| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "common_audio/vad/vad_sp.h" |
| |
| #include "rtc_base/checks.h" |
| #include "common_audio/signal_processing/include/signal_processing_library.h" |
| #include "common_audio/vad/vad_core.h" |
| |
| // Allpass filter coefficients, upper and lower, in Q13. |
| // Upper: 0.64, Lower: 0.17. |
| static const int16_t kAllPassCoefsQ13[2] = { 5243, 1392 }; // Q13. |
| static const int16_t kSmoothingDown = 6553; // 0.2 in Q15. |
| static const int16_t kSmoothingUp = 32439; // 0.99 in Q15. |
| |
| // TODO(bjornv): Move this function to vad_filterbank.c. |
| // Downsampling filter based on splitting filter and allpass functions. |
| void WebRtcVad_Downsampling(const int16_t* signal_in, |
| int16_t* signal_out, |
| int32_t* filter_state, |
| size_t in_length) { |
| int16_t tmp16_1 = 0, tmp16_2 = 0; |
| int32_t tmp32_1 = filter_state[0]; |
| int32_t tmp32_2 = filter_state[1]; |
| size_t n = 0; |
| // Downsampling by 2 gives half length. |
| size_t half_length = (in_length >> 1); |
| |
| // Filter coefficients in Q13, filter state in Q0. |
| for (n = 0; n < half_length; n++) { |
| // All-pass filtering upper branch. |
| tmp16_1 = (int16_t) ((tmp32_1 >> 1) + |
| ((kAllPassCoefsQ13[0] * *signal_in) >> 14)); |
| *signal_out = tmp16_1; |
| tmp32_1 = (int32_t)(*signal_in++) - ((kAllPassCoefsQ13[0] * tmp16_1) >> 12); |
| |
| // All-pass filtering lower branch. |
| tmp16_2 = (int16_t) ((tmp32_2 >> 1) + |
| ((kAllPassCoefsQ13[1] * *signal_in) >> 14)); |
| *signal_out++ += tmp16_2; |
| tmp32_2 = (int32_t)(*signal_in++) - ((kAllPassCoefsQ13[1] * tmp16_2) >> 12); |
| } |
| // Store the filter states. |
| filter_state[0] = tmp32_1; |
| filter_state[1] = tmp32_2; |
| } |
| |
| // Inserts |feature_value| into |low_value_vector|, if it is one of the 16 |
| // smallest values the last 100 frames. Then calculates and returns the median |
| // of the five smallest values. |
| int16_t WebRtcVad_FindMinimum(VadInstT* self, |
| int16_t feature_value, |
| int channel) { |
| int i = 0, j = 0; |
| int position = -1; |
| // Offset to beginning of the 16 minimum values in memory. |
| const int offset = (channel << 4); |
| int16_t current_median = 1600; |
| int16_t alpha = 0; |
| int32_t tmp32 = 0; |
| // Pointer to memory for the 16 minimum values and the age of each value of |
| // the |channel|. |
| int16_t* age = &self->index_vector[offset]; |
| int16_t* smallest_values = &self->low_value_vector[offset]; |
| |
| RTC_DCHECK_LT(channel, kNumChannels); |
| |
| // Each value in |smallest_values| is getting 1 loop older. Update |age|, and |
| // remove old values. |
| for (i = 0; i < 16; i++) { |
| if (age[i] != 100) { |
| age[i]++; |
| } else { |
| // Too old value. Remove from memory and shift larger values downwards. |
| for (j = i; j < 16; j++) { |
| smallest_values[j] = smallest_values[j + 1]; |
| age[j] = age[j + 1]; |
| } |
| age[15] = 101; |
| smallest_values[15] = 10000; |
| } |
| } |
| |
| // Check if |feature_value| is smaller than any of the values in |
| // |smallest_values|. If so, find the |position| where to insert the new value |
| // (|feature_value|). |
| if (feature_value < smallest_values[7]) { |
| if (feature_value < smallest_values[3]) { |
| if (feature_value < smallest_values[1]) { |
| if (feature_value < smallest_values[0]) { |
| position = 0; |
| } else { |
| position = 1; |
| } |
| } else if (feature_value < smallest_values[2]) { |
| position = 2; |
| } else { |
| position = 3; |
| } |
| } else if (feature_value < smallest_values[5]) { |
| if (feature_value < smallest_values[4]) { |
| position = 4; |
| } else { |
| position = 5; |
| } |
| } else if (feature_value < smallest_values[6]) { |
| position = 6; |
| } else { |
| position = 7; |
| } |
| } else if (feature_value < smallest_values[15]) { |
| if (feature_value < smallest_values[11]) { |
| if (feature_value < smallest_values[9]) { |
| if (feature_value < smallest_values[8]) { |
| position = 8; |
| } else { |
| position = 9; |
| } |
| } else if (feature_value < smallest_values[10]) { |
| position = 10; |
| } else { |
| position = 11; |
| } |
| } else if (feature_value < smallest_values[13]) { |
| if (feature_value < smallest_values[12]) { |
| position = 12; |
| } else { |
| position = 13; |
| } |
| } else if (feature_value < smallest_values[14]) { |
| position = 14; |
| } else { |
| position = 15; |
| } |
| } |
| |
| // If we have detected a new small value, insert it at the correct position |
| // and shift larger values up. |
| if (position > -1) { |
| for (i = 15; i > position; i--) { |
| smallest_values[i] = smallest_values[i - 1]; |
| age[i] = age[i - 1]; |
| } |
| smallest_values[position] = feature_value; |
| age[position] = 1; |
| } |
| |
| // Get |current_median|. |
| if (self->frame_counter > 2) { |
| current_median = smallest_values[2]; |
| } else if (self->frame_counter > 0) { |
| current_median = smallest_values[0]; |
| } |
| |
| // Smooth the median value. |
| if (self->frame_counter > 0) { |
| if (current_median < self->mean_value[channel]) { |
| alpha = kSmoothingDown; // 0.2 in Q15. |
| } else { |
| alpha = kSmoothingUp; // 0.99 in Q15. |
| } |
| } |
| tmp32 = (alpha + 1) * self->mean_value[channel]; |
| tmp32 += (WEBRTC_SPL_WORD16_MAX - alpha) * current_median; |
| tmp32 += 16384; |
| self->mean_value[channel] = (int16_t) (tmp32 >> 15); |
| |
| return self->mean_value[channel]; |
| } |