blob: 32de3683c7a11ababb03429e84b4db4b2da6293f [file] [log] [blame]
/*
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/frame_buffer3.h"
#include <algorithm>
#include <iterator>
#include <queue>
#include <utility>
#include "absl/algorithm/container.h"
#include "absl/container/inlined_vector.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/sequence_number_util.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
bool ValidReferences(const EncodedFrame& frame) {
// All references must point backwards, and duplicates are not allowed.
for (size_t i = 0; i < frame.num_references; ++i) {
if (frame.references[i] >= frame.Id())
return false;
for (size_t j = i + 1; j < frame.num_references; ++j) {
if (frame.references[i] == frame.references[j])
return false;
}
}
return true;
}
// Since FrameBuffer::FrameInfo is private it can't be used in the function
// signature, hence the FrameIteratorT type.
template <typename FrameIteratorT>
rtc::ArrayView<const int64_t> GetReferences(const FrameIteratorT& it) {
return {it->second.encoded_frame->references,
std::min<size_t>(it->second.encoded_frame->num_references,
EncodedFrame::kMaxFrameReferences)};
}
template <typename FrameIteratorT>
int64_t GetFrameId(const FrameIteratorT& it) {
return it->first;
}
template <typename FrameIteratorT>
int64_t GetTimestamp(const FrameIteratorT& it) {
return it->second.encoded_frame->Timestamp();
}
template <typename FrameIteratorT>
bool IsLastFrameInTemporalUnit(const FrameIteratorT& it) {
return it->second.encoded_frame->is_last_spatial_layer;
}
} // namespace
FrameBuffer::FrameBuffer(int max_size, int max_decode_history)
: legacy_frame_id_jump_behavior_(
field_trial::IsEnabled("WebRTC-LegacyFrameIdJumpBehavior")),
max_size_(max_size),
decoded_frame_history_(max_decode_history) {}
void FrameBuffer::InsertFrame(std::unique_ptr<EncodedFrame> frame) {
if (!ValidReferences(*frame)) {
RTC_DLOG(LS_WARNING) << "Frame " << frame->Id()
<< " has invalid references, dropping frame.";
return;
}
if (frame->Id() <= decoded_frame_history_.GetLastDecodedFrameId()) {
if (legacy_frame_id_jump_behavior_ && frame->is_keyframe() &&
AheadOf(frame->Timestamp(),
*decoded_frame_history_.GetLastDecodedFrameTimestamp())) {
RTC_DLOG(LS_WARNING)
<< "Keyframe " << frame->Id()
<< " has newer timestamp but older picture id, clearing buffer.";
Clear();
} else {
// Already decoded past this frame.
return;
}
}
if (frames_.size() == max_size_) {
if (frame->is_keyframe()) {
RTC_DLOG(LS_WARNING) << "Keyframe " << frame->Id()
<< " inserted into full buffer, clearing buffer.";
Clear();
} else {
// No space for this frame.
return;
}
}
const int64_t frame_id = frame->Id();
auto insert_res = frames_.emplace(frame_id, FrameInfo{std::move(frame)});
if (!insert_res.second) {
// Frame has already been inserted.
return;
}
if (frames_.size() == max_size_) {
RTC_DLOG(LS_WARNING) << "Frame " << frame_id
<< " inserted, buffer is now full.";
}
PropagateContinuity(insert_res.first);
FindNextAndLastDecodableTemporalUnit();
}
absl::InlinedVector<std::unique_ptr<EncodedFrame>, 4>
FrameBuffer::ExtractNextDecodableTemporalUnit() {
absl::InlinedVector<std::unique_ptr<EncodedFrame>, 4> res;
if (!next_decodable_temporal_unit_) {
return res;
}
auto end_it = std::next(next_decodable_temporal_unit_->last_frame);
for (auto it = next_decodable_temporal_unit_->first_frame; it != end_it;
++it) {
decoded_frame_history_.InsertDecoded(GetFrameId(it), GetTimestamp(it));
res.push_back(std::move(it->second.encoded_frame));
}
DropNextDecodableTemporalUnit();
return res;
}
void FrameBuffer::DropNextDecodableTemporalUnit() {
if (!next_decodable_temporal_unit_) {
return;
}
auto end_it = std::next(next_decodable_temporal_unit_->last_frame);
num_dropped_frames_ += std::count_if(
frames_.begin(), end_it,
[](const auto& f) { return f.second.encoded_frame != nullptr; });
frames_.erase(frames_.begin(), end_it);
FindNextAndLastDecodableTemporalUnit();
}
absl::optional<int64_t> FrameBuffer::LastContinuousFrameId() const {
return last_continuous_frame_id_;
}
absl::optional<int64_t> FrameBuffer::LastContinuousTemporalUnitFrameId() const {
return last_continuous_temporal_unit_frame_id_;
}
absl::optional<uint32_t> FrameBuffer::NextDecodableTemporalUnitRtpTimestamp()
const {
if (!next_decodable_temporal_unit_) {
return absl::nullopt;
}
return GetTimestamp(next_decodable_temporal_unit_->first_frame);
}
absl::optional<uint32_t> FrameBuffer::LastDecodableTemporalUnitRtpTimestamp()
const {
return last_decodable_temporal_unit_timestamp_;
}
int FrameBuffer::GetTotalNumberOfContinuousTemporalUnits() const {
return num_continuous_temporal_units_;
}
int FrameBuffer::GetTotalNumberOfDroppedFrames() const {
return num_dropped_frames_;
}
bool FrameBuffer::IsContinuous(const FrameIterator& it) const {
for (int64_t reference : GetReferences(it)) {
if (decoded_frame_history_.WasDecoded(reference)) {
continue;
}
auto reference_frame_it = frames_.find(reference);
if (reference_frame_it != frames_.end() &&
reference_frame_it->second.continuous) {
continue;
}
return false;
}
return true;
}
void FrameBuffer::PropagateContinuity(const FrameIterator& frame_it) {
for (auto it = frame_it; it != frames_.end(); ++it) {
if (!it->second.continuous) {
if (IsContinuous(it)) {
it->second.continuous = true;
if (last_continuous_frame_id_ < GetFrameId(it)) {
last_continuous_frame_id_ = GetFrameId(it);
}
if (IsLastFrameInTemporalUnit(it)) {
num_continuous_temporal_units_++;
if (last_continuous_temporal_unit_frame_id_ < GetFrameId(it)) {
last_continuous_temporal_unit_frame_id_ = GetFrameId(it);
}
}
}
}
}
}
void FrameBuffer::FindNextAndLastDecodableTemporalUnit() {
next_decodable_temporal_unit_.reset();
last_decodable_temporal_unit_timestamp_.reset();
if (!last_continuous_temporal_unit_frame_id_) {
return;
}
FrameIterator first_frame_it = frames_.begin();
FrameIterator last_frame_it = frames_.begin();
absl::InlinedVector<int64_t, 4> frames_in_temporal_unit;
for (auto frame_it = frames_.begin(); frame_it != frames_.end();) {
if (GetFrameId(frame_it) > *last_continuous_temporal_unit_frame_id_) {
break;
}
if (GetTimestamp(frame_it) != GetTimestamp(first_frame_it)) {
frames_in_temporal_unit.clear();
first_frame_it = frame_it;
}
frames_in_temporal_unit.push_back(GetFrameId(frame_it));
last_frame_it = frame_it++;
if (IsLastFrameInTemporalUnit(last_frame_it)) {
bool temporal_unit_decodable = true;
for (auto it = first_frame_it; it != frame_it && temporal_unit_decodable;
++it) {
for (int64_t reference : GetReferences(it)) {
if (!decoded_frame_history_.WasDecoded(reference) &&
!absl::c_linear_search(frames_in_temporal_unit, reference)) {
// A frame in the temporal unit has a non-decoded reference outside
// the temporal unit, so it's not yet ready to be decoded.
temporal_unit_decodable = false;
break;
}
}
}
if (temporal_unit_decodable) {
if (!next_decodable_temporal_unit_) {
next_decodable_temporal_unit_ = {first_frame_it, last_frame_it};
}
last_decodable_temporal_unit_timestamp_ = GetTimestamp(first_frame_it);
}
}
}
}
void FrameBuffer::Clear() {
frames_.clear();
next_decodable_temporal_unit_.reset();
last_decodable_temporal_unit_timestamp_.reset();
last_continuous_frame_id_.reset();
last_continuous_temporal_unit_frame_id_.reset();
decoded_frame_history_.Clear();
}
} // namespace webrtc