| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // Unit tests for DelayManager class. |
| |
| #include "modules/audio_coding/neteq/delay_manager.h" |
| |
| #include <math.h> |
| |
| #include <memory> |
| |
| #include "modules/audio_coding/neteq/histogram.h" |
| #include "modules/audio_coding/neteq/mock/mock_delay_peak_detector.h" |
| #include "modules/audio_coding/neteq/mock/mock_histogram.h" |
| #include "modules/audio_coding/neteq/mock/mock_statistics_calculator.h" |
| #include "rtc_base/checks.h" |
| #include "test/field_trial.h" |
| #include "test/gmock.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| |
| namespace { |
| constexpr int kMaxNumberOfPackets = 240; |
| constexpr int kMinDelayMs = 0; |
| constexpr int kTimeStepMs = 10; |
| constexpr int kFs = 8000; |
| constexpr int kFrameSizeMs = 20; |
| constexpr int kTsIncrement = kFrameSizeMs * kFs / 1000; |
| constexpr int kMaxBufferSizeMs = kMaxNumberOfPackets * kFrameSizeMs; |
| constexpr int kDefaultHistogramQuantile = 1020054733; |
| constexpr int kMaxIat = 64; |
| constexpr int kForgetFactor = 32745; |
| } // namespace |
| |
| using ::testing::_; |
| using ::testing::Return; |
| |
| class DelayManagerTest : public ::testing::Test { |
| protected: |
| DelayManagerTest(); |
| virtual void SetUp(); |
| virtual void TearDown(); |
| void RecreateDelayManager(); |
| void SetPacketAudioLength(int lengt_ms); |
| void InsertNextPacket(); |
| void IncreaseTime(int inc_ms); |
| |
| std::unique_ptr<DelayManager> dm_; |
| TickTimer tick_timer_; |
| MockStatisticsCalculator stats_; |
| MockDelayPeakDetector detector_; |
| MockHistogram* mock_histogram_; |
| uint16_t seq_no_; |
| uint32_t ts_; |
| bool enable_rtx_handling_ = false; |
| bool use_mock_histogram_ = false; |
| DelayManager::HistogramMode histogram_mode_ = |
| DelayManager::HistogramMode::RELATIVE_ARRIVAL_DELAY; |
| }; |
| |
| DelayManagerTest::DelayManagerTest() |
| : dm_(nullptr), |
| detector_(&tick_timer_, false), |
| seq_no_(0x1234), |
| ts_(0x12345678) {} |
| |
| void DelayManagerTest::SetUp() { |
| RecreateDelayManager(); |
| } |
| |
| void DelayManagerTest::RecreateDelayManager() { |
| EXPECT_CALL(detector_, Reset()).Times(1); |
| if (use_mock_histogram_) { |
| mock_histogram_ = new MockHistogram(kMaxIat, kForgetFactor); |
| std::unique_ptr<Histogram> histogram(mock_histogram_); |
| dm_ = std::make_unique<DelayManager>( |
| kMaxNumberOfPackets, kMinDelayMs, kDefaultHistogramQuantile, |
| histogram_mode_, enable_rtx_handling_, &detector_, &tick_timer_, |
| &stats_, std::move(histogram)); |
| } else { |
| dm_ = DelayManager::Create(kMaxNumberOfPackets, kMinDelayMs, |
| enable_rtx_handling_, &detector_, &tick_timer_, |
| &stats_); |
| } |
| } |
| |
| void DelayManagerTest::SetPacketAudioLength(int lengt_ms) { |
| EXPECT_CALL(detector_, SetPacketAudioLength(lengt_ms)); |
| dm_->SetPacketAudioLength(lengt_ms); |
| } |
| |
| void DelayManagerTest::InsertNextPacket() { |
| EXPECT_EQ(0, dm_->Update(seq_no_, ts_, kFs)); |
| seq_no_ += 1; |
| ts_ += kTsIncrement; |
| } |
| |
| void DelayManagerTest::IncreaseTime(int inc_ms) { |
| for (int t = 0; t < inc_ms; t += kTimeStepMs) { |
| tick_timer_.Increment(); |
| } |
| } |
| |
| void DelayManagerTest::TearDown() { |
| EXPECT_CALL(detector_, Die()); |
| } |
| |
| TEST_F(DelayManagerTest, CreateAndDestroy) { |
| // Nothing to do here. The test fixture creates and destroys the DelayManager |
| // object. |
| } |
| |
| TEST_F(DelayManagerTest, SetPacketAudioLength) { |
| const int kLengthMs = 30; |
| // Expect DelayManager to pass on the new length to the detector object. |
| EXPECT_CALL(detector_, SetPacketAudioLength(kLengthMs)).Times(1); |
| EXPECT_EQ(0, dm_->SetPacketAudioLength(kLengthMs)); |
| EXPECT_EQ(-1, dm_->SetPacketAudioLength(-1)); // Illegal parameter value. |
| } |
| |
| TEST_F(DelayManagerTest, PeakFound) { |
| // Expect DelayManager to pass on the question to the detector. |
| // Call twice, and let the detector return true the first time and false the |
| // second time. |
| EXPECT_CALL(detector_, peak_found()) |
| .WillOnce(Return(true)) |
| .WillOnce(Return(false)); |
| EXPECT_TRUE(dm_->PeakFound()); |
| EXPECT_FALSE(dm_->PeakFound()); |
| } |
| |
| TEST_F(DelayManagerTest, UpdateNormal) { |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Advance time by one frame size. |
| IncreaseTime(kFrameSizeMs); |
| // Second packet arrival. |
| InsertNextPacket(); |
| EXPECT_EQ(1 << 8, dm_->TargetLevel()); // In Q8. |
| EXPECT_EQ(1, dm_->base_target_level()); |
| int lower, higher; |
| dm_->BufferLimits(&lower, &higher); |
| // Expect |lower| to be 75% of target level, and |higher| to be target level, |
| // but also at least 20 ms higher than |lower|, which is the limiting case |
| // here. |
| EXPECT_EQ((1 << 8) * 3 / 4, lower); |
| EXPECT_EQ(lower + (20 << 8) / kFrameSizeMs, higher); |
| } |
| |
| TEST_F(DelayManagerTest, UpdateLongInterArrivalTime) { |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Advance time by two frame size. |
| IncreaseTime(2 * kFrameSizeMs); |
| // Second packet arrival. |
| InsertNextPacket(); |
| EXPECT_EQ(2 << 8, dm_->TargetLevel()); // In Q8. |
| EXPECT_EQ(2, dm_->base_target_level()); |
| int lower, higher; |
| dm_->BufferLimits(&lower, &higher); |
| // Expect |lower| to be 75% of target level, and |higher| to be target level, |
| // but also at least 20 ms higher than |lower|, which is the limiting case |
| // here. |
| EXPECT_EQ((2 << 8) * 3 / 4, lower); |
| EXPECT_EQ(lower + (20 << 8) / kFrameSizeMs, higher); |
| } |
| |
| TEST_F(DelayManagerTest, MaxDelay) { |
| const int kExpectedTarget = 5; |
| const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Second packet arrival. |
| IncreaseTime(kTimeIncrement); |
| InsertNextPacket(); |
| |
| // No limit is set. |
| EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); |
| |
| int kMaxDelayPackets = kExpectedTarget - 2; |
| int kMaxDelayMs = kMaxDelayPackets * kFrameSizeMs; |
| EXPECT_TRUE(dm_->SetMaximumDelay(kMaxDelayMs)); |
| IncreaseTime(kTimeIncrement); |
| InsertNextPacket(); |
| EXPECT_EQ(kMaxDelayPackets << 8, dm_->TargetLevel()); |
| |
| // Target level at least should be one packet. |
| EXPECT_FALSE(dm_->SetMaximumDelay(kFrameSizeMs - 1)); |
| } |
| |
| TEST_F(DelayManagerTest, MinDelay) { |
| const int kExpectedTarget = 5; |
| const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Second packet arrival. |
| IncreaseTime(kTimeIncrement); |
| InsertNextPacket(); |
| |
| // No limit is applied. |
| EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); |
| |
| int kMinDelayPackets = kExpectedTarget + 2; |
| int kMinDelayMs = kMinDelayPackets * kFrameSizeMs; |
| dm_->SetMinimumDelay(kMinDelayMs); |
| IncreaseTime(kFrameSizeMs); |
| InsertNextPacket(); |
| EXPECT_EQ(kMinDelayPackets << 8, dm_->TargetLevel()); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayCheckValidRange) { |
| SetPacketAudioLength(kFrameSizeMs); |
| |
| // Base minimum delay should be between [0, 10000] milliseconds. |
| EXPECT_FALSE(dm_->SetBaseMinimumDelay(-1)); |
| EXPECT_FALSE(dm_->SetBaseMinimumDelay(10001)); |
| EXPECT_EQ(dm_->GetBaseMinimumDelay(), 0); |
| |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(7999)); |
| EXPECT_EQ(dm_->GetBaseMinimumDelay(), 7999); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMinimumDelay) { |
| SetPacketAudioLength(kFrameSizeMs); |
| constexpr int kBaseMinimumDelayMs = 100; |
| constexpr int kMinimumDelayMs = 200; |
| |
| // Base minimum delay sets lower bound on minimum. That is why when base |
| // minimum delay is lower than minimum delay we use minimum delay. |
| RTC_DCHECK_LT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMinimumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMinimumDelay) { |
| SetPacketAudioLength(kFrameSizeMs); |
| constexpr int kBaseMinimumDelayMs = 70; |
| constexpr int kMinimumDelayMs = 30; |
| |
| // Base minimum delay sets lower bound on minimum. That is why when base |
| // minimum delay is greater than minimum delay we use base minimum delay. |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanBufferSize) { |
| SetPacketAudioLength(kFrameSizeMs); |
| constexpr int kBaseMinimumDelayMs = kMaxBufferSizeMs + 1; |
| constexpr int kMinimumDelayMs = 12; |
| constexpr int kMaximumDelayMs = 20; |
| constexpr int kMaxBufferSizeMsQ75 = 3 * kMaxBufferSizeMs / 4; |
| |
| EXPECT_TRUE(dm_->SetMaximumDelay(kMaximumDelayMs)); |
| |
| // Base minimum delay is greater than minimum delay, that is why we clamp |
| // it to current the highest possible value which is maximum delay. |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaxBufferSizeMs); |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs); |
| RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMsQ75); |
| |
| EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| |
| // Unset maximum value. |
| EXPECT_TRUE(dm_->SetMaximumDelay(0)); |
| |
| // With maximum value unset, the highest possible value now is 75% of |
| // currently possible maximum buffer size. |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMaxBufferSizeMsQ75); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMaximumDelay) { |
| SetPacketAudioLength(kFrameSizeMs); |
| constexpr int kMaximumDelayMs = 400; |
| constexpr int kBaseMinimumDelayMs = kMaximumDelayMs + 1; |
| constexpr int kMinimumDelayMs = 20; |
| |
| // Base minimum delay is greater than minimum delay, that is why we clamp |
| // it to current the highest possible value which is kMaximumDelayMs. |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs); |
| RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMs); |
| |
| EXPECT_TRUE(dm_->SetMaximumDelay(kMaximumDelayMs)); |
| EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMaximumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMaxSize) { |
| SetPacketAudioLength(kFrameSizeMs); |
| constexpr int kMaximumDelayMs = 400; |
| constexpr int kBaseMinimumDelayMs = kMaximumDelayMs - 1; |
| constexpr int kMinimumDelayMs = 20; |
| |
| // Base minimum delay is greater than minimum delay, and lower than maximum |
| // delays that is why it is used. |
| RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); |
| RTC_DCHECK_LT(kBaseMinimumDelayMs, kMaximumDelayMs); |
| |
| EXPECT_TRUE(dm_->SetMaximumDelay(kMaximumDelayMs)); |
| EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, MinimumDelayMemorization) { |
| // Check that when we increase base minimum delay to value higher than |
| // minimum delay then minimum delay is still memorized. This allows to |
| // restore effective minimum delay to memorized minimum delay value when we |
| // decrease base minimum delay. |
| SetPacketAudioLength(kFrameSizeMs); |
| |
| constexpr int kBaseMinimumDelayMsLow = 10; |
| constexpr int kMinimumDelayMs = 20; |
| constexpr int kBaseMinimumDelayMsHigh = 30; |
| |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMsLow)); |
| EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); |
| // Minimum delay is used as it is higher than base minimum delay. |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMinimumDelayMs); |
| |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMsHigh)); |
| // Base minimum delay is used as it is now higher than minimum delay. |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), |
| kBaseMinimumDelayMsHigh); |
| |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMsLow)); |
| // Check that minimum delay is memorized and is used again. |
| EXPECT_EQ(dm_->effective_minimum_delay_ms_for_test(), kMinimumDelayMs); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDelay) { |
| const int kExpectedTarget = 5; |
| const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Second packet arrival. |
| IncreaseTime(kTimeIncrement); |
| InsertNextPacket(); |
| |
| // No limit is applied. |
| EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); |
| |
| constexpr int kBaseMinimumDelayPackets = kExpectedTarget + 2; |
| constexpr int kBaseMinimumDelayMs = kBaseMinimumDelayPackets * kFrameSizeMs; |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs); |
| |
| IncreaseTime(kFrameSizeMs); |
| InsertNextPacket(); |
| EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs); |
| EXPECT_EQ(kBaseMinimumDelayPackets << 8, dm_->TargetLevel()); |
| } |
| |
| TEST_F(DelayManagerTest, BaseMinimumDealyAffectTargetLevel) { |
| const int kExpectedTarget = 5; |
| const int kTimeIncrement = kExpectedTarget * kFrameSizeMs; |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| // Second packet arrival. |
| IncreaseTime(kTimeIncrement); |
| InsertNextPacket(); |
| |
| // No limit is applied. |
| EXPECT_EQ(kExpectedTarget << 8, dm_->TargetLevel()); |
| |
| // Minimum delay is lower than base minimum delay, that is why base minimum |
| // delay is used to calculate target level. |
| constexpr int kMinimumDelayPackets = kExpectedTarget + 1; |
| constexpr int kBaseMinimumDelayPackets = kExpectedTarget + 2; |
| |
| constexpr int kMinimumDelayMs = kMinimumDelayPackets * kFrameSizeMs; |
| constexpr int kBaseMinimumDelayMs = kBaseMinimumDelayPackets * kFrameSizeMs; |
| |
| EXPECT_TRUE(kMinimumDelayMs < kBaseMinimumDelayMs); |
| EXPECT_TRUE(dm_->SetMinimumDelay(kMinimumDelayMs)); |
| EXPECT_TRUE(dm_->SetBaseMinimumDelay(kBaseMinimumDelayMs)); |
| EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs); |
| |
| IncreaseTime(kFrameSizeMs); |
| InsertNextPacket(); |
| EXPECT_EQ(dm_->GetBaseMinimumDelay(), kBaseMinimumDelayMs); |
| EXPECT_EQ(kBaseMinimumDelayPackets << 8, dm_->TargetLevel()); |
| } |
| |
| TEST_F(DelayManagerTest, EnableRtxHandling) { |
| enable_rtx_handling_ = true; |
| use_mock_histogram_ = true; |
| RecreateDelayManager(); |
| EXPECT_TRUE(mock_histogram_); |
| |
| // Insert first packet. |
| SetPacketAudioLength(kFrameSizeMs); |
| InsertNextPacket(); |
| |
| // Insert reordered packet. |
| EXPECT_CALL(*mock_histogram_, Add(2)); |
| EXPECT_EQ(0, dm_->Update(seq_no_ - 3, ts_ - 3 * kFrameSizeMs, kFs)); |
| |
| // Insert another reordered packet. |
| EXPECT_CALL(*mock_histogram_, Add(1)); |
| EXPECT_EQ(0, dm_->Update(seq_no_ - 2, ts_ - 2 * kFrameSizeMs, kFs)); |
| |
| // Insert the next packet in order and verify that the inter-arrival time is |
| // estimated correctly. |
| IncreaseTime(kFrameSizeMs); |
| EXPECT_CALL(*mock_histogram_, Add(0)); |
| InsertNextPacket(); |
| } |
| |
| // Tests that skipped sequence numbers (simulating empty packets) are handled |
| // correctly. |
| // TODO(jakobi): Make delay manager independent of sequence numbers. |
| TEST_F(DelayManagerTest, EmptyPacketsReported) { |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| |
| // Advance time by one frame size. |
| IncreaseTime(kFrameSizeMs); |
| |
| // Advance the sequence number by 5, simulating that 5 empty packets were |
| // received, but never inserted. |
| seq_no_ += 10; |
| for (int j = 0; j < 10; ++j) { |
| dm_->RegisterEmptyPacket(); |
| } |
| |
| // Second packet arrival. |
| InsertNextPacket(); |
| |
| EXPECT_EQ(1 << 8, dm_->TargetLevel()); // In Q8. |
| } |
| |
| // Same as above, but do not call RegisterEmptyPacket. Target level stays the |
| // same. |
| TEST_F(DelayManagerTest, EmptyPacketsNotReported) { |
| SetPacketAudioLength(kFrameSizeMs); |
| // First packet arrival. |
| InsertNextPacket(); |
| |
| // Advance time by one frame size. |
| IncreaseTime(kFrameSizeMs); |
| |
| // Advance the sequence number by 10, simulating that 10 empty packets were |
| // received, but never inserted. |
| seq_no_ += 10; |
| |
| // Second packet arrival. |
| InsertNextPacket(); |
| |
| EXPECT_EQ(1 << 8, dm_->TargetLevel()); // In Q8. |
| } |
| |
| TEST_F(DelayManagerTest, Failures) { |
| // Wrong sample rate. |
| EXPECT_EQ(-1, dm_->Update(0, 0, -1)); |
| // Wrong packet size. |
| EXPECT_EQ(-1, dm_->SetPacketAudioLength(0)); |
| EXPECT_EQ(-1, dm_->SetPacketAudioLength(-1)); |
| |
| // Minimum delay higher than a maximum delay is not accepted. |
| EXPECT_TRUE(dm_->SetMaximumDelay(10)); |
| EXPECT_FALSE(dm_->SetMinimumDelay(20)); |
| |
| // Maximum delay less than minimum delay is not accepted. |
| EXPECT_TRUE(dm_->SetMaximumDelay(100)); |
| EXPECT_TRUE(dm_->SetMinimumDelay(80)); |
| EXPECT_FALSE(dm_->SetMaximumDelay(60)); |
| } |
| |
| TEST_F(DelayManagerTest, DelayHistogramFieldTrial) { |
| { |
| test::ScopedFieldTrials field_trial( |
| "WebRTC-Audio-NetEqDelayHistogram/Enabled-96-0.998/"); |
| RecreateDelayManager(); |
| EXPECT_EQ(DelayManager::HistogramMode::RELATIVE_ARRIVAL_DELAY, |
| dm_->histogram_mode()); |
| EXPECT_EQ(1030792151, dm_->histogram_quantile()); // 0.96 in Q30. |
| EXPECT_EQ( |
| 32702, |
| dm_->histogram()->base_forget_factor_for_testing()); // 0.998 in Q15. |
| EXPECT_FALSE(dm_->histogram()->start_forget_weight_for_testing()); |
| } |
| { |
| test::ScopedFieldTrials field_trial( |
| "WebRTC-Audio-NetEqDelayHistogram/Enabled-97.5-0.998/"); |
| RecreateDelayManager(); |
| EXPECT_EQ(DelayManager::HistogramMode::RELATIVE_ARRIVAL_DELAY, |
| dm_->histogram_mode()); |
| EXPECT_EQ(1046898278, dm_->histogram_quantile()); // 0.975 in Q30. |
| EXPECT_EQ( |
| 32702, |
| dm_->histogram()->base_forget_factor_for_testing()); // 0.998 in Q15. |
| EXPECT_FALSE(dm_->histogram()->start_forget_weight_for_testing()); |
| } |
| // Test parameter for new call start adaptation. |
| { |
| test::ScopedFieldTrials field_trial( |
| "WebRTC-Audio-NetEqDelayHistogram/Enabled-96-0.998-1/"); |
| RecreateDelayManager(); |
| EXPECT_EQ(dm_->histogram()->start_forget_weight_for_testing().value(), 1.0); |
| } |
| { |
| test::ScopedFieldTrials field_trial( |
| "WebRTC-Audio-NetEqDelayHistogram/Enabled-96-0.998-1.5/"); |
| RecreateDelayManager(); |
| EXPECT_EQ(dm_->histogram()->start_forget_weight_for_testing().value(), 1.5); |
| } |
| { |
| test::ScopedFieldTrials field_trial( |
| "WebRTC-Audio-NetEqDelayHistogram/Enabled-96-0.998-0.5/"); |
| RecreateDelayManager(); |
| EXPECT_FALSE(dm_->histogram()->start_forget_weight_for_testing()); |
| } |
| } |
| |
| TEST_F(DelayManagerTest, RelativeArrivalDelayMode) { |
| histogram_mode_ = DelayManager::HistogramMode::RELATIVE_ARRIVAL_DELAY; |
| use_mock_histogram_ = true; |
| RecreateDelayManager(); |
| |
| SetPacketAudioLength(kFrameSizeMs); |
| InsertNextPacket(); |
| |
| IncreaseTime(kFrameSizeMs); |
| EXPECT_CALL(*mock_histogram_, Add(0)); // Not delayed. |
| InsertNextPacket(); |
| |
| IncreaseTime(2 * kFrameSizeMs); |
| EXPECT_CALL(*mock_histogram_, Add(1)); // 20ms delayed. |
| EXPECT_EQ(0, dm_->Update(seq_no_, ts_, kFs)); |
| |
| IncreaseTime(2 * kFrameSizeMs); |
| EXPECT_CALL(*mock_histogram_, Add(2)); // 40ms delayed. |
| EXPECT_EQ(0, dm_->Update(seq_no_ + 1, ts_ + kTsIncrement, kFs)); |
| |
| EXPECT_CALL(*mock_histogram_, Add(1)); // Reordered, 20ms delayed. |
| EXPECT_EQ(0, dm_->Update(seq_no_, ts_, kFs)); |
| } |
| |
| TEST_F(DelayManagerTest, MaxDelayHistory) { |
| histogram_mode_ = DelayManager::HistogramMode::RELATIVE_ARRIVAL_DELAY; |
| use_mock_histogram_ = true; |
| RecreateDelayManager(); |
| |
| SetPacketAudioLength(kFrameSizeMs); |
| InsertNextPacket(); |
| |
| // Insert 20 ms iat delay in the delay history. |
| IncreaseTime(2 * kFrameSizeMs); |
| EXPECT_CALL(*mock_histogram_, Add(1)); // 20ms delayed. |
| InsertNextPacket(); |
| |
| // Insert next packet with a timestamp difference larger than maximum history |
| // size. This removes the previously inserted iat delay from the history. |
| constexpr int kMaxHistoryMs = 2000; |
| IncreaseTime(kMaxHistoryMs + kFrameSizeMs); |
| ts_ += kFs * kMaxHistoryMs / 1000; |
| EXPECT_CALL(*mock_histogram_, Add(0)); // Not delayed. |
| EXPECT_EQ(0, dm_->Update(seq_no_, ts_, kFs)); |
| } |
| |
| TEST_F(DelayManagerTest, RelativeArrivalDelayStatistic) { |
| SetPacketAudioLength(kFrameSizeMs); |
| InsertNextPacket(); |
| |
| IncreaseTime(kFrameSizeMs); |
| EXPECT_CALL(stats_, RelativePacketArrivalDelay(0)); |
| InsertNextPacket(); |
| |
| IncreaseTime(2 * kFrameSizeMs); |
| EXPECT_CALL(stats_, RelativePacketArrivalDelay(20)); |
| InsertNextPacket(); |
| } |
| |
| TEST_F(DelayManagerTest, DecelerationTargetLevelOffset) { |
| SetPacketAudioLength(kFrameSizeMs); |
| |
| // Deceleration target level offset follows the value hardcoded in |
| // delay_manager.cc. |
| constexpr int kDecelerationTargetLevelOffsetMs = 85 << 8; // In Q8. |
| // Border value where |x * 3/4 = target_level - x|. |
| constexpr int kBoarderTargetLevel = kDecelerationTargetLevelOffsetMs * 4; |
| { |
| // Test that for a low target level, default behaviour is intact. |
| const int target_level_ms = kBoarderTargetLevel / kFrameSizeMs - 1; |
| |
| int lower, higher; // In Q8. |
| dm_->BufferLimits(target_level_ms, &lower, &higher); |
| |
| // Default behaviour of taking 75% of target level. |
| EXPECT_EQ(target_level_ms * 3 / 4, lower); |
| EXPECT_EQ(target_level_ms, higher); |
| } |
| |
| { |
| // Test that for the high target level, |lower| is below target level by |
| // fixed |kOffset|. |
| const int target_level_ms = kBoarderTargetLevel / kFrameSizeMs + 1; |
| |
| int lower, higher; // In Q8. |
| dm_->BufferLimits(target_level_ms, &lower, &higher); |
| |
| EXPECT_EQ(target_level_ms - kDecelerationTargetLevelOffsetMs / kFrameSizeMs, |
| lower); |
| EXPECT_EQ(target_level_ms, higher); |
| } |
| } |
| |
| TEST_F(DelayManagerTest, ExtraDelay) { |
| { |
| // Default behavior. Insert two packets so that a new target level is |
| // calculated. |
| SetPacketAudioLength(kFrameSizeMs); |
| InsertNextPacket(); |
| IncreaseTime(kFrameSizeMs); |
| InsertNextPacket(); |
| EXPECT_EQ(dm_->TargetLevel(), 1 << 8); |
| } |
| { |
| // Add 80 ms extra delay and calculate a new target level. |
| test::ScopedFieldTrials field_trial( |
| "WebRTC-Audio-NetEqExtraDelay/Enabled-80/"); |
| RecreateDelayManager(); |
| SetPacketAudioLength(kFrameSizeMs); |
| InsertNextPacket(); |
| IncreaseTime(kFrameSizeMs); |
| InsertNextPacket(); |
| EXPECT_EQ(dm_->TargetLevel(), 5 << 8); |
| } |
| } |
| |
| } // namespace webrtc |