| /* |
| * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/pacing/pacing_controller.h" |
| |
| #include <algorithm> |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/strings/match.h" |
| #include "modules/pacing/bitrate_prober.h" |
| #include "modules/pacing/interval_budget.h" |
| #include "modules/utility/include/process_thread.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/experiments/field_trial_parser.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/time_utils.h" |
| #include "system_wrappers/include/clock.h" |
| |
| namespace webrtc { |
| namespace { |
| // Time limit in milliseconds between packet bursts. |
| constexpr TimeDelta kDefaultMinPacketLimit = TimeDelta::Millis(5); |
| constexpr TimeDelta kCongestedPacketInterval = TimeDelta::Millis(500); |
| // TODO(sprang): Consider dropping this limit. |
| // The maximum debt level, in terms of time, capped when sending packets. |
| constexpr TimeDelta kMaxDebtInTime = TimeDelta::Millis(500); |
| constexpr TimeDelta kMaxElapsedTime = TimeDelta::Seconds(2); |
| |
| // Upper cap on process interval, in case process has not been called in a long |
| // time. Applies only to periodic mode. |
| constexpr TimeDelta kMaxProcessingInterval = TimeDelta::Millis(30); |
| |
| constexpr int kFirstPriority = 0; |
| |
| bool IsDisabled(const WebRtcKeyValueConfig& field_trials, |
| absl::string_view key) { |
| return absl::StartsWith(field_trials.Lookup(key), "Disabled"); |
| } |
| |
| bool IsEnabled(const WebRtcKeyValueConfig& field_trials, |
| absl::string_view key) { |
| return absl::StartsWith(field_trials.Lookup(key), "Enabled"); |
| } |
| |
| TimeDelta GetDynamicPaddingTarget(const WebRtcKeyValueConfig& field_trials) { |
| FieldTrialParameter<TimeDelta> padding_target("timedelta", |
| TimeDelta::Millis(5)); |
| ParseFieldTrial({&padding_target}, |
| field_trials.Lookup("WebRTC-Pacer-DynamicPaddingTarget")); |
| return padding_target.Get(); |
| } |
| |
| int GetPriorityForType(RtpPacketMediaType type) { |
| // Lower number takes priority over higher. |
| switch (type) { |
| case RtpPacketMediaType::kAudio: |
| // Audio is always prioritized over other packet types. |
| return kFirstPriority + 1; |
| case RtpPacketMediaType::kRetransmission: |
| // Send retransmissions before new media. |
| return kFirstPriority + 2; |
| case RtpPacketMediaType::kVideo: |
| case RtpPacketMediaType::kForwardErrorCorrection: |
| // Video has "normal" priority, in the old speak. |
| // Send redundancy concurrently to video. If it is delayed it might have a |
| // lower chance of being useful. |
| return kFirstPriority + 3; |
| case RtpPacketMediaType::kPadding: |
| // Packets that are in themselves likely useless, only sent to keep the |
| // BWE high. |
| return kFirstPriority + 4; |
| } |
| } |
| |
| } // namespace |
| |
| const TimeDelta PacingController::kMaxExpectedQueueLength = |
| TimeDelta::Millis(2000); |
| const float PacingController::kDefaultPaceMultiplier = 2.5f; |
| const TimeDelta PacingController::kPausedProcessInterval = |
| kCongestedPacketInterval; |
| const TimeDelta PacingController::kMinSleepTime = TimeDelta::Millis(1); |
| |
| PacingController::PacingController(Clock* clock, |
| PacketSender* packet_sender, |
| RtcEventLog* event_log, |
| const WebRtcKeyValueConfig* field_trials, |
| ProcessMode mode) |
| : mode_(mode), |
| clock_(clock), |
| packet_sender_(packet_sender), |
| fallback_field_trials_( |
| !field_trials ? std::make_unique<FieldTrialBasedConfig>() : nullptr), |
| field_trials_(field_trials ? field_trials : fallback_field_trials_.get()), |
| drain_large_queues_( |
| !IsDisabled(*field_trials_, "WebRTC-Pacer-DrainQueue")), |
| send_padding_if_silent_( |
| IsEnabled(*field_trials_, "WebRTC-Pacer-PadInSilence")), |
| pace_audio_(IsEnabled(*field_trials_, "WebRTC-Pacer-BlockAudio")), |
| small_first_probe_packet_( |
| IsEnabled(*field_trials_, "WebRTC-Pacer-SmallFirstProbePacket")), |
| ignore_transport_overhead_( |
| IsEnabled(*field_trials_, "WebRTC-Pacer-IgnoreTransportOverhead")), |
| padding_target_duration_(GetDynamicPaddingTarget(*field_trials_)), |
| min_packet_limit_(kDefaultMinPacketLimit), |
| transport_overhead_per_packet_(DataSize::Zero()), |
| last_timestamp_(clock_->CurrentTime()), |
| paused_(false), |
| media_budget_(0), |
| padding_budget_(0), |
| media_debt_(DataSize::Zero()), |
| padding_debt_(DataSize::Zero()), |
| media_rate_(DataRate::Zero()), |
| padding_rate_(DataRate::Zero()), |
| prober_(*field_trials_), |
| probing_send_failure_(false), |
| pacing_bitrate_(DataRate::Zero()), |
| last_process_time_(clock->CurrentTime()), |
| last_send_time_(last_process_time_), |
| packet_queue_(last_process_time_, field_trials_), |
| packet_counter_(0), |
| congestion_window_size_(DataSize::PlusInfinity()), |
| outstanding_data_(DataSize::Zero()), |
| queue_time_limit(kMaxExpectedQueueLength), |
| account_for_audio_(false), |
| include_overhead_(false) { |
| if (!drain_large_queues_) { |
| RTC_LOG(LS_WARNING) << "Pacer queues will not be drained," |
| "pushback experiment must be enabled."; |
| } |
| FieldTrialParameter<int> min_packet_limit_ms("", min_packet_limit_.ms()); |
| ParseFieldTrial({&min_packet_limit_ms}, |
| field_trials_->Lookup("WebRTC-Pacer-MinPacketLimitMs")); |
| min_packet_limit_ = TimeDelta::Millis(min_packet_limit_ms.Get()); |
| UpdateBudgetWithElapsedTime(min_packet_limit_); |
| } |
| |
| PacingController::~PacingController() = default; |
| |
| void PacingController::CreateProbeCluster(DataRate bitrate, int cluster_id) { |
| prober_.CreateProbeCluster(bitrate, CurrentTime(), cluster_id); |
| } |
| |
| void PacingController::Pause() { |
| if (!paused_) |
| RTC_LOG(LS_INFO) << "PacedSender paused."; |
| paused_ = true; |
| packet_queue_.SetPauseState(true, CurrentTime()); |
| } |
| |
| void PacingController::Resume() { |
| if (paused_) |
| RTC_LOG(LS_INFO) << "PacedSender resumed."; |
| paused_ = false; |
| packet_queue_.SetPauseState(false, CurrentTime()); |
| } |
| |
| bool PacingController::IsPaused() const { |
| return paused_; |
| } |
| |
| void PacingController::SetCongestionWindow(DataSize congestion_window_size) { |
| const bool was_congested = Congested(); |
| congestion_window_size_ = congestion_window_size; |
| if (was_congested && !Congested()) { |
| TimeDelta elapsed_time = UpdateTimeAndGetElapsed(CurrentTime()); |
| UpdateBudgetWithElapsedTime(elapsed_time); |
| } |
| } |
| |
| void PacingController::UpdateOutstandingData(DataSize outstanding_data) { |
| const bool was_congested = Congested(); |
| outstanding_data_ = outstanding_data; |
| if (was_congested && !Congested()) { |
| TimeDelta elapsed_time = UpdateTimeAndGetElapsed(CurrentTime()); |
| UpdateBudgetWithElapsedTime(elapsed_time); |
| } |
| } |
| |
| bool PacingController::Congested() const { |
| if (congestion_window_size_.IsFinite()) { |
| return outstanding_data_ >= congestion_window_size_; |
| } |
| return false; |
| } |
| |
| bool PacingController::IsProbing() const { |
| return prober_.is_probing(); |
| } |
| |
| Timestamp PacingController::CurrentTime() const { |
| Timestamp time = clock_->CurrentTime(); |
| if (time < last_timestamp_) { |
| RTC_LOG(LS_WARNING) |
| << "Non-monotonic clock behavior observed. Previous timestamp: " |
| << last_timestamp_.ms() << ", new timestamp: " << time.ms(); |
| RTC_DCHECK_GE(time, last_timestamp_); |
| time = last_timestamp_; |
| } |
| last_timestamp_ = time; |
| return time; |
| } |
| |
| void PacingController::SetProbingEnabled(bool enabled) { |
| RTC_CHECK_EQ(0, packet_counter_); |
| prober_.SetEnabled(enabled); |
| } |
| |
| void PacingController::SetPacingRates(DataRate pacing_rate, |
| DataRate padding_rate) { |
| RTC_DCHECK_GT(pacing_rate, DataRate::Zero()); |
| media_rate_ = pacing_rate; |
| padding_rate_ = padding_rate; |
| pacing_bitrate_ = pacing_rate; |
| padding_budget_.set_target_rate_kbps(padding_rate.kbps()); |
| |
| RTC_LOG(LS_VERBOSE) << "bwe:pacer_updated pacing_kbps=" |
| << pacing_bitrate_.kbps() |
| << " padding_budget_kbps=" << padding_rate.kbps(); |
| } |
| |
| void PacingController::EnqueuePacket(std::unique_ptr<RtpPacketToSend> packet) { |
| RTC_DCHECK(pacing_bitrate_ > DataRate::Zero()) |
| << "SetPacingRate must be called before InsertPacket."; |
| RTC_CHECK(packet->packet_type()); |
| // Get priority first and store in temporary, to avoid chance of object being |
| // moved before GetPriorityForType() being called. |
| const int priority = GetPriorityForType(*packet->packet_type()); |
| EnqueuePacketInternal(std::move(packet), priority); |
| } |
| |
| void PacingController::SetAccountForAudioPackets(bool account_for_audio) { |
| account_for_audio_ = account_for_audio; |
| } |
| |
| void PacingController::SetIncludeOverhead() { |
| include_overhead_ = true; |
| packet_queue_.SetIncludeOverhead(); |
| } |
| |
| void PacingController::SetTransportOverhead(DataSize overhead_per_packet) { |
| if (ignore_transport_overhead_) |
| return; |
| transport_overhead_per_packet_ = overhead_per_packet; |
| packet_queue_.SetTransportOverhead(overhead_per_packet); |
| } |
| |
| TimeDelta PacingController::ExpectedQueueTime() const { |
| RTC_DCHECK_GT(pacing_bitrate_, DataRate::Zero()); |
| return TimeDelta::Millis( |
| (QueueSizeData().bytes() * 8 * rtc::kNumMillisecsPerSec) / |
| pacing_bitrate_.bps()); |
| } |
| |
| size_t PacingController::QueueSizePackets() const { |
| return packet_queue_.SizeInPackets(); |
| } |
| |
| DataSize PacingController::QueueSizeData() const { |
| return packet_queue_.Size(); |
| } |
| |
| DataSize PacingController::CurrentBufferLevel() const { |
| return std::max(media_debt_, padding_debt_); |
| } |
| |
| absl::optional<Timestamp> PacingController::FirstSentPacketTime() const { |
| return first_sent_packet_time_; |
| } |
| |
| TimeDelta PacingController::OldestPacketWaitTime() const { |
| Timestamp oldest_packet = packet_queue_.OldestEnqueueTime(); |
| if (oldest_packet.IsInfinite()) { |
| return TimeDelta::Zero(); |
| } |
| |
| return CurrentTime() - oldest_packet; |
| } |
| |
| void PacingController::EnqueuePacketInternal( |
| std::unique_ptr<RtpPacketToSend> packet, |
| int priority) { |
| prober_.OnIncomingPacket(packet->payload_size()); |
| |
| // TODO(sprang): Make sure tests respect this, replace with DCHECK. |
| Timestamp now = CurrentTime(); |
| if (packet->capture_time_ms() < 0) { |
| packet->set_capture_time_ms(now.ms()); |
| } |
| |
| if (mode_ == ProcessMode::kDynamic && packet_queue_.Empty() && |
| NextSendTime() <= now) { |
| TimeDelta elapsed_time = UpdateTimeAndGetElapsed(now); |
| UpdateBudgetWithElapsedTime(elapsed_time); |
| } |
| packet_queue_.Push(priority, now, packet_counter_++, std::move(packet)); |
| } |
| |
| TimeDelta PacingController::UpdateTimeAndGetElapsed(Timestamp now) { |
| if (last_process_time_.IsMinusInfinity()) { |
| return TimeDelta::Zero(); |
| } |
| RTC_DCHECK_GE(now, last_process_time_); |
| TimeDelta elapsed_time = now - last_process_time_; |
| last_process_time_ = now; |
| if (elapsed_time > kMaxElapsedTime) { |
| RTC_LOG(LS_WARNING) << "Elapsed time (" << elapsed_time.ms() |
| << " ms) longer than expected, limiting to " |
| << kMaxElapsedTime.ms(); |
| elapsed_time = kMaxElapsedTime; |
| } |
| return elapsed_time; |
| } |
| |
| bool PacingController::ShouldSendKeepalive(Timestamp now) const { |
| if (send_padding_if_silent_ || paused_ || Congested() || |
| packet_counter_ == 0) { |
| // We send a padding packet every 500 ms to ensure we won't get stuck in |
| // congested state due to no feedback being received. |
| TimeDelta elapsed_since_last_send = now - last_send_time_; |
| if (elapsed_since_last_send >= kCongestedPacketInterval) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| Timestamp PacingController::NextSendTime() const { |
| Timestamp now = CurrentTime(); |
| |
| if (paused_) { |
| return last_send_time_ + kPausedProcessInterval; |
| } |
| |
| // If probing is active, that always takes priority. |
| if (prober_.is_probing()) { |
| Timestamp probe_time = prober_.NextProbeTime(now); |
| // |probe_time| == PlusInfinity indicates no probe scheduled. |
| if (probe_time != Timestamp::PlusInfinity() && !probing_send_failure_) { |
| return probe_time; |
| } |
| } |
| |
| if (mode_ == ProcessMode::kPeriodic) { |
| // In periodic non-probing mode, we just have a fixed interval. |
| return last_process_time_ + min_packet_limit_; |
| } |
| |
| // In dynamic mode, figure out when the next packet should be sent, |
| // given the current conditions. |
| |
| if (!pace_audio_) { |
| // Not pacing audio, if leading packet is audio its target send |
| // time is the time at which it was enqueued. |
| absl::optional<Timestamp> audio_enqueue_time = |
| packet_queue_.LeadingAudioPacketEnqueueTime(); |
| if (audio_enqueue_time.has_value()) { |
| return *audio_enqueue_time; |
| } |
| } |
| |
| if (Congested() || packet_counter_ == 0) { |
| // We need to at least send keep-alive packets with some interval. |
| return last_send_time_ + kCongestedPacketInterval; |
| } |
| |
| // Check how long until we can send the next media packet. |
| if (media_rate_ > DataRate::Zero() && !packet_queue_.Empty()) { |
| return std::min(last_send_time_ + kPausedProcessInterval, |
| last_process_time_ + media_debt_ / media_rate_); |
| } |
| |
| // If we _don't_ have pending packets, check how long until we have |
| // bandwidth for padding packets. Both media and padding debts must |
| // have been drained to do this. |
| if (padding_rate_ > DataRate::Zero() && packet_queue_.Empty()) { |
| TimeDelta drain_time = |
| std::max(media_debt_ / media_rate_, padding_debt_ / padding_rate_); |
| return std::min(last_send_time_ + kPausedProcessInterval, |
| last_process_time_ + drain_time); |
| } |
| |
| if (send_padding_if_silent_) { |
| return last_send_time_ + kPausedProcessInterval; |
| } |
| return last_process_time_ + kPausedProcessInterval; |
| } |
| |
| void PacingController::ProcessPackets() { |
| Timestamp now = CurrentTime(); |
| Timestamp target_send_time = now; |
| if (mode_ == ProcessMode::kDynamic) { |
| target_send_time = NextSendTime(); |
| if (target_send_time.IsMinusInfinity()) { |
| target_send_time = now; |
| } else if (now < target_send_time) { |
| // We are too early, but if queue is empty still allow draining some debt. |
| TimeDelta elapsed_time = UpdateTimeAndGetElapsed(now); |
| UpdateBudgetWithElapsedTime(elapsed_time); |
| return; |
| } |
| |
| if (target_send_time < last_process_time_) { |
| // After the last process call, at time X, the target send time |
| // shifted to be earlier than X. This should normally not happen |
| // but we want to make sure rounding errors or erratic behavior |
| // of NextSendTime() does not cause issue. In particular, if the |
| // buffer reduction of |
| // rate * (target_send_time - previous_process_time) |
| // in the main loop doesn't clean up the existing debt we may not |
| // be able to send again. We don't want to check this reordering |
| // there as it is the normal exit condtion when the buffer is |
| // exhausted and there are packets in the queue. |
| UpdateBudgetWithElapsedTime(last_process_time_ - target_send_time); |
| target_send_time = last_process_time_; |
| } |
| } |
| |
| Timestamp previous_process_time = last_process_time_; |
| TimeDelta elapsed_time = UpdateTimeAndGetElapsed(now); |
| |
| if (ShouldSendKeepalive(now)) { |
| // We can not send padding unless a normal packet has first been sent. If |
| // we do, timestamps get messed up. |
| if (packet_counter_ == 0) { |
| last_send_time_ = now; |
| } else { |
| DataSize keepalive_data_sent = DataSize::Zero(); |
| std::vector<std::unique_ptr<RtpPacketToSend>> keepalive_packets = |
| packet_sender_->GeneratePadding(DataSize::Bytes(1)); |
| for (auto& packet : keepalive_packets) { |
| keepalive_data_sent += |
| DataSize::Bytes(packet->payload_size() + packet->padding_size()); |
| packet_sender_->SendPacket(std::move(packet), PacedPacketInfo()); |
| for (auto& packet : packet_sender_->FetchFec()) { |
| EnqueuePacket(std::move(packet)); |
| } |
| } |
| OnPaddingSent(keepalive_data_sent); |
| } |
| } |
| |
| if (paused_) { |
| return; |
| } |
| |
| if (elapsed_time > TimeDelta::Zero()) { |
| DataRate target_rate = pacing_bitrate_; |
| DataSize queue_size_data = packet_queue_.Size(); |
| if (queue_size_data > DataSize::Zero()) { |
| // Assuming equal size packets and input/output rate, the average packet |
| // has avg_time_left_ms left to get queue_size_bytes out of the queue, if |
| // time constraint shall be met. Determine bitrate needed for that. |
| packet_queue_.UpdateQueueTime(now); |
| if (drain_large_queues_) { |
| TimeDelta avg_time_left = |
| std::max(TimeDelta::Millis(1), |
| queue_time_limit - packet_queue_.AverageQueueTime()); |
| DataRate min_rate_needed = queue_size_data / avg_time_left; |
| if (min_rate_needed > target_rate) { |
| target_rate = min_rate_needed; |
| RTC_LOG(LS_VERBOSE) << "bwe:large_pacing_queue pacing_rate_kbps=" |
| << target_rate.kbps(); |
| } |
| } |
| } |
| |
| if (mode_ == ProcessMode::kPeriodic) { |
| // In periodic processing mode, the IntevalBudget allows positive budget |
| // up to (process interval duration) * (target rate), so we only need to |
| // update it once before the packet sending loop. |
| media_budget_.set_target_rate_kbps(target_rate.kbps()); |
| UpdateBudgetWithElapsedTime(elapsed_time); |
| } else { |
| media_rate_ = target_rate; |
| } |
| } |
| |
| bool first_packet_in_probe = false; |
| bool is_probing = prober_.is_probing(); |
| PacedPacketInfo pacing_info; |
| absl::optional<DataSize> recommended_probe_size; |
| if (is_probing) { |
| pacing_info = prober_.CurrentCluster(); |
| first_packet_in_probe = pacing_info.probe_cluster_bytes_sent == 0; |
| recommended_probe_size = DataSize::Bytes(prober_.RecommendedMinProbeSize()); |
| } |
| |
| DataSize data_sent = DataSize::Zero(); |
| |
| // The paused state is checked in the loop since it leaves the critical |
| // section allowing the paused state to be changed from other code. |
| while (!paused_) { |
| if (small_first_probe_packet_ && first_packet_in_probe) { |
| // If first packet in probe, insert a small padding packet so we have a |
| // more reliable start window for the rate estimation. |
| auto padding = packet_sender_->GeneratePadding(DataSize::Bytes(1)); |
| // If no RTP modules sending media are registered, we may not get a |
| // padding packet back. |
| if (!padding.empty()) { |
| // Insert with high priority so larger media packets don't preempt it. |
| EnqueuePacketInternal(std::move(padding[0]), kFirstPriority); |
| // We should never get more than one padding packets with a requested |
| // size of 1 byte. |
| RTC_DCHECK_EQ(padding.size(), 1u); |
| } |
| first_packet_in_probe = false; |
| } |
| |
| if (mode_ == ProcessMode::kDynamic && |
| previous_process_time < target_send_time) { |
| // Reduce buffer levels with amount corresponding to time between last |
| // process and target send time for the next packet. |
| // If the process call is late, that may be the time between the optimal |
| // send times for two packets we should already have sent. |
| UpdateBudgetWithElapsedTime(target_send_time - previous_process_time); |
| previous_process_time = target_send_time; |
| } |
| |
| // Fetch the next packet, so long as queue is not empty or budget is not |
| // exhausted. |
| std::unique_ptr<RtpPacketToSend> rtp_packet = |
| GetPendingPacket(pacing_info, target_send_time, now); |
| |
| if (rtp_packet == nullptr) { |
| // No packet available to send, check if we should send padding. |
| DataSize padding_to_add = PaddingToAdd(recommended_probe_size, data_sent); |
| if (padding_to_add > DataSize::Zero()) { |
| std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets = |
| packet_sender_->GeneratePadding(padding_to_add); |
| if (padding_packets.empty()) { |
| // No padding packets were generated, quite send loop. |
| break; |
| } |
| for (auto& packet : padding_packets) { |
| EnqueuePacket(std::move(packet)); |
| } |
| // Continue loop to send the padding that was just added. |
| continue; |
| } |
| |
| // Can't fetch new packet and no padding to send, exit send loop. |
| break; |
| } |
| |
| RTC_DCHECK(rtp_packet); |
| RTC_DCHECK(rtp_packet->packet_type().has_value()); |
| const RtpPacketMediaType packet_type = *rtp_packet->packet_type(); |
| DataSize packet_size = DataSize::Bytes(rtp_packet->payload_size() + |
| rtp_packet->padding_size()); |
| |
| if (include_overhead_) { |
| packet_size += DataSize::Bytes(rtp_packet->headers_size()) + |
| transport_overhead_per_packet_; |
| } |
| |
| packet_sender_->SendPacket(std::move(rtp_packet), pacing_info); |
| for (auto& packet : packet_sender_->FetchFec()) { |
| EnqueuePacket(std::move(packet)); |
| } |
| data_sent += packet_size; |
| |
| // Send done, update send/process time to the target send time. |
| OnPacketSent(packet_type, packet_size, target_send_time); |
| if (recommended_probe_size && data_sent > *recommended_probe_size) |
| break; |
| |
| if (mode_ == ProcessMode::kDynamic) { |
| // Update target send time in case that are more packets that we are late |
| // in processing. |
| Timestamp next_send_time = NextSendTime(); |
| if (next_send_time.IsMinusInfinity()) { |
| target_send_time = now; |
| } else { |
| target_send_time = std::min(now, next_send_time); |
| } |
| } |
| } |
| |
| last_process_time_ = std::max(last_process_time_, previous_process_time); |
| |
| if (is_probing) { |
| probing_send_failure_ = data_sent == DataSize::Zero(); |
| if (!probing_send_failure_) { |
| prober_.ProbeSent(CurrentTime(), data_sent.bytes()); |
| } |
| } |
| } |
| |
| DataSize PacingController::PaddingToAdd( |
| absl::optional<DataSize> recommended_probe_size, |
| DataSize data_sent) const { |
| if (!packet_queue_.Empty()) { |
| // Actual payload available, no need to add padding. |
| return DataSize::Zero(); |
| } |
| |
| if (Congested()) { |
| // Don't add padding if congested, even if requested for probing. |
| return DataSize::Zero(); |
| } |
| |
| if (packet_counter_ == 0) { |
| // We can not send padding unless a normal packet has first been sent. If we |
| // do, timestamps get messed up. |
| return DataSize::Zero(); |
| } |
| |
| if (recommended_probe_size) { |
| if (*recommended_probe_size > data_sent) { |
| return *recommended_probe_size - data_sent; |
| } |
| return DataSize::Zero(); |
| } |
| |
| if (mode_ == ProcessMode::kPeriodic) { |
| return DataSize::Bytes(padding_budget_.bytes_remaining()); |
| } else if (padding_rate_ > DataRate::Zero() && |
| padding_debt_ == DataSize::Zero()) { |
| return padding_target_duration_ * padding_rate_; |
| } |
| return DataSize::Zero(); |
| } |
| |
| std::unique_ptr<RtpPacketToSend> PacingController::GetPendingPacket( |
| const PacedPacketInfo& pacing_info, |
| Timestamp target_send_time, |
| Timestamp now) { |
| if (packet_queue_.Empty()) { |
| return nullptr; |
| } |
| |
| // First, check if there is any reason _not_ to send the next queued packet. |
| |
| // Unpaced audio packets and probes are exempted from send checks. |
| bool unpaced_audio_packet = |
| !pace_audio_ && packet_queue_.LeadingAudioPacketEnqueueTime().has_value(); |
| bool is_probe = pacing_info.probe_cluster_id != PacedPacketInfo::kNotAProbe; |
| if (!unpaced_audio_packet && !is_probe) { |
| if (Congested()) { |
| // Don't send anything if congested. |
| return nullptr; |
| } |
| |
| if (mode_ == ProcessMode::kPeriodic) { |
| if (media_budget_.bytes_remaining() <= 0) { |
| // Not enough budget. |
| return nullptr; |
| } |
| } else { |
| // Dynamic processing mode. |
| if (now <= target_send_time) { |
| // We allow sending slightly early if we think that we would actually |
| // had been able to, had we been right on time - i.e. the current debt |
| // is not more than would be reduced to zero at the target sent time. |
| TimeDelta flush_time = media_debt_ / media_rate_; |
| if (now + flush_time > target_send_time) { |
| return nullptr; |
| } |
| } |
| } |
| } |
| |
| return packet_queue_.Pop(); |
| } |
| |
| void PacingController::OnPacketSent(RtpPacketMediaType packet_type, |
| DataSize packet_size, |
| Timestamp send_time) { |
| if (!first_sent_packet_time_) { |
| first_sent_packet_time_ = send_time; |
| } |
| bool audio_packet = packet_type == RtpPacketMediaType::kAudio; |
| if (!audio_packet || account_for_audio_) { |
| // Update media bytes sent. |
| UpdateBudgetWithSentData(packet_size); |
| } |
| last_send_time_ = send_time; |
| last_process_time_ = send_time; |
| } |
| |
| void PacingController::OnPaddingSent(DataSize data_sent) { |
| if (data_sent > DataSize::Zero()) { |
| UpdateBudgetWithSentData(data_sent); |
| } |
| last_send_time_ = CurrentTime(); |
| last_process_time_ = CurrentTime(); |
| } |
| |
| void PacingController::UpdateBudgetWithElapsedTime(TimeDelta delta) { |
| if (mode_ == ProcessMode::kPeriodic) { |
| delta = std::min(kMaxProcessingInterval, delta); |
| media_budget_.IncreaseBudget(delta.ms()); |
| padding_budget_.IncreaseBudget(delta.ms()); |
| } else { |
| media_debt_ -= std::min(media_debt_, media_rate_ * delta); |
| padding_debt_ -= std::min(padding_debt_, padding_rate_ * delta); |
| } |
| } |
| |
| void PacingController::UpdateBudgetWithSentData(DataSize size) { |
| outstanding_data_ += size; |
| if (mode_ == ProcessMode::kPeriodic) { |
| media_budget_.UseBudget(size.bytes()); |
| padding_budget_.UseBudget(size.bytes()); |
| } else { |
| media_debt_ += size; |
| media_debt_ = std::min(media_debt_, media_rate_ * kMaxDebtInTime); |
| padding_debt_ += size; |
| padding_debt_ = std::min(padding_debt_, padding_rate_ * kMaxDebtInTime); |
| } |
| } |
| |
| void PacingController::SetQueueTimeLimit(TimeDelta limit) { |
| queue_time_limit = limit; |
| } |
| |
| } // namespace webrtc |