDigestSHA512) {
TestDigestForFixedCert(rtc::DIGEST_SHA_512, 64, kTestCertSha512);
}
// HASH_AlgSHA224 is not supported in the chromium linux build.
TEST_F(SSLIdentityTest, DigestSHA224) {
TestDigestForGeneratedCert(rtc::DIGEST_SHA_224, 28);
}
TEST_F(SSLIdentityTest, DigestSHA256) {
TestDigestForGeneratedCert(rtc::DIGEST_SHA_256, 32);
}
TEST_F(SSLIdentityTest, DigestSHA384) {
TestDigestForGeneratedCert(rtc::DIGEST_SHA_384, 48);
}
TEST_F(SSLIdentityTest, DigestSHA512) {
TestDigestForGeneratedCert(rtc::DIGEST_SHA_512, 64);
}
TEST_F(SSLIdentityTest, IdentityComparison) {
EXPECT_TRUE(*identity_rsa1_ == *identity_rsa1_);
EXPECT_FALSE(*identity_rsa1_ == *identity_rsa2_);
EXPECT_FALSE(*identity_rsa1_ == *identity_ecdsa1_);
EXPECT_FALSE(*identity_rsa1_ == *identity_ecdsa2_);
EXPECT_TRUE(*identity_rsa2_ == *identity_rsa2_);
EXPECT_FALSE(*identity_rsa2_ == *identity_ecdsa1_);
EXPECT_FALSE(*identity_rsa2_ == *identity_ecdsa2_);
EXPECT_TRUE(*identity_ecdsa1_ == *identity_ecdsa1_);
EXPECT_FALSE(*identity_ecdsa1_ == *identity_ecdsa2_);
}
TEST_F(SSLIdentityTest, FromPEMStringsRSA) {
std::unique_ptr<SSLIdentity> identity(
SSLIdentity::FromPEMStrings(kRSA_PRIVATE_KEY_PEM, kRSA_CERT_PEM));
EXPECT_TRUE(identity);
EXPECT_EQ(kRSA_PRIVATE_KEY_PEM, identity->PrivateKeyToPEMString());
EXPECT_EQ(kRSA_PUBLIC_KEY_PEM, identity->PublicKeyToPEMString());
EXPECT_EQ(kRSA_CERT_PEM, identity->certificate().ToPEMString());
}
TEST_F(SSLIdentityTest, FromPEMStringsEC) {
std::unique_ptr<SSLIdentity> identity(
SSLIdentity::FromPEMStrings(kECDSA_PRIVATE_KEY_PEM, kECDSA_CERT_PEM));
EXPECT_TRUE(identity);
EXPECT_EQ(kECDSA_PRIVATE_KEY_PEM, identity->PrivateKeyToPEMString());
EXPECT_EQ(kECDSA_PUBLIC_KEY_PEM, identity->PublicKeyToPEMString());
EXPECT_EQ(kECDSA_CERT_PEM, identity->certificate().ToPEMString());
}
TEST_F(SSLIdentityTest, CloneIdentityRSA) {
TestCloningIdentity(*identity_rsa1_);
TestCloningIdentity(*identity_rsa2_);
}
TEST_F(SSLIdentityTest, CloneIdentityECDSA) {
TestCloningIdentity(*identity_ecdsa1_);
TestCloningIdentity(*identity_ecdsa2_);
}
TEST_F(SSLIdentityTest, PemDerConversion) {
std::string der;
EXPECT_TRUE(SSLIdentity::PemToDer("CERTIFICATE", kTestCertificate, &der));
EXPECT_EQ(kTestCertificate, SSLIdentity::DerToPem(
"CERTIFICATE",
reinterpret_cast<const unsigned char*>(der.data()), der.length()));
}
TEST_F(SSLIdentityTest, GetSignatureDigestAlgorithm) {
TestGetSignatureDigestAlgorithm();
}
TEST_F(SSLIdentityTest, SSLCertificateGetStatsRSA) {
std::unique_ptr<SSLIdentity> identity(
SSLIdentity::FromPEMStrings(kRSA_PRIVATE_KEY_PEM, kRSA_CERT_PEM));
std::unique_ptr<rtc::SSLCertificateStats> stats =
identity->certificate().GetStats();
EXPECT_EQ(stats->fingerprint, kRSA_FINGERPRINT);
EXPECT_EQ(stats->fingerprint_algorithm, kRSA_FINGERPRINT_ALGORITHM);
EXPECT_EQ(stats->base64_certificate, kRSA_BASE64_CERTIFICATE);
EXPECT_FALSE(stats->issuer);
}
TEST_F(SSLIdentityTest, SSLCertificateGetStatsECDSA) {
std::unique_ptr<SSLIdentity> identity(
SSLIdentity::FromPEMStrings(kECDSA_PRIVATE_KEY_PEM, kECDSA_CERT_PEM));
std::unique_ptr<rtc::SSLCertificateStats> stats =
identity->certificate().GetStats();
EXPECT_EQ(stats->fingerprint, kECDSA_FINGERPRINT);
EXPECT_EQ(stats->fingerprint_algorithm, kECDSA_FINGERPRINT_ALGORITHM);
EXPECT_EQ(stats->base64_certificate, kECDSA_BASE64_CERTIFICATE);
EXPECT_FALSE(stats->issuer);
}
TEST_F(SSLIdentityTest, SSLCertificateGetStatsWithChain) {
std::vector<std::string> ders;
ders.push_back("every der results in");
ders.push_back("an identity + certificate");
ders.push_back("in a certificate chain");
IdentityAndInfo info = CreateFakeIdentityAndInfoFromDers(ders);
EXPECT_TRUE(info.identity);
EXPECT_EQ(info.ders, ders);
EXPECT_EQ(info.pems.size(), info.ders.size());
EXPECT_EQ(info.fingerprints.size(), info.ders.size());
std::unique_ptr<rtc::SSLCertificateStats> first_stats =
info.identity->cert_chain().GetStats();
rtc::SSLCertificateStats* cert_stats = first_stats.get();
for (size_t i = 0; i < info.ders.size(); ++i) {
EXPECT_EQ(cert_stats->fingerprint, info.fingerprints[i]);
EXPECT_EQ(cert_stats->fingerprint_algorithm, "sha-1");
EXPECT_EQ(cert_stats->base64_certificate, info.pems[i]);
cert_stats = cert_stats->issuer.get();
EXPECT_EQ(static_cast<bool>(cert_stats), i + 1 < info.ders.size());
}
}
class SSLIdentityExpirationTest : public testing::Test {
public:
SSLIdentityExpirationTest() {
// Set use of the test RNG to get deterministic expiration timestamp.
rtc::SetRandomTestMode(true);
}
~SSLIdentityExpirationTest() override {
// Put it back for the next test.
rtc::SetRandomTestMode(false);
}
void TestASN1TimeToSec() {
struct asn_example {
const char* string;
bool long_format;
int64_t want;
} static const data[] = {
// Valid examples.
{"19700101000000Z", true, 0},
{"700101000000Z", false, 0},
{"19700101000001Z", true, 1},
{"700101000001Z", false, 1},
{"19700101000100Z", true, 60},
{"19700101000101Z", true, 61},
{"19700101010000Z", true, 3600},
{"19700101010001Z", true, 3601},
{"19700101010100Z", true, 3660},
{"19700101010101Z", true, 3661},
{"710911012345Z", false, 53400225},
{"20000101000000Z", true, 946684800},
{"20000101000000Z", true, 946684800},
{"20151130140156Z", true, 1448892116},
{"151130140156Z", false, 1448892116},
{"20491231235959Z", true, 2524607999},
{"491231235959Z", false, 2524607999},
{"20500101000000Z", true, 2524607999+1},
{"20700101000000Z", true, 3155760000},
{"21000101000000Z", true, 4102444800},
{"24000101000000Z", true, 13569465600},
// Invalid examples.
{"19700101000000", true, -1}, // missing Z long format
{"19700101000000X", true, -1}, // X instead of Z long format
{"197001010000000", true, -1}, // 0 instead of Z long format
{"1970010100000000Z", true, -1}, // excess digits long format
{"700101000000", false, -1}, // missing Z short format
{"700101000000X", false, -1}, // X instead of Z short format
{"7001010000000", false, -1}, // 0 instead of Z short format
{"70010100000000Z", false, -1}, // excess digits short format
{":9700101000000Z", true, -1}, // invalid character
{"1:700101000001Z", true, -1}, // invalid character
{"19:00101000100Z", true, -1}, // invalid character
{"197:0101000101Z", true, -1}, // invalid character
{"1970:101010000Z", true, -1}, // invalid character
{"19700:01010001Z", true, -1}, // invalid character
{"197001:1010100Z", true, -1}, // invalid character
{"1970010:010101Z", true, -1}, // invalid character
{"70010100:000Z", false, -1}, // invalid character
{"700101000:01Z", false, -1}, // invalid character
{"2000010100:000Z", true, -1}, // invalid character
{"21000101000:00Z", true, -1}, // invalid character
{"240001010000:0Z", true, -1}, // invalid character
{"500101000000Z", false, -1}, // but too old for epoch
{"691231235959Z", false, -1}, // too old for epoch
{"19611118043000Z", false, -1}, // way too old for epoch
};
unsigned char buf[20];
// Run all examples and check for the expected result.
for (const auto& entry : data) {
size_t length = strlen(entry.string);
memcpy(buf, entry.string, length); // Copy the ASN1 string...
buf[length] = rtc::CreateRandomId(); // ...and terminate it with junk.
int64_t res = rtc::ASN1TimeToSec(buf, length, entry.long_format);
RTC_LOG(LS_VERBOSE) << entry.string;
ASSERT_EQ(entry.want, res);
}
// Run all examples again, but with an invalid length.
for (const auto& entry : data) {
size_t length = strlen(entry.string);
memcpy(buf, entry.string, length); // Copy the ASN1 string...
buf[length] = rtc::CreateRandomId(); // ...and terminate it with junk.
int64_t res = rtc::ASN1TimeToSec(buf, length - 1, entry.long_format);
RTC_LOG(LS_VERBOSE) << entry.string;
ASSERT_EQ(-1, res);
}
}
void TestExpireTime(int times) {
// We test just ECDSA here since what we're out to exercise is the
// interfaces for expiration setting and reading.
for (int i = 0; i < times; i++) {
// We limit the time to < 2^31 here, i.e., we stay before 2038, since else
// we hit time offset limitations in OpenSSL on some 32-bit systems.
time_t time_before_generation = time(nullptr);
time_t lifetime =
rtc::CreateRandomId() % (0x80000000 - time_before_generation);
rtc::KeyParams key_params = rtc::KeyParams::ECDSA(rtc::EC_NIST_P256);
SSLIdentity* identity =
rtc::SSLIdentity::GenerateWithExpiration("", key_params, lifetime);
time_t time_after_generation = time(nullptr);
EXPECT_LE(time_before_generation + lifetime,
identity->certificate().CertificateExpirationTime());
EXPECT_GE(time_after_generation + lifetime,
identity->certificate().CertificateExpirationTime());
delete identity;
}
}
};
TEST_F(SSLIdentityExpirationTest, TestASN1TimeToSec) {
TestASN1TimeToSec();
}
TEST_F(SSLIdentityExpirationTest, TestExpireTime) {
TestExpireTime(500);
}