| /* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/video_coding/codecs/vp8/screenshare_layers.h" |
| |
| #include <stdlib.h> |
| |
| #include <algorithm> |
| #include <memory> |
| |
| #include "modules/video_coding/include/video_codec_interface.h" |
| #include "rtc_base/arraysize.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/time_utils.h" |
| #include "system_wrappers/include/metrics.h" |
| |
| namespace webrtc { |
| namespace { |
| using BufferFlags = Vp8FrameConfig::BufferFlags; |
| |
| constexpr BufferFlags kNone = Vp8FrameConfig::BufferFlags::kNone; |
| constexpr BufferFlags kReference = Vp8FrameConfig::BufferFlags::kReference; |
| constexpr BufferFlags kUpdate = Vp8FrameConfig::BufferFlags::kUpdate; |
| constexpr BufferFlags kReferenceAndUpdate = |
| Vp8FrameConfig::BufferFlags::kReferenceAndUpdate; |
| |
| constexpr int kOneSecond90Khz = 90000; |
| constexpr int kMinTimeBetweenSyncs = kOneSecond90Khz * 2; |
| constexpr int kMaxTimeBetweenSyncs = kOneSecond90Khz * 4; |
| constexpr int kQpDeltaThresholdForSync = 8; |
| constexpr int kMinBitrateKbpsForQpBoost = 500; |
| } // namespace |
| |
| const double ScreenshareLayers::kMaxTL0FpsReduction = 2.5; |
| const double ScreenshareLayers::kAcceptableTargetOvershoot = 2.0; |
| |
| constexpr int ScreenshareLayers::kMaxNumTemporalLayers; |
| |
| // Always emit a frame with certain interval, even if bitrate targets have |
| // been exceeded. This prevents needless keyframe requests. |
| const int ScreenshareLayers::kMaxFrameIntervalMs = 2750; |
| |
| ScreenshareLayers::ScreenshareLayers(int num_temporal_layers) |
| : number_of_temporal_layers_( |
| std::min(kMaxNumTemporalLayers, num_temporal_layers)), |
| active_layer_(-1), |
| last_timestamp_(-1), |
| last_sync_timestamp_(-1), |
| last_emitted_tl0_timestamp_(-1), |
| last_frame_time_ms_(-1), |
| min_qp_(-1), |
| max_qp_(-1), |
| max_debt_bytes_(0), |
| encode_framerate_(1000.0f, 1000.0f), // 1 second window, second scale. |
| bitrate_updated_(false), |
| checker_(TemporalLayersChecker::CreateTemporalLayersChecker( |
| Vp8TemporalLayersType::kBitrateDynamic, |
| num_temporal_layers)) { |
| RTC_CHECK_GT(number_of_temporal_layers_, 0); |
| RTC_CHECK_LE(number_of_temporal_layers_, kMaxNumTemporalLayers); |
| } |
| |
| ScreenshareLayers::~ScreenshareLayers() { |
| UpdateHistograms(); |
| } |
| |
| size_t ScreenshareLayers::StreamCount() const { |
| return 1; |
| } |
| |
| bool ScreenshareLayers::SupportsEncoderFrameDropping( |
| size_t stream_index) const { |
| RTC_DCHECK_LT(stream_index, StreamCount()); |
| // Frame dropping is handled internally by this class. |
| return false; |
| } |
| |
| Vp8FrameConfig ScreenshareLayers::UpdateLayerConfig(size_t stream_index, |
| uint32_t timestamp) { |
| RTC_DCHECK_LT(stream_index, StreamCount()); |
| |
| auto it = pending_frame_configs_.find(timestamp); |
| if (it != pending_frame_configs_.end()) { |
| // Drop and re-encode, reuse the previous config. |
| return it->second.frame_config; |
| } |
| |
| if (number_of_temporal_layers_ <= 1) { |
| // No flags needed for 1 layer screenshare. |
| // TODO(pbos): Consider updating only last, and not all buffers. |
| DependencyInfo dependency_info{ |
| "S", {kReferenceAndUpdate, kReferenceAndUpdate, kReferenceAndUpdate}}; |
| pending_frame_configs_[timestamp] = dependency_info; |
| return dependency_info.frame_config; |
| } |
| |
| const int64_t now_ms = rtc::TimeMillis(); |
| |
| int64_t unwrapped_timestamp = time_wrap_handler_.Unwrap(timestamp); |
| int64_t ts_diff; |
| if (last_timestamp_ == -1) { |
| ts_diff = kOneSecond90Khz / capture_framerate_.value_or(*target_framerate_); |
| } else { |
| ts_diff = unwrapped_timestamp - last_timestamp_; |
| } |
| |
| if (target_framerate_) { |
| // If input frame rate exceeds target frame rate, either over a one second |
| // averaging window, or if frame interval is below 90% of desired value, |
| // drop frame. |
| if (encode_framerate_.Rate(now_ms).value_or(0) > *target_framerate_) |
| return Vp8FrameConfig(kNone, kNone, kNone); |
| |
| // Primarily check if frame interval is too short using frame timestamps, |
| // as if they are correct they won't be affected by queuing in webrtc. |
| const int64_t expected_frame_interval_90khz = |
| kOneSecond90Khz / *target_framerate_; |
| if (last_timestamp_ != -1 && ts_diff > 0) { |
| if (ts_diff < 85 * expected_frame_interval_90khz / 100) { |
| return Vp8FrameConfig(kNone, kNone, kNone); |
| } |
| } else { |
| // Timestamps looks off, use realtime clock here instead. |
| const int64_t expected_frame_interval_ms = 1000 / *target_framerate_; |
| if (last_frame_time_ms_ != -1 && |
| now_ms - last_frame_time_ms_ < |
| (85 * expected_frame_interval_ms) / 100) { |
| return Vp8FrameConfig(kNone, kNone, kNone); |
| } |
| } |
| } |
| |
| if (stats_.first_frame_time_ms_ == -1) |
| stats_.first_frame_time_ms_ = now_ms; |
| |
| // Make sure both frame droppers leak out bits. |
| layers_[0].UpdateDebt(ts_diff / 90); |
| layers_[1].UpdateDebt(ts_diff / 90); |
| last_timestamp_ = timestamp; |
| last_frame_time_ms_ = now_ms; |
| |
| TemporalLayerState layer_state = TemporalLayerState::kDrop; |
| |
| if (active_layer_ == -1 || |
| layers_[active_layer_].state != TemporalLayer::State::kDropped) { |
| if (last_emitted_tl0_timestamp_ != -1 && |
| (unwrapped_timestamp - last_emitted_tl0_timestamp_) / 90 > |
| kMaxFrameIntervalMs) { |
| // Too long time has passed since the last frame was emitted, cancel |
| // enough debt to allow a single frame. |
| layers_[0].debt_bytes_ = max_debt_bytes_ - 1; |
| } |
| if (layers_[0].debt_bytes_ > max_debt_bytes_) { |
| // Must drop TL0, encode TL1 instead. |
| if (layers_[1].debt_bytes_ > max_debt_bytes_) { |
| // Must drop both TL0 and TL1. |
| active_layer_ = -1; |
| } else { |
| active_layer_ = 1; |
| } |
| } else { |
| active_layer_ = 0; |
| } |
| } |
| |
| switch (active_layer_) { |
| case 0: |
| layer_state = TemporalLayerState::kTl0; |
| last_emitted_tl0_timestamp_ = unwrapped_timestamp; |
| break; |
| case 1: |
| if (layers_[1].state != TemporalLayer::State::kDropped) { |
| if (TimeToSync(unwrapped_timestamp) || |
| layers_[1].state == TemporalLayer::State::kKeyFrame) { |
| last_sync_timestamp_ = unwrapped_timestamp; |
| layer_state = TemporalLayerState::kTl1Sync; |
| } else { |
| layer_state = TemporalLayerState::kTl1; |
| } |
| } else { |
| layer_state = last_sync_timestamp_ == unwrapped_timestamp |
| ? TemporalLayerState::kTl1Sync |
| : TemporalLayerState::kTl1; |
| } |
| break; |
| case -1: |
| layer_state = TemporalLayerState::kDrop; |
| ++stats_.num_dropped_frames_; |
| break; |
| default: |
| RTC_NOTREACHED(); |
| } |
| |
| DependencyInfo dependency_info; |
| // TODO(pbos): Consider referencing but not updating the 'alt' buffer for all |
| // layers. |
| switch (layer_state) { |
| case TemporalLayerState::kDrop: |
| dependency_info = {"", {kNone, kNone, kNone}}; |
| break; |
| case TemporalLayerState::kTl0: |
| // TL0 only references and updates 'last'. |
| dependency_info = {"SS", {kReferenceAndUpdate, kNone, kNone}}; |
| dependency_info.frame_config.packetizer_temporal_idx = 0; |
| break; |
| case TemporalLayerState::kTl1: |
| // TL1 references both 'last' and 'golden' but only updates 'golden'. |
| dependency_info = {"-R", {kReference, kReferenceAndUpdate, kNone}}; |
| dependency_info.frame_config.packetizer_temporal_idx = 1; |
| break; |
| case TemporalLayerState::kTl1Sync: |
| // Predict from only TL0 to allow participants to switch to the high |
| // bitrate stream. Updates 'golden' so that TL1 can continue to refer to |
| // and update 'golden' from this point on. |
| dependency_info = {"-S", {kReference, kUpdate, kNone}}; |
| dependency_info.frame_config.packetizer_temporal_idx = 1; |
| dependency_info.frame_config.layer_sync = true; |
| break; |
| } |
| |
| pending_frame_configs_[timestamp] = dependency_info; |
| return dependency_info.frame_config; |
| } |
| |
| void ScreenshareLayers::OnRatesUpdated( |
| size_t stream_index, |
| const std::vector<uint32_t>& bitrates_bps, |
| int framerate_fps) { |
| RTC_DCHECK_LT(stream_index, StreamCount()); |
| RTC_DCHECK_GT(framerate_fps, 0); |
| RTC_DCHECK_GE(bitrates_bps.size(), 1); |
| RTC_DCHECK_LE(bitrates_bps.size(), 2); |
| |
| // |bitrates_bps| uses individual rates per layer, but we want to use the |
| // accumulated rate here. |
| uint32_t tl0_kbps = bitrates_bps[0] / 1000; |
| uint32_t tl1_kbps = tl0_kbps; |
| if (bitrates_bps.size() > 1) { |
| tl1_kbps += bitrates_bps[1] / 1000; |
| } |
| |
| if (!target_framerate_) { |
| // First OnRatesUpdated() is called during construction, with the |
| // configured targets as parameters. |
| target_framerate_ = framerate_fps; |
| capture_framerate_ = target_framerate_; |
| bitrate_updated_ = true; |
| } else { |
| if ((capture_framerate_ && |
| framerate_fps != static_cast<int>(*capture_framerate_)) || |
| (tl0_kbps != layers_[0].target_rate_kbps_) || |
| (tl1_kbps != layers_[1].target_rate_kbps_)) { |
| bitrate_updated_ = true; |
| } |
| |
| if (framerate_fps < 0) { |
| capture_framerate_.reset(); |
| } else { |
| capture_framerate_ = framerate_fps; |
| } |
| } |
| |
| layers_[0].target_rate_kbps_ = tl0_kbps; |
| layers_[1].target_rate_kbps_ = tl1_kbps; |
| } |
| |
| void ScreenshareLayers::OnEncodeDone(size_t stream_index, |
| uint32_t rtp_timestamp, |
| size_t size_bytes, |
| bool is_keyframe, |
| int qp, |
| CodecSpecificInfo* info) { |
| RTC_DCHECK_LT(stream_index, StreamCount()); |
| |
| if (size_bytes == 0) { |
| layers_[active_layer_].state = TemporalLayer::State::kDropped; |
| ++stats_.num_overshoots_; |
| return; |
| } |
| |
| absl::optional<DependencyInfo> dependency_info; |
| auto it = pending_frame_configs_.find(rtp_timestamp); |
| if (it != pending_frame_configs_.end()) { |
| dependency_info = it->second; |
| pending_frame_configs_.erase(it); |
| |
| if (checker_) { |
| RTC_DCHECK(checker_->CheckTemporalConfig(is_keyframe, |
| dependency_info->frame_config)); |
| } |
| } |
| |
| CodecSpecificInfoVP8& vp8_info = info->codecSpecific.VP8; |
| GenericFrameInfo& generic_frame_info = info->generic_frame_info.emplace(); |
| |
| if (number_of_temporal_layers_ == 1) { |
| vp8_info.temporalIdx = kNoTemporalIdx; |
| vp8_info.layerSync = false; |
| generic_frame_info.decode_target_indications = |
| GenericFrameInfo::DecodeTargetInfo("S"); |
| } else { |
| int64_t unwrapped_timestamp = time_wrap_handler_.Unwrap(rtp_timestamp); |
| if (dependency_info) { |
| vp8_info.temporalIdx = |
| dependency_info->frame_config.packetizer_temporal_idx; |
| vp8_info.layerSync = dependency_info->frame_config.layer_sync; |
| generic_frame_info.decode_target_indications = |
| dependency_info->decode_target_indications; |
| } else { |
| RTC_DCHECK(is_keyframe); |
| generic_frame_info.decode_target_indications = |
| GenericFrameInfo::DecodeTargetInfo("SS"); |
| } |
| |
| if (is_keyframe) { |
| vp8_info.temporalIdx = 0; |
| last_sync_timestamp_ = unwrapped_timestamp; |
| vp8_info.layerSync = true; |
| layers_[0].state = TemporalLayer::State::kKeyFrame; |
| layers_[1].state = TemporalLayer::State::kKeyFrame; |
| active_layer_ = 1; |
| info->template_structure = |
| GetTemplateStructure(number_of_temporal_layers_); |
| } else if (active_layer_ >= 0 && layers_[active_layer_].state == |
| TemporalLayer::State::kKeyFrame) { |
| layers_[active_layer_].state = TemporalLayer::State::kNormal; |
| } |
| |
| vp8_info.useExplicitDependencies = true; |
| RTC_DCHECK_EQ(vp8_info.referencedBuffersCount, 0u); |
| RTC_DCHECK_EQ(vp8_info.updatedBuffersCount, 0u); |
| |
| // Note that |frame_config| is not derefernced if |is_keyframe|, |
| // meaning it's never dereferenced if the optional may be unset. |
| for (int i = 0; i < static_cast<int>(Vp8FrameConfig::Buffer::kCount); ++i) { |
| if (!is_keyframe && dependency_info->frame_config.References( |
| static_cast<Vp8FrameConfig::Buffer>(i))) { |
| RTC_DCHECK_LT(vp8_info.referencedBuffersCount, |
| arraysize(CodecSpecificInfoVP8::referencedBuffers)); |
| vp8_info.referencedBuffers[vp8_info.referencedBuffersCount++] = i; |
| } |
| |
| if (is_keyframe || dependency_info->frame_config.Updates( |
| static_cast<Vp8FrameConfig::Buffer>(i))) { |
| RTC_DCHECK_LT(vp8_info.updatedBuffersCount, |
| arraysize(CodecSpecificInfoVP8::updatedBuffers)); |
| vp8_info.updatedBuffers[vp8_info.updatedBuffersCount++] = i; |
| } |
| } |
| } |
| |
| encode_framerate_.Update(1, rtc::TimeMillis()); |
| |
| if (number_of_temporal_layers_ == 1) |
| return; |
| |
| RTC_DCHECK_NE(-1, active_layer_); |
| if (layers_[active_layer_].state == TemporalLayer::State::kDropped) { |
| layers_[active_layer_].state = TemporalLayer::State::kQualityBoost; |
| } |
| |
| if (qp != -1) |
| layers_[active_layer_].last_qp = qp; |
| |
| if (active_layer_ == 0) { |
| layers_[0].debt_bytes_ += size_bytes; |
| layers_[1].debt_bytes_ += size_bytes; |
| ++stats_.num_tl0_frames_; |
| stats_.tl0_target_bitrate_sum_ += layers_[0].target_rate_kbps_; |
| stats_.tl0_qp_sum_ += qp; |
| } else if (active_layer_ == 1) { |
| layers_[1].debt_bytes_ += size_bytes; |
| ++stats_.num_tl1_frames_; |
| stats_.tl1_target_bitrate_sum_ += layers_[1].target_rate_kbps_; |
| stats_.tl1_qp_sum_ += qp; |
| } |
| } |
| |
| void ScreenshareLayers::OnPacketLossRateUpdate(float packet_loss_rate) {} |
| |
| void ScreenshareLayers::OnRttUpdate(int64_t rtt_ms) {} |
| |
| void ScreenshareLayers::OnLossNotification( |
| const VideoEncoder::LossNotification loss_notification) {} |
| |
| TemplateStructure ScreenshareLayers::GetTemplateStructure( |
| int num_layers) const { |
| RTC_CHECK_LT(num_layers, 3); |
| RTC_CHECK_GT(num_layers, 0); |
| |
| TemplateStructure template_structure; |
| template_structure.num_decode_targets = num_layers; |
| |
| using Builder = GenericFrameInfo::Builder; |
| switch (num_layers) { |
| case 1: { |
| template_structure.templates = { |
| Builder().T(0).Dtis("S").Build(), |
| Builder().T(0).Dtis("S").Fdiffs({1}).Build(), |
| }; |
| return template_structure; |
| } |
| case 2: { |
| template_structure.templates = { |
| Builder().T(0).Dtis("SS").Build(), |
| Builder().T(0).Dtis("SS").Fdiffs({1}).Build(), |
| Builder().T(1).Dtis("-S").Fdiffs({1}).Build(), |
| }; |
| return template_structure; |
| } |
| default: |
| RTC_NOTREACHED(); |
| // To make the compiler happy! |
| return template_structure; |
| } |
| } |
| |
| bool ScreenshareLayers::TimeToSync(int64_t timestamp) const { |
| RTC_DCHECK_EQ(1, active_layer_); |
| RTC_DCHECK_NE(-1, layers_[0].last_qp); |
| if (layers_[1].last_qp == -1) { |
| // First frame in TL1 should only depend on TL0 since there are no |
| // previous frames in TL1. |
| return true; |
| } |
| |
| RTC_DCHECK_NE(-1, last_sync_timestamp_); |
| int64_t timestamp_diff = timestamp - last_sync_timestamp_; |
| if (timestamp_diff > kMaxTimeBetweenSyncs) { |
| // After a certain time, force a sync frame. |
| return true; |
| } else if (timestamp_diff < kMinTimeBetweenSyncs) { |
| // If too soon from previous sync frame, don't issue a new one. |
| return false; |
| } |
| // Issue a sync frame if difference in quality between TL0 and TL1 isn't too |
| // large. |
| if (layers_[0].last_qp - layers_[1].last_qp < kQpDeltaThresholdForSync) |
| return true; |
| return false; |
| } |
| |
| uint32_t ScreenshareLayers::GetCodecTargetBitrateKbps() const { |
| uint32_t target_bitrate_kbps = layers_[0].target_rate_kbps_; |
| |
| if (number_of_temporal_layers_ > 1) { |
| // Calculate a codec target bitrate. This may be higher than TL0, gaining |
| // quality at the expense of frame rate at TL0. Constraints: |
| // - TL0 frame rate no less than framerate / kMaxTL0FpsReduction. |
| // - Target rate * kAcceptableTargetOvershoot should not exceed TL1 rate. |
| target_bitrate_kbps = |
| std::min(layers_[0].target_rate_kbps_ * kMaxTL0FpsReduction, |
| layers_[1].target_rate_kbps_ / kAcceptableTargetOvershoot); |
| } |
| |
| return std::max(layers_[0].target_rate_kbps_, target_bitrate_kbps); |
| } |
| |
| bool ScreenshareLayers::UpdateConfiguration(size_t stream_index, |
| Vp8EncoderConfig* cfg) { |
| RTC_DCHECK_LT(stream_index, StreamCount()); |
| |
| if (min_qp_ == -1 || max_qp_ == -1) { |
| // Store the valid qp range. This must not change during the lifetime of |
| // this class. |
| min_qp_ = cfg->rc_min_quantizer; |
| max_qp_ = cfg->rc_max_quantizer; |
| } |
| |
| bool cfg_updated = false; |
| uint32_t target_bitrate_kbps = GetCodecTargetBitrateKbps(); |
| |
| // TODO(sprang): We _really_ need to make an overhaul of this class. :( |
| // If we're dropping frames in order to meet a target framerate, adjust the |
| // bitrate assigned to the encoder so the total average bitrate is correct. |
| float encoder_config_bitrate_kbps = target_bitrate_kbps; |
| if (target_framerate_ && capture_framerate_ && |
| *target_framerate_ < *capture_framerate_) { |
| encoder_config_bitrate_kbps *= |
| static_cast<float>(*capture_framerate_) / *target_framerate_; |
| } |
| |
| if (bitrate_updated_ || |
| cfg->rc_target_bitrate != encoder_config_bitrate_kbps) { |
| cfg->rc_target_bitrate = encoder_config_bitrate_kbps; |
| |
| // Don't reconfigure qp limits during quality boost frames. |
| if (active_layer_ == -1 || |
| layers_[active_layer_].state != TemporalLayer::State::kQualityBoost) { |
| // After a dropped frame, a frame with max qp will be encoded and the |
| // quality will then ramp up from there. To boost the speed of recovery, |
| // encode the next frame with lower max qp, if there is sufficient |
| // bandwidth to do so without causing excessive delay. |
| // TL0 is the most important to improve since the errors in this layer |
| // will propagate to TL1. |
| // Currently, reduce max qp by 20% for TL0 and 15% for TL1. |
| if (layers_[1].target_rate_kbps_ >= kMinBitrateKbpsForQpBoost) { |
| layers_[0].enhanced_max_qp = |
| min_qp_ + (((max_qp_ - min_qp_) * 80) / 100); |
| layers_[1].enhanced_max_qp = |
| min_qp_ + (((max_qp_ - min_qp_) * 85) / 100); |
| } else { |
| layers_[0].enhanced_max_qp = -1; |
| layers_[1].enhanced_max_qp = -1; |
| } |
| } |
| |
| if (capture_framerate_) { |
| int avg_frame_size = |
| (target_bitrate_kbps * 1000) / (8 * *capture_framerate_); |
| // Allow max debt to be the size of a single optimal frame. |
| // TODO(sprang): Determine if this needs to be adjusted by some factor. |
| // (Lower values may cause more frame drops, higher may lead to queuing |
| // delays.) |
| max_debt_bytes_ = avg_frame_size; |
| } |
| |
| bitrate_updated_ = false; |
| cfg_updated = true; |
| } |
| |
| // Don't try to update boosts state if not active yet. |
| if (active_layer_ == -1) |
| return cfg_updated; |
| |
| if (max_qp_ == -1 || number_of_temporal_layers_ <= 1) |
| return cfg_updated; |
| |
| // If layer is in the quality boost state (following a dropped frame), update |
| // the configuration with the adjusted (lower) qp and set the state back to |
| // normal. |
| unsigned int adjusted_max_qp = max_qp_; // Set the normal max qp. |
| if (layers_[active_layer_].state == TemporalLayer::State::kQualityBoost) { |
| if (layers_[active_layer_].enhanced_max_qp != -1) { |
| // Bitrate is high enough for quality boost, update max qp. |
| adjusted_max_qp = layers_[active_layer_].enhanced_max_qp; |
| } |
| // Regardless of qp, reset the boost state for the next frame. |
| layers_[active_layer_].state = TemporalLayer::State::kNormal; |
| } |
| |
| if (adjusted_max_qp == cfg->rc_max_quantizer) |
| return cfg_updated; |
| |
| cfg->rc_max_quantizer = adjusted_max_qp; |
| cfg_updated = true; |
| |
| return cfg_updated; |
| } |
| |
| void ScreenshareLayers::TemporalLayer::UpdateDebt(int64_t delta_ms) { |
| uint32_t debt_reduction_bytes = target_rate_kbps_ * delta_ms / 8; |
| if (debt_reduction_bytes >= debt_bytes_) { |
| debt_bytes_ = 0; |
| } else { |
| debt_bytes_ -= debt_reduction_bytes; |
| } |
| } |
| |
| void ScreenshareLayers::UpdateHistograms() { |
| if (stats_.first_frame_time_ms_ == -1) |
| return; |
| int64_t duration_sec = |
| (rtc::TimeMillis() - stats_.first_frame_time_ms_ + 500) / 1000; |
| if (duration_sec >= metrics::kMinRunTimeInSeconds) { |
| RTC_HISTOGRAM_COUNTS_10000( |
| "WebRTC.Video.Screenshare.Layer0.FrameRate", |
| (stats_.num_tl0_frames_ + (duration_sec / 2)) / duration_sec); |
| RTC_HISTOGRAM_COUNTS_10000( |
| "WebRTC.Video.Screenshare.Layer1.FrameRate", |
| (stats_.num_tl1_frames_ + (duration_sec / 2)) / duration_sec); |
| int total_frames = stats_.num_tl0_frames_ + stats_.num_tl1_frames_; |
| RTC_HISTOGRAM_COUNTS_10000( |
| "WebRTC.Video.Screenshare.FramesPerDrop", |
| (stats_.num_dropped_frames_ == 0 |
| ? 0 |
| : total_frames / stats_.num_dropped_frames_)); |
| RTC_HISTOGRAM_COUNTS_10000( |
| "WebRTC.Video.Screenshare.FramesPerOvershoot", |
| (stats_.num_overshoots_ == 0 ? 0 |
| : total_frames / stats_.num_overshoots_)); |
| if (stats_.num_tl0_frames_ > 0) { |
| RTC_HISTOGRAM_COUNTS_10000("WebRTC.Video.Screenshare.Layer0.Qp", |
| stats_.tl0_qp_sum_ / stats_.num_tl0_frames_); |
| RTC_HISTOGRAM_COUNTS_10000( |
| "WebRTC.Video.Screenshare.Layer0.TargetBitrate", |
| stats_.tl0_target_bitrate_sum_ / stats_.num_tl0_frames_); |
| } |
| if (stats_.num_tl1_frames_ > 0) { |
| RTC_HISTOGRAM_COUNTS_10000("WebRTC.Video.Screenshare.Layer1.Qp", |
| stats_.tl1_qp_sum_ / stats_.num_tl1_frames_); |
| RTC_HISTOGRAM_COUNTS_10000( |
| "WebRTC.Video.Screenshare.Layer1.TargetBitrate", |
| stats_.tl1_target_bitrate_sum_ / stats_.num_tl1_frames_); |
| } |
| } |
| } |
| } // namespace webrtc |