blob: 181356493c19bb691ccbd9b04be411045f93347b [file] [log] [blame]
/*
* Copyright 2009 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include <utility>
#include "api/array_view.h"
#include "media/base/fakemediaengine.h"
#include "media/base/fakertp.h"
#include "media/base/mediachannel.h"
#include "media/base/testutils.h"
#include "p2p/base/fakecandidatepair.h"
#include "p2p/base/fakedtlstransport.h"
#include "p2p/base/fakepackettransport.h"
#include "pc/channel.h"
#include "rtc_base/buffer.h"
#include "rtc_base/checks.h"
#include "rtc_base/fakeclock.h"
#include "rtc_base/gunit.h"
#include "rtc_base/logging.h"
#include "rtc_base/sslstreamadapter.h"
using cricket::CA_OFFER;
using cricket::CA_PRANSWER;
using cricket::CA_ANSWER;
using cricket::DtlsTransportInternal;
using cricket::FakeVoiceMediaChannel;
using cricket::StreamParams;
namespace {
const cricket::AudioCodec kPcmuCodec(0, "PCMU", 64000, 8000, 1);
const cricket::AudioCodec kPcmaCodec(8, "PCMA", 64000, 8000, 1);
const cricket::AudioCodec kIsacCodec(103, "ISAC", 40000, 16000, 1);
const cricket::VideoCodec kH264Codec(97, "H264");
const cricket::VideoCodec kH264SvcCodec(99, "H264-SVC");
const cricket::DataCodec kGoogleDataCodec(101, "google-data");
const uint32_t kSsrc1 = 0x1111;
const uint32_t kSsrc2 = 0x2222;
const int kAudioPts[] = {0, 8};
const int kVideoPts[] = {97, 99};
enum class NetworkIsWorker { Yes, No };
const int kDefaultTimeout = 10000; // 10 seconds.
} // namespace
template <class ChannelT,
class MediaChannelT,
class ContentT,
class CodecT,
class MediaInfoT,
class OptionsT>
class Traits {
public:
typedef ChannelT Channel;
typedef MediaChannelT MediaChannel;
typedef ContentT Content;
typedef CodecT Codec;
typedef MediaInfoT MediaInfo;
typedef OptionsT Options;
};
class VoiceTraits : public Traits<cricket::VoiceChannel,
cricket::FakeVoiceMediaChannel,
cricket::AudioContentDescription,
cricket::AudioCodec,
cricket::VoiceMediaInfo,
cricket::AudioOptions> {};
class VideoTraits : public Traits<cricket::VideoChannel,
cricket::FakeVideoMediaChannel,
cricket::VideoContentDescription,
cricket::VideoCodec,
cricket::VideoMediaInfo,
cricket::VideoOptions> {};
class DataTraits : public Traits<cricket::RtpDataChannel,
cricket::FakeDataMediaChannel,
cricket::DataContentDescription,
cricket::DataCodec,
cricket::DataMediaInfo,
cricket::DataOptions> {};
// Base class for Voice/Video/RtpDataChannel tests
template<class T>
class ChannelTest : public testing::Test, public sigslot::has_slots<> {
public:
enum Flags {
RTCP_MUX = 0x1,
RTCP_MUX_REQUIRED = 0x2,
SECURE = 0x4,
SSRC_MUX = 0x8,
DTLS = 0x10,
// Use BaseChannel with PacketTransportInternal rather than
// DtlsTransportInternal.
RAW_PACKET_TRANSPORT = 0x20,
GCM_CIPHER = 0x40,
ENCRYPTED_HEADERS = 0x80,
};
ChannelTest(bool verify_playout,
rtc::ArrayView<const uint8_t> rtp_data,
rtc::ArrayView<const uint8_t> rtcp_data,
NetworkIsWorker network_is_worker)
: verify_playout_(verify_playout),
rtp_packet_(rtp_data.data(), rtp_data.size()),
rtcp_packet_(rtcp_data.data(), rtcp_data.size()) {
if (network_is_worker == NetworkIsWorker::Yes) {
network_thread_ = rtc::Thread::Current();
} else {
network_thread_keeper_ = rtc::Thread::Create();
network_thread_keeper_->SetName("Network", nullptr);
network_thread_ = network_thread_keeper_.get();
}
}
void CreateChannels(int flags1, int flags2) {
CreateChannels(rtc::MakeUnique<typename T::MediaChannel>(
nullptr, typename T::Options()),
rtc::MakeUnique<typename T::MediaChannel>(
nullptr, typename T::Options()),
flags1, flags2);
}
void CreateChannels(std::unique_ptr<typename T::MediaChannel> ch1,
std::unique_ptr<typename T::MediaChannel> ch2,
int flags1,
int flags2) {
// Network thread is started in CreateChannels, to allow the test to
// configure a fake clock before any threads are spawned and attempt to
// access the time.
if (network_thread_keeper_) {
network_thread_keeper_->Start();
}
// Make sure RTCP_MUX_REQUIRED isn't set without RTCP_MUX.
RTC_DCHECK_NE(RTCP_MUX_REQUIRED, flags1 & (RTCP_MUX | RTCP_MUX_REQUIRED));
RTC_DCHECK_NE(RTCP_MUX_REQUIRED, flags2 & (RTCP_MUX | RTCP_MUX_REQUIRED));
// Make sure if using raw packet transports, they're used for both
// channels.
RTC_DCHECK_EQ(flags1 & RAW_PACKET_TRANSPORT, flags2 & RAW_PACKET_TRANSPORT);
rtc::Thread* worker_thread = rtc::Thread::Current();
media_channel1_ = ch1.get();
media_channel2_ = ch2.get();
rtc::PacketTransportInternal* rtp1 = nullptr;
rtc::PacketTransportInternal* rtcp1 = nullptr;
rtc::PacketTransportInternal* rtp2 = nullptr;
rtc::PacketTransportInternal* rtcp2 = nullptr;
// Based on flags, create fake DTLS or raw packet transports.
if (flags1 & RAW_PACKET_TRANSPORT) {
fake_rtp_packet_transport1_.reset(
new rtc::FakePacketTransport("channel1_rtp"));
rtp1 = fake_rtp_packet_transport1_.get();
if (!(flags1 & RTCP_MUX_REQUIRED)) {
fake_rtcp_packet_transport1_.reset(
new rtc::FakePacketTransport("channel1_rtcp"));
rtcp1 = fake_rtcp_packet_transport1_.get();
}
} else {
// Confirmed to work with KT_RSA and KT_ECDSA.
fake_rtp_dtls_transport1_.reset(new cricket::FakeDtlsTransport(
"channel1", cricket::ICE_CANDIDATE_COMPONENT_RTP));
rtp1 = fake_rtp_dtls_transport1_.get();
if (!(flags1 & RTCP_MUX_REQUIRED)) {
fake_rtcp_dtls_transport1_.reset(new cricket::FakeDtlsTransport(
"channel1", cricket::ICE_CANDIDATE_COMPONENT_RTCP));
rtcp1 = fake_rtcp_dtls_transport1_.get();
}
if (flags1 & DTLS) {
auto cert1 =
rtc::RTCCertificate::Create(std::unique_ptr<rtc::SSLIdentity>(
rtc::SSLIdentity::Generate("session1", rtc::KT_DEFAULT)));
fake_rtp_dtls_transport1_->SetLocalCertificate(cert1);
if (fake_rtcp_dtls_transport1_) {
fake_rtcp_dtls_transport1_->SetLocalCertificate(cert1);
}
}
if (flags1 & ENCRYPTED_HEADERS) {
rtc::CryptoOptions crypto_options;
crypto_options.enable_encrypted_rtp_header_extensions = true;
fake_rtp_dtls_transport1_->SetCryptoOptions(crypto_options);
if (fake_rtcp_dtls_transport1_) {
fake_rtcp_dtls_transport1_->SetCryptoOptions(crypto_options);
}
}
if (flags1 & GCM_CIPHER) {
fake_rtp_dtls_transport1_->SetSrtpCryptoSuite(
rtc::SRTP_AEAD_AES_256_GCM);
if (fake_rtcp_dtls_transport1_) {
fake_rtcp_dtls_transport1_->SetSrtpCryptoSuite(
rtc::SRTP_AEAD_AES_256_GCM);
}
}
}
// Based on flags, create fake DTLS or raw packet transports.
if (flags2 & RAW_PACKET_TRANSPORT) {
fake_rtp_packet_transport2_.reset(
new rtc::FakePacketTransport("channel2_rtp"));
rtp2 = fake_rtp_packet_transport2_.get();
if (!(flags2 & RTCP_MUX_REQUIRED)) {
fake_rtcp_packet_transport2_.reset(
new rtc::FakePacketTransport("channel2_rtcp"));
rtcp2 = fake_rtcp_packet_transport2_.get();
}
} else {
// Confirmed to work with KT_RSA and KT_ECDSA.
fake_rtp_dtls_transport2_.reset(new cricket::FakeDtlsTransport(
"channel2", cricket::ICE_CANDIDATE_COMPONENT_RTP));
rtp2 = fake_rtp_dtls_transport2_.get();
if (!(flags2 & RTCP_MUX_REQUIRED)) {
fake_rtcp_dtls_transport2_.reset(new cricket::FakeDtlsTransport(
"channel2", cricket::ICE_CANDIDATE_COMPONENT_RTCP));
rtcp2 = fake_rtcp_dtls_transport2_.get();
}
if (flags2 & DTLS) {
auto cert2 =
rtc::RTCCertificate::Create(std::unique_ptr<rtc::SSLIdentity>(
rtc::SSLIdentity::Generate("session2", rtc::KT_DEFAULT)));
fake_rtp_dtls_transport2_->SetLocalCertificate(cert2);
if (fake_rtcp_dtls_transport2_) {
fake_rtcp_dtls_transport2_->SetLocalCertificate(cert2);
}
}
if (flags2 & ENCRYPTED_HEADERS) {
rtc::CryptoOptions crypto_options;
crypto_options.enable_encrypted_rtp_header_extensions = true;
fake_rtp_dtls_transport2_->SetCryptoOptions(crypto_options);
if (fake_rtcp_dtls_transport2_) {
fake_rtcp_dtls_transport2_->SetCryptoOptions(crypto_options);
}
}
if (flags2 & GCM_CIPHER) {
fake_rtp_dtls_transport2_->SetSrtpCryptoSuite(
rtc::SRTP_AEAD_AES_256_GCM);
if (fake_rtcp_dtls_transport2_) {
fake_rtcp_dtls_transport2_->SetSrtpCryptoSuite(
rtc::SRTP_AEAD_AES_256_GCM);
}
}
}
channel1_ =
CreateChannel(worker_thread, network_thread_, &media_engine_,
std::move(ch1), fake_rtp_dtls_transport1_.get(),
fake_rtcp_dtls_transport1_.get(), rtp1, rtcp1, flags1);
channel2_ =
CreateChannel(worker_thread, network_thread_, &media_engine_,
std::move(ch2), fake_rtp_dtls_transport2_.get(),
fake_rtcp_dtls_transport2_.get(), rtp2, rtcp2, flags2);
channel1_->SignalMediaMonitor.connect(this,
&ChannelTest<T>::OnMediaMonitor1);
channel2_->SignalMediaMonitor.connect(this,
&ChannelTest<T>::OnMediaMonitor2);
channel1_->SignalRtcpMuxFullyActive.connect(
this, &ChannelTest<T>::OnRtcpMuxFullyActive1);
channel2_->SignalRtcpMuxFullyActive.connect(
this, &ChannelTest<T>::OnRtcpMuxFullyActive2);
if ((flags1 & DTLS) && (flags2 & DTLS)) {
flags1 = (flags1 & ~SECURE);
flags2 = (flags2 & ~SECURE);
}
CreateContent(flags1, kPcmuCodec, kH264Codec,
&local_media_content1_);
CreateContent(flags2, kPcmuCodec, kH264Codec,
&local_media_content2_);
CopyContent(local_media_content1_, &remote_media_content1_);
CopyContent(local_media_content2_, &remote_media_content2_);
// Add stream information (SSRC) to the local content but not to the remote
// content. This means that we per default know the SSRC of what we send but
// not what we receive.
AddLegacyStreamInContent(kSsrc1, flags1, &local_media_content1_);
AddLegacyStreamInContent(kSsrc2, flags2, &local_media_content2_);
// If SSRC_MUX is used we also need to know the SSRC of the incoming stream.
if (flags1 & SSRC_MUX) {
AddLegacyStreamInContent(kSsrc1, flags1, &remote_media_content1_);
}
if (flags2 & SSRC_MUX) {
AddLegacyStreamInContent(kSsrc2, flags2, &remote_media_content2_);
}
}
std::unique_ptr<typename T::Channel> CreateChannel(
rtc::Thread* worker_thread,
rtc::Thread* network_thread,
cricket::MediaEngineInterface* engine,
std::unique_ptr<typename T::MediaChannel> ch,
cricket::DtlsTransportInternal* fake_rtp_dtls_transport,
cricket::DtlsTransportInternal* fake_rtcp_dtls_transport,
rtc::PacketTransportInternal* fake_rtp_packet_transport,
rtc::PacketTransportInternal* fake_rtcp_packet_transport,
int flags) {
rtc::Thread* signaling_thread = rtc::Thread::Current();
auto channel = rtc::MakeUnique<typename T::Channel>(
worker_thread, network_thread, signaling_thread, engine, std::move(ch),
cricket::CN_AUDIO, (flags & RTCP_MUX_REQUIRED) != 0,
(flags & SECURE) != 0);
if (!channel->NeedsRtcpTransport()) {
fake_rtcp_dtls_transport = nullptr;
}
channel->Init_w(fake_rtp_dtls_transport, fake_rtcp_dtls_transport,
fake_rtp_packet_transport, fake_rtcp_packet_transport);
return channel;
}
void ConnectFakeTransports() {
network_thread_->Invoke<void>(RTC_FROM_HERE, [this] {
bool asymmetric = false;
// Depending on test flags, could be using DTLS or raw packet transport.
if (fake_rtp_dtls_transport1_ && fake_rtp_dtls_transport2_) {
fake_rtp_dtls_transport1_->SetDestination(
fake_rtp_dtls_transport2_.get(), asymmetric);
}
if (fake_rtcp_dtls_transport1_ && fake_rtcp_dtls_transport2_) {
fake_rtcp_dtls_transport1_->SetDestination(
fake_rtcp_dtls_transport2_.get(), asymmetric);
}
if (fake_rtp_packet_transport1_ && fake_rtp_packet_transport2_) {
fake_rtp_packet_transport1_->SetDestination(
fake_rtp_packet_transport2_.get(), asymmetric);
}
if (fake_rtcp_packet_transport1_ && fake_rtcp_packet_transport2_) {
fake_rtcp_packet_transport1_->SetDestination(
fake_rtcp_packet_transport2_.get(), asymmetric);
}
});
}
bool SendInitiate() {
bool result = channel1_->SetLocalContent(&local_media_content1_,
CA_OFFER, NULL);
if (result) {
channel1_->Enable(true);
result = channel2_->SetRemoteContent(&remote_media_content1_,
CA_OFFER, NULL);
if (result) {
ConnectFakeTransports();
result = channel2_->SetLocalContent(&local_media_content2_,
CA_ANSWER, NULL);
}
}
return result;
}
bool SendAccept() {
channel2_->Enable(true);
return channel1_->SetRemoteContent(&remote_media_content2_,
CA_ANSWER, NULL);
}
bool SendOffer() {
bool result = channel1_->SetLocalContent(&local_media_content1_,
CA_OFFER, NULL);
if (result) {
channel1_->Enable(true);
result = channel2_->SetRemoteContent(&remote_media_content1_,
CA_OFFER, NULL);
}
return result;
}
bool SendProvisionalAnswer() {
bool result = channel2_->SetLocalContent(&local_media_content2_,
CA_PRANSWER, NULL);
if (result) {
channel2_->Enable(true);
result = channel1_->SetRemoteContent(&remote_media_content2_,
CA_PRANSWER, NULL);
ConnectFakeTransports();
}
return result;
}
bool SendFinalAnswer() {
bool result = channel2_->SetLocalContent(&local_media_content2_,
CA_ANSWER, NULL);
if (result)
result = channel1_->SetRemoteContent(&remote_media_content2_,
CA_ANSWER, NULL);
return result;
}
bool Terminate() {
channel1_.reset();
channel2_.reset();
fake_rtp_dtls_transport1_.reset();
fake_rtcp_dtls_transport1_.reset();
fake_rtp_dtls_transport2_.reset();
fake_rtcp_dtls_transport2_.reset();
fake_rtp_packet_transport1_.reset();
fake_rtcp_packet_transport1_.reset();
fake_rtp_packet_transport2_.reset();
fake_rtcp_packet_transport2_.reset();
if (network_thread_keeper_) {
network_thread_keeper_.reset();
}
return true;
}
bool AddStream1(int id) {
return channel1_->AddRecvStream(cricket::StreamParams::CreateLegacy(id));
}
bool RemoveStream1(int id) {
return channel1_->RemoveRecvStream(id);
}
void SendRtp1() {
media_channel1_->SendRtp(rtp_packet_.data(), rtp_packet_.size(),
rtc::PacketOptions());
}
void SendRtp2() {
media_channel2_->SendRtp(rtp_packet_.data(), rtp_packet_.size(),
rtc::PacketOptions());
}
void SendRtcp1() {
media_channel1_->SendRtcp(rtcp_packet_.data(), rtcp_packet_.size());
}
void SendRtcp2() {
media_channel2_->SendRtcp(rtcp_packet_.data(), rtcp_packet_.size());
}
// Methods to send custom data.
void SendCustomRtp1(uint32_t ssrc, int sequence_number, int pl_type = -1) {
rtc::Buffer data = CreateRtpData(ssrc, sequence_number, pl_type);
media_channel1_->SendRtp(data.data(), data.size(), rtc::PacketOptions());
}
void SendCustomRtp2(uint32_t ssrc, int sequence_number, int pl_type = -1) {
rtc::Buffer data = CreateRtpData(ssrc, sequence_number, pl_type);
media_channel2_->SendRtp(data.data(), data.size(), rtc::PacketOptions());
}
void SendCustomRtcp1(uint32_t ssrc) {
rtc::Buffer data = CreateRtcpData(ssrc);
media_channel1_->SendRtcp(data.data(), data.size());
}
void SendCustomRtcp2(uint32_t ssrc) {
rtc::Buffer data = CreateRtcpData(ssrc);
media_channel2_->SendRtcp(data.data(), data.size());
}
bool CheckRtp1() {
return media_channel1_->CheckRtp(rtp_packet_.data(), rtp_packet_.size());
}
bool CheckRtp2() {
return media_channel2_->CheckRtp(rtp_packet_.data(), rtp_packet_.size());
}
bool CheckRtcp1() {
return media_channel1_->CheckRtcp(rtcp_packet_.data(), rtcp_packet_.size());
}
bool CheckRtcp2() {
return media_channel2_->CheckRtcp(rtcp_packet_.data(), rtcp_packet_.size());
}
// Methods to check custom data.
bool CheckCustomRtp1(uint32_t ssrc, int sequence_number, int pl_type = -1) {
rtc::Buffer data = CreateRtpData(ssrc, sequence_number, pl_type);
return media_channel1_->CheckRtp(data.data(), data.size());
}
bool CheckCustomRtp2(uint32_t ssrc, int sequence_number, int pl_type = -1) {
rtc::Buffer data = CreateRtpData(ssrc, sequence_number, pl_type);
return media_channel2_->CheckRtp(data.data(), data.size());
}
bool CheckCustomRtcp1(uint32_t ssrc) {
rtc::Buffer data = CreateRtcpData(ssrc);
return media_channel1_->CheckRtcp(data.data(), data.size());
}
bool CheckCustomRtcp2(uint32_t ssrc) {
rtc::Buffer data = CreateRtcpData(ssrc);
return media_channel2_->CheckRtcp(data.data(), data.size());
}
rtc::Buffer CreateRtpData(uint32_t ssrc, int sequence_number, int pl_type) {
rtc::Buffer data(rtp_packet_.data(), rtp_packet_.size());
// Set SSRC in the rtp packet copy.
rtc::SetBE32(data.data() + 8, ssrc);
rtc::SetBE16(data.data() + 2, sequence_number);
if (pl_type >= 0) {
rtc::Set8(data.data(), 1, static_cast<uint8_t>(pl_type));
}
return data;
}
rtc::Buffer CreateRtcpData(uint32_t ssrc) {
rtc::Buffer data(rtcp_packet_.data(), rtcp_packet_.size());
// Set SSRC in the rtcp packet copy.
rtc::SetBE32(data.data() + 4, ssrc);
return data;
}
bool CheckNoRtp1() {
return media_channel1_->CheckNoRtp();
}
bool CheckNoRtp2() {
return media_channel2_->CheckNoRtp();
}
bool CheckNoRtcp1() {
return media_channel1_->CheckNoRtcp();
}
bool CheckNoRtcp2() {
return media_channel2_->CheckNoRtcp();
}
void CreateContent(int flags,
const cricket::AudioCodec& audio_codec,
const cricket::VideoCodec& video_codec,
typename T::Content* content) {
// overridden in specialized classes
}
void CopyContent(const typename T::Content& source,
typename T::Content* content) {
// overridden in specialized classes
}
// Creates a MediaContent with one stream.
// kPcmuCodec is used as audio codec and kH264Codec is used as video codec.
typename T::Content* CreateMediaContentWithStream(uint32_t ssrc) {
typename T::Content* content = new typename T::Content();
CreateContent(SECURE, kPcmuCodec, kH264Codec, content);
AddLegacyStreamInContent(ssrc, 0, content);
return content;
}
// Will manage the lifetime of a CallThread, making sure it's
// destroyed before this object goes out of scope.
class ScopedCallThread {
public:
template <class FunctorT>
explicit ScopedCallThread(const FunctorT& functor)
: thread_(rtc::Thread::Create()),
task_(new rtc::FunctorMessageHandler<void, FunctorT>(functor)) {
thread_->Start();
thread_->Post(RTC_FROM_HERE, task_.get());
}
~ScopedCallThread() { thread_->Stop(); }
rtc::Thread* thread() { return thread_.get(); }
private:
std::unique_ptr<rtc::Thread> thread_;
std::unique_ptr<rtc::MessageHandler> task_;
};
bool CodecMatches(const typename T::Codec& c1, const typename T::Codec& c2) {
return false; // overridden in specialized classes
}
void OnMediaMonitor1(typename T::Channel* channel,
const typename T::MediaInfo& info) {
RTC_DCHECK_EQ(channel, channel1_.get());
media_info_callbacks1_++;
}
void OnMediaMonitor2(typename T::Channel* channel,
const typename T::MediaInfo& info) {
RTC_DCHECK_EQ(channel, channel2_.get());
media_info_callbacks2_++;
}
void OnRtcpMuxFullyActive1(const std::string&) {
rtcp_mux_activated_callbacks1_++;
}
void OnRtcpMuxFullyActive2(const std::string&) {
rtcp_mux_activated_callbacks2_++;
}
cricket::CandidatePairInterface* last_selected_candidate_pair() {
return last_selected_candidate_pair_;
}
void AddLegacyStreamInContent(uint32_t ssrc,
int flags,
typename T::Content* content) {
// Base implementation.
}
// Tests that can be used by derived classes.
// Basic sanity check.
void TestInit() {
CreateChannels(0, 0);
EXPECT_FALSE(channel1_->srtp_active());
EXPECT_FALSE(media_channel1_->sending());
if (verify_playout_) {
EXPECT_FALSE(media_channel1_->playout());
}
EXPECT_TRUE(media_channel1_->codecs().empty());
EXPECT_TRUE(media_channel1_->recv_streams().empty());
EXPECT_TRUE(media_channel1_->rtp_packets().empty());
EXPECT_TRUE(media_channel1_->rtcp_packets().empty());
}
// Test that SetLocalContent and SetRemoteContent properly configure
// the codecs.
void TestSetContents() {
CreateChannels(0, 0);
typename T::Content content;
CreateContent(0, kPcmuCodec, kH264Codec, &content);
EXPECT_TRUE(channel1_->SetLocalContent(&content, CA_OFFER, NULL));
EXPECT_EQ(0U, media_channel1_->codecs().size());
EXPECT_TRUE(channel1_->SetRemoteContent(&content, CA_ANSWER, NULL));
ASSERT_EQ(1U, media_channel1_->codecs().size());
EXPECT_TRUE(CodecMatches(content.codecs()[0],
media_channel1_->codecs()[0]));
}
// Test that SetLocalContent and SetRemoteContent properly deals
// with an empty offer.
void TestSetContentsNullOffer() {
CreateChannels(0, 0);
typename T::Content content;
EXPECT_TRUE(channel1_->SetLocalContent(&content, CA_OFFER, NULL));
CreateContent(0, kPcmuCodec, kH264Codec, &content);
EXPECT_EQ(0U, media_channel1_->codecs().size());
EXPECT_TRUE(channel1_->SetRemoteContent(&content, CA_ANSWER, NULL));
ASSERT_EQ(1U, media_channel1_->codecs().size());
EXPECT_TRUE(CodecMatches(content.codecs()[0],
media_channel1_->codecs()[0]));
}
// Test that SetLocalContent and SetRemoteContent properly set RTCP
// mux.
void TestSetContentsRtcpMux() {
CreateChannels(0, 0);
typename T::Content content;
CreateContent(0, kPcmuCodec, kH264Codec, &content);
// Both sides agree on mux. Should no longer be a separate RTCP channel.
content.set_rtcp_mux(true);
EXPECT_TRUE(channel1_->SetLocalContent(&content, CA_OFFER, NULL));
EXPECT_TRUE(channel1_->SetRemoteContent(&content, CA_ANSWER, NULL));
// Only initiator supports mux. Should still have a separate RTCP channel.
EXPECT_TRUE(channel2_->SetLocalContent(&content, CA_OFFER, NULL));
content.set_rtcp_mux(false);
EXPECT_TRUE(channel2_->SetRemoteContent(&content, CA_ANSWER, NULL));
}
// Test that SetLocalContent and SetRemoteContent properly set RTCP
// mux when a provisional answer is received.
void TestSetContentsRtcpMuxWithPrAnswer() {
CreateChannels(0, 0);
typename T::Content content;
CreateContent(0, kPcmuCodec, kH264Codec, &content);
content.set_rtcp_mux(true);
EXPECT_TRUE(channel1_->SetLocalContent(&content, CA_OFFER, NULL));
EXPECT_TRUE(channel1_->SetRemoteContent(&content, CA_PRANSWER, NULL));
// Both sides agree on mux. Should signal RTCP mux as fully activated.
EXPECT_EQ(0, rtcp_mux_activated_callbacks1_);
EXPECT_TRUE(channel1_->SetRemoteContent(&content, CA_ANSWER, NULL));
EXPECT_EQ(1, rtcp_mux_activated_callbacks1_);
// Only initiator supports mux. Should still have a separate RTCP channel.
EXPECT_TRUE(channel2_->SetLocalContent(&content, CA_OFFER, NULL));
content.set_rtcp_mux(false);
EXPECT_TRUE(channel2_->SetRemoteContent(&content, CA_PRANSWER, NULL));
EXPECT_TRUE(channel2_->SetRemoteContent(&content, CA_ANSWER, NULL));
EXPECT_EQ(0, rtcp_mux_activated_callbacks2_);
}
// Test that Add/RemoveStream properly forward to the media channel.
void TestStreams() {
CreateChannels(0, 0);
EXPECT_TRUE(AddStream1(1));
EXPECT_TRUE(AddStream1(2));
EXPECT_EQ(2U, media_channel1_->recv_streams().size());
EXPECT_TRUE(RemoveStream1(2));
EXPECT_EQ(1U, media_channel1_->recv_streams().size());
EXPECT_TRUE(RemoveStream1(1));
EXPECT_EQ(0U, media_channel1_->recv_streams().size());
}
// Test that SetLocalContent and SetRemoteContent properly
// handles adding and removing StreamParams when the action is a full
// CA_OFFER / CA_ANSWER.
void TestChangeStreamParamsInContent() {
cricket::StreamParams stream1;
stream1.groupid = "group1";
stream1.id = "stream1";
stream1.ssrcs.push_back(kSsrc1);
stream1.cname = "stream1_cname";
cricket::StreamParams stream2;
stream2.groupid = "group1";
stream2.id = "stream2";
stream2.ssrcs.push_back(kSsrc2);
stream2.cname = "stream2_cname";
// Setup a call where channel 1 send |stream1| to channel 2.
CreateChannels(0, 0);
typename T::Content content1;
CreateContent(0, kPcmuCodec, kH264Codec, &content1);
content1.AddStream(stream1);
EXPECT_TRUE(channel1_->SetLocalContent(&content1, CA_OFFER, NULL));
EXPECT_TRUE(channel1_->Enable(true));
EXPECT_EQ(1u, media_channel1_->send_streams().size());
EXPECT_TRUE(channel2_->SetRemoteContent(&content1, CA_OFFER, NULL));
EXPECT_EQ(1u, media_channel2_->recv_streams().size());
ConnectFakeTransports();
// Channel 2 do not send anything.
typename T::Content content2;
CreateContent(0, kPcmuCodec, kH264Codec, &content2);
EXPECT_TRUE(channel1_->SetRemoteContent(&content2, CA_ANSWER, NULL));
EXPECT_EQ(0u, media_channel1_->recv_streams().size());
EXPECT_TRUE(channel2_->SetLocalContent(&content2, CA_ANSWER, NULL));
EXPECT_TRUE(channel2_->Enable(true));
EXPECT_EQ(0u, media_channel2_->send_streams().size());
SendCustomRtp1(kSsrc1, 0);
WaitForThreads();
EXPECT_TRUE(CheckCustomRtp2(kSsrc1, 0));
// Let channel 2 update the content by sending |stream2| and enable SRTP.
typename T::Content content3;
CreateContent(SECURE, kPcmuCodec, kH264Codec, &content3);
content3.AddStream(stream2);
EXPECT_TRUE(channel2_->SetLocalContent(&content3, CA_OFFER, NULL));
ASSERT_EQ(1u, media_channel2_->send_streams().size());
EXPECT_EQ(stream2, media_channel2_->send_streams()[0]);
EXPECT_TRUE(channel1_->SetRemoteContent(&content3, CA_OFFER, NULL));
ASSERT_EQ(1u, media_channel1_->recv_streams().size());
EXPECT_EQ(stream2, media_channel1_->recv_streams()[0]);
// Channel 1 replies but stop sending stream1.
typename T::Content content4;
CreateContent(SECURE, kPcmuCodec, kH264Codec, &content4);
EXPECT_TRUE(channel1_->SetLocalContent(&content4, CA_ANSWER, NULL));
EXPECT_EQ(0u, media_channel1_->send_streams().size());
EXPECT_TRUE(channel2_->SetRemoteContent(&content4, CA_ANSWER, NULL));
EXPECT_EQ(0u, media_channel2_->recv_streams().size());
EXPECT_TRUE(channel1_->srtp_active());
EXPECT_TRUE(channel2_->srtp_active());
SendCustomRtp2(kSsrc2, 0);
WaitForThreads();
EXPECT_TRUE(CheckCustomRtp1(kSsrc2, 0));
}
enum EncryptedHeaderTestScenario {
// Offer/Answer are processed before DTLS completes.
DEFAULT,
// DTLS completes before any Offer/Answer have been sent.
DTLS_BEFORE_OFFER_ANSWER,
// DTLS completes after channel 2 has processed (remote) Offer and (local)
// Answer.
DTLS_AFTER_CHANNEL2_READY,
};
// Test that encrypted header extensions are working and can be changed when
// sending a new OFFER/ANSWER.
void TestChangeEncryptedHeaderExtensions(int flags,
EncryptedHeaderTestScenario scenario = DEFAULT) {
RTC_CHECK(scenario == 0 || (flags & DTLS));
struct PacketListener : public sigslot::has_slots<> {
PacketListener() {}
void OnReadPacket(rtc::PacketTransportInternal* transport,
const char* data, size_t size, const rtc::PacketTime& time,
int flags) {
CompareHeaderExtensions(
reinterpret_cast<const char*>(kPcmuFrameWithExtensions),
sizeof(kPcmuFrameWithExtensions), data, size, encrypted_headers,
false);
}
std::vector<int> encrypted_headers;
} packet_listener1, packet_listener2;
cricket::StreamParams stream1;
stream1.groupid = "group1";
stream1.id = "stream1";
stream1.ssrcs.push_back(kSsrc1);
stream1.cname = "stream1_cname";
cricket::StreamParams stream2;
stream2.groupid = "group1";
stream2.id = "stream2";
stream2.ssrcs.push_back(kSsrc2);
stream2.cname = "stream2_cname";
// Use SRTP when testing encrypted extensions.
int channel_flags = flags | SECURE | ENCRYPTED_HEADERS;
// Enable SDES if channel is not using DTLS.
int content_flags = (channel_flags & DTLS) == 0 ? SECURE : 0;
// kPcmuFrameWithExtensions contains RTP extension headers with ids 1-4.
// Make sure to use URIs that are supported for encryption.
cricket::RtpHeaderExtensions extensions1;
extensions1.push_back(
RtpExtension(RtpExtension::kAudioLevelUri, 10));
extensions1.push_back(
RtpExtension(RtpExtension::kAudioLevelUri, 1, true));
cricket::RtpHeaderExtensions extensions2;
extensions2.push_back(
RtpExtension(RtpExtension::kAudioLevelUri, 10));
extensions2.push_back(
RtpExtension(RtpExtension::kAudioLevelUri, 2, true));
extensions2.push_back(
RtpExtension(RtpExtension::kVideoRotationUri, 3));
extensions2.push_back(
RtpExtension(RtpExtension::kTimestampOffsetUri, 4, true));
// Setup a call where channel 1 send |stream1| to channel 2.
CreateChannels(channel_flags, channel_flags);
fake_rtp_dtls_transport1_->fake_ice_transport()->SignalReadPacket.connect(
&packet_listener1, &PacketListener::OnReadPacket);
fake_rtp_dtls_transport2_->fake_ice_transport()->SignalReadPacket.connect(
&packet_listener2, &PacketListener::OnReadPacket);
if (scenario == DTLS_BEFORE_OFFER_ANSWER) {
ConnectFakeTransports();
WaitForThreads();
}
typename T::Content content1;
CreateContent(content_flags, kPcmuCodec, kH264Codec, &content1);
content1.AddStream(stream1);
content1.set_rtp_header_extensions(extensions1);
EXPECT_TRUE(channel1_->SetLocalContent(&content1, CA_OFFER, NULL));
EXPECT_TRUE(channel1_->Enable(true));
EXPECT_EQ(1u, media_channel1_->send_streams().size());
packet_listener1.encrypted_headers.push_back(1);
EXPECT_TRUE(channel2_->SetRemoteContent(&content1, CA_OFFER, NULL));
EXPECT_EQ(1u, media_channel2_->recv_streams().size());
// Channel 2 sends back |stream2|.
typename T::Content content2;
CreateContent(content_flags, kPcmuCodec, kH264Codec, &content2);
content2.AddStream(stream2);
content2.set_rtp_header_extensions(extensions1);
EXPECT_TRUE(channel2_->SetLocalContent(&content2, CA_ANSWER, NULL));
EXPECT_TRUE(channel2_->Enable(true));
EXPECT_EQ(1u, media_channel2_->send_streams().size());
packet_listener2.encrypted_headers.push_back(1);
if (scenario == DTLS_AFTER_CHANNEL2_READY) {
ConnectFakeTransports();
WaitForThreads();
}
if (scenario == DTLS_BEFORE_OFFER_ANSWER ||
scenario == DTLS_AFTER_CHANNEL2_READY) {
// In both scenarios with partially completed Offer/Answer, sending
// packets from Channel 2 to Channel 1 should work.
SendCustomRtp2(kSsrc2, 0);
WaitForThreads();
EXPECT_TRUE(CheckCustomRtp1(kSsrc2, 0));
}
EXPECT_TRUE(channel1_->SetRemoteContent(&content2, CA_ANSWER, NULL));
EXPECT_EQ(1u, media_channel1_->recv_streams().size());
if (scenario == DEFAULT) {
ConnectFakeTransports();
WaitForThreads();
}
SendCustomRtp1(kSsrc1, 0);
SendCustomRtp2(kSsrc2, 0);
WaitForThreads();
EXPECT_TRUE(CheckCustomRtp2(kSsrc1, 0));
EXPECT_TRUE(CheckCustomRtp1(kSsrc2, 0));
// Let channel 2 update the encrypted header extensions.
typename T::Content content3;
CreateContent(content_flags, kPcmuCodec, kH264Codec, &content3);
content3.AddStream(stream2);
content3.set_rtp_header_extensions(extensions2);
EXPECT_TRUE(channel2_->SetLocalContent(&content3, CA_OFFER, NULL));
ASSERT_EQ(1u, media_channel2_->send_streams().size());
EXPECT_EQ(stream2, media_channel2_->send_streams()[0]);
packet_listener2.encrypted_headers.clear();
packet_listener2.encrypted_headers.push_back(2);
packet_listener2.encrypted_headers.push_back(4);
EXPECT_TRUE(channel1_->SetRemoteContent(&content3, CA_OFFER, NULL));
ASSERT_EQ(1u, media_channel1_->recv_streams().size());
EXPECT_EQ(stream2, media_channel1_->recv_streams()[0]);
// Channel 1 is already sending the new encrypted extensions. These
// can be decrypted by channel 2. Channel 2 is still sending the old
// encrypted extensions (which can be decrypted by channel 1).
if (flags & DTLS) {
// DTLS supports updating the encrypted extensions with only the OFFER
// being processed. For SDES both the OFFER and ANSWER must have been
// processed to update encrypted extensions, so we can't check this case.
SendCustomRtp1(kSsrc1, 0);
SendCustomRtp2(kSsrc2, 0);
WaitForThreads();
EXPECT_TRUE(CheckCustomRtp2(kSsrc1, 0));
EXPECT_TRUE(CheckCustomRtp1(kSsrc2, 0));
}
// Channel 1 replies with the same extensions.
typename T::Content content4;
CreateContent(content_flags, kPcmuCodec, kH264Codec, &content4);
content4.AddStream(stream1);
content4.set_rtp_header_extensions(extensions2);
EXPECT_TRUE(channel1_->SetLocalContent(&content4, CA_ANSWER, NULL));
EXPECT_EQ(1u, media_channel1_->send_streams().size());
packet_listener1.encrypted_headers.clear();
packet_listener1.encrypted_headers.push_back(2);
packet_listener1.encrypted_headers.push_back(4);
EXPECT_TRUE(channel2_->SetRemoteContent(&content4, CA_ANSWER, NULL));
EXPECT_EQ(1u, media_channel2_->recv_streams().size());
SendCustomRtp1(kSsrc1, 0);
SendCustomRtp2(kSsrc2, 0);
WaitForThreads();
EXPECT_TRUE(CheckCustomRtp2(kSsrc1, 0));
EXPECT_TRUE(CheckCustomRtp1(kSsrc2, 0));
}
// Test that we only start playout and sending at the right times.
void TestPlayoutAndSendingStates() {
CreateChannels(0, 0);
if (verify_playout_) {
EXPECT_FALSE(media_channel1_->playout());
}
EXPECT_FALSE(media_channel1_->sending());
if (verify_playout_) {
EXPECT_FALSE(media_channel2_->playout());
}
EXPECT_FALSE(media_channel2_->sending());
EXPECT_TRUE(channel1_->Enable(true));
if (verify_playout_) {
EXPECT_FALSE(media_channel1_->playout());
}
EXPECT_FALSE(media_channel1_->sending());
EXPECT_TRUE(channel1_->SetLocalContent(&local_media_content1_,
CA_OFFER, NULL));
if (verify_playout_) {
EXPECT_TRUE(media_channel1_->playout());
}
EXPECT_FALSE(media_channel1_->sending());
EXPECT_TRUE(channel2_->SetRemoteContent(&local_media_content1_,
CA_OFFER, NULL));
if (verify_playout_) {
EXPECT_FALSE(media_channel2_->playout());
}
EXPECT_FALSE(media_channel2_->sending());
EXPECT_TRUE(channel2_->SetLocalContent(&local_media_content2_,
CA_ANSWER, NULL));
if (verify_playout_) {
EXPECT_FALSE(media_channel2_->playout());
}
EXPECT_FALSE(media_channel2_->sending());
ConnectFakeTransports();
if (verify_playout_) {
EXPECT_TRUE(media_channel1_->playout());
}
EXPECT_FALSE(media_channel1_->sending());
if (verify_playout_) {
EXPECT_FALSE(media_channel2_->playout());
}
EXPECT_FALSE(media_channel2_->sending());
EXPECT_TRUE(channel2_->Enable(true));
if (verify_playout_) {
EXPECT_TRUE(media_channel2_->playout());
}
EXPECT_TRUE(media_channel2_->sending());
EXPECT_TRUE(channel1_->SetRemoteContent(&local_media_content2_,
CA_ANSWER, NULL));
if (verify_playout_) {
EXPECT_TRUE(media_channel1_->playout());
}
EXPECT_TRUE(media_channel1_->sending());
}
// Test that changing the MediaContentDirection in the local and remote
// session description start playout and sending at the right time.
void TestMediaContentDirection() {
CreateChannels(0, 0);
typename T::Content content1;
CreateContent(0, kPcmuCodec, kH264Codec, &content1);
typename T::Content content2;
CreateContent(0, kPcmuCodec, kH264Codec, &content2);
// Set |content2| to be InActive.
content2.set_direction(cricket::MD_INACTIVE);
EXPECT_TRUE(channel1_->Enable(true));
EXPECT_TRUE(channel2_->Enable(true));
if (verify_playout_) {
EXPECT_FALSE(media_channel1_->playout());
}
EXPECT_FALSE(media_channel1_->sending());
if (verify_playout_) {
EXPECT_FALSE(media_channel2_->playout());
}
EXPECT_FALSE(media_channel2_->sending());
EXPECT_TRUE(channel1_->SetLocalContent(&content1, CA_OFFER, NULL));
EXPECT_TRUE(channel2_->SetRemoteContent(&content1, CA_OFFER, NULL));
EXPECT_TRUE(channel2_->SetLocalContent(&content2, CA_PRANSWER, NULL));
EXPECT_TRUE(channel1_->SetRemoteContent(&content2, CA_PRANSWER, NULL));
ConnectFakeTransports();
if (verify_playout_) {
EXPECT_TRUE(media_channel1_->playout());
}
EXPECT_FALSE(media_channel1_->sending()); // remote InActive
if (verify_playout_) {
EXPECT_FALSE(media_channel2_->playout()); // local InActive
}
EXPECT_FALSE(media_channel2_->sending()); // local InActive
// Update |content2| to be RecvOnly.
content2.set_direction(cricket::MD_RECVONLY);
EXPECT_TRUE(channel2_->SetLocalContent(&content2, CA_PRANSWER, NULL));
EXPECT_TRUE(channel1_->SetRemoteContent(&content2, CA_PRANSWER, NULL));
if (verify_playout_) {
EXPECT_TRUE(media_channel1_->playout());
}
EXPECT_TRUE(media_channel1_->sending());
if (verify_playout_) {
EXPECT_TRUE(media_channel2_->playout()); // local RecvOnly
}
EXPECT_FALSE(media_channel2_->sending()); // local RecvOnly
// Update |content2| to be SendRecv.
content2.set_direction(cricket::MD_SENDRECV);
EXPECT_TRUE(channel2_->SetLocalContent(&content2, CA_ANSWER, NULL));
EXPECT_TRUE(channel1_->SetRemoteContent(&content2, CA_ANSWER, NULL));
if (verify_playout_) {
EXPECT_TRUE(media_channel1_->playout());
}
EXPECT_TRUE(media_channel1_->sending());
if (verify_playout_) {
EXPECT_TRUE(media_channel2_->playout());
}
EXPECT_TRUE(media_channel2_->sending());
}
// Tests that when the transport channel signals a candidate pair change
// event, the media channel will receive a call on the network route change.
void TestNetworkRouteChanges() {
static constexpr uint16_t kLocalNetId = 1;
static constexpr uint16_t kRemoteNetId = 2;
static constexpr int kLastPacketId = 100;
// Ipv4(20) + UDP(8).
static constexpr int kTransportOverheadPerPacket = 28;
CreateChannels(0, 0);
typename T::MediaChannel* media_channel1 =
static_cast<typename T::MediaChannel*>(channel1_->media_channel());
ASSERT_TRUE(media_channel1);
// Need to wait for the threads before calling
// |set_num_network_route_changes| because the network route would be set
// when creating the channel.
WaitForThreads();
media_channel1->set_num_network_route_changes(0);
network_thread_->Invoke<void>(RTC_FROM_HERE, [this] {
rtc::NetworkRoute network_route;
// The transport channel becomes disconnected.
fake_rtp_dtls_transport1_->ice_transport()->SignalNetworkRouteChanged(
rtc::Optional<rtc::NetworkRoute>(network_route));
});
WaitForThreads();
EXPECT_EQ(1, media_channel1->num_network_route_changes());
EXPECT_FALSE(media_channel1->last_network_route().connected);
media_channel1->set_num_network_route_changes(0);
network_thread_->Invoke<void>(RTC_FROM_HERE, [this] {
rtc::NetworkRoute network_route;
network_route.connected = true;
network_route.local_network_id = kLocalNetId;
network_route.remote_network_id = kRemoteNetId;
network_route.last_sent_packet_id = kLastPacketId;
network_route.packet_overhead = kTransportOverheadPerPacket;
// The transport channel becomes connected.
fake_rtp_dtls_transport1_->ice_transport()->SignalNetworkRouteChanged(
rtc::Optional<rtc::NetworkRoute>(network_route));
});
WaitForThreads();
EXPECT_EQ(1, media_channel1->num_network_route_changes());
rtc::NetworkRoute expected_network_route(true, kLocalNetId, kRemoteNetId,
kLastPacketId);
EXPECT_EQ(expected_network_route, media_channel1->last_network_route());
EXPECT_EQ(kLastPacketId,
media_channel1->last_network_route().last_sent_packet_id);
EXPECT_EQ(kTransportOverheadPerPacket,
media_channel1->transport_overhead_per_packet());
}
// Test setting up a call.
void TestCallSetup() {
CreateChannels(0, 0);
EXPECT_FALSE(channel1_->srtp_active());
EXPECT_TRUE(SendInitiate());
if (verify_playout_) {
EXPECT_TRUE(media_channel1_->playout());
}
EXPECT_FALSE(media_channel1_->sending());
EXPECT_TRUE(SendAccept());
EXPECT_FALSE(channel1_->srtp_active());
EXPECT_TRUE(media_channel1_->sending());
EXPECT_EQ(1U, media_channel1_->codecs().size());
if (verify_playout_) {
EXPECT_TRUE(media_channel2_->playout());
}
EXPECT_TRUE(media_channel2_->sending());
EXPECT_EQ(1U, media_channel2_->codecs().size());
}
// Test that we don't crash if packets are sent during call teardown
// when RTCP mux is enabled. This is a regression test against a specific
// race condition that would only occur when a RTCP packet was sent during
// teardown of a channel on which RTCP mux was enabled.
void TestCallTeardownRtcpMux() {
class LastWordMediaChannel : public T::MediaChannel {
public:
LastWordMediaChannel() : T::MediaChannel(NULL, typename T::Options()) {}
~LastWordMediaChannel() {
T::MediaChannel::SendRtp(kPcmuFrame, sizeof(kPcmuFrame),
rtc::PacketOptions());
T::MediaChannel::SendRtcp(kRtcpReport, sizeof(kRtcpReport));
}
};
CreateChannels(rtc::MakeUnique<LastWordMediaChannel>(),
rtc::MakeUnique<LastWordMediaChannel>(), RTCP_MUX, RTCP_MUX);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
EXPECT_TRUE(Terminate());
}
// Send voice RTP data to the other side and ensure it gets there.
void SendRtpToRtp() {
CreateChannels(RTCP_MUX | RTCP_MUX_REQUIRED, RTCP_MUX | RTCP_MUX_REQUIRED);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
EXPECT_FALSE(channel1_->NeedsRtcpTransport());
EXPECT_FALSE(channel2_->NeedsRtcpTransport());
SendRtp1();
SendRtp2();
WaitForThreads();
EXPECT_TRUE(CheckRtp1());
EXPECT_TRUE(CheckRtp2());
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckNoRtp2());
}
void TestDeinit() {
CreateChannels(0, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
SendRtp1();
SendRtp2();
SendRtcp1();
SendRtcp2();
// Do not wait, destroy channels.
channel1_.reset(nullptr);
channel2_.reset(nullptr);
}
// Check that RTCP can be transmitted between both sides.
void SendRtcpToRtcp() {
CreateChannels(0, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
EXPECT_TRUE(channel1_->NeedsRtcpTransport());
EXPECT_TRUE(channel2_->NeedsRtcpTransport());
SendRtcp1();
SendRtcp2();
WaitForThreads();
EXPECT_TRUE(CheckRtcp1());
EXPECT_TRUE(CheckRtcp2());
EXPECT_TRUE(CheckNoRtcp1());
EXPECT_TRUE(CheckNoRtcp2());
}
// Check that RTCP is transmitted if only the initiator supports mux.
void SendRtcpMuxToRtcp() {
CreateChannels(RTCP_MUX, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
EXPECT_TRUE(channel1_->NeedsRtcpTransport());
EXPECT_TRUE(channel2_->NeedsRtcpTransport());
SendRtcp1();
SendRtcp2();
WaitForThreads();
EXPECT_TRUE(CheckRtcp1());
EXPECT_TRUE(CheckRtcp2());
EXPECT_TRUE(CheckNoRtcp1());
EXPECT_TRUE(CheckNoRtcp2());
}
// Check that RTP and RTCP are transmitted ok when both sides support mux.
void SendRtcpMuxToRtcpMux() {
CreateChannels(RTCP_MUX, RTCP_MUX);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(channel1_->NeedsRtcpTransport());
EXPECT_FALSE(channel2_->NeedsRtcpTransport());
EXPECT_EQ(0, rtcp_mux_activated_callbacks1_);
EXPECT_TRUE(SendAccept());
EXPECT_FALSE(channel1_->NeedsRtcpTransport());
EXPECT_EQ(1, rtcp_mux_activated_callbacks1_);
SendRtp1();
SendRtp2();
SendRtcp1();
SendRtcp2();
WaitForThreads();
EXPECT_TRUE(CheckRtp1());
EXPECT_TRUE(CheckRtp2());
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckNoRtp2());
EXPECT_TRUE(CheckRtcp1());
EXPECT_TRUE(CheckRtcp2());
EXPECT_TRUE(CheckNoRtcp1());
EXPECT_TRUE(CheckNoRtcp2());
}
// Check that RTP and RTCP are transmitted ok when both sides
// support mux and one the offerer requires mux.
void SendRequireRtcpMuxToRtcpMux() {
CreateChannels(RTCP_MUX | RTCP_MUX_REQUIRED, RTCP_MUX);
EXPECT_TRUE(SendInitiate());
EXPECT_FALSE(channel1_->NeedsRtcpTransport());
EXPECT_FALSE(channel2_->NeedsRtcpTransport());
EXPECT_TRUE(SendAccept());
SendRtp1();
SendRtp2();
SendRtcp1();
SendRtcp2();
WaitForThreads();
EXPECT_TRUE(CheckRtp1());
EXPECT_TRUE(CheckRtp2());
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckNoRtp2());
EXPECT_TRUE(CheckRtcp1());
EXPECT_TRUE(CheckRtcp2());
EXPECT_TRUE(CheckNoRtcp1());
EXPECT_TRUE(CheckNoRtcp2());
}
// Check that RTP and RTCP are transmitted ok when both sides
// support mux and only the answerer requires rtcp mux.
void SendRtcpMuxToRequireRtcpMux() {
CreateChannels(RTCP_MUX, RTCP_MUX | RTCP_MUX_REQUIRED);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(channel1_->NeedsRtcpTransport());
EXPECT_FALSE(channel2_->NeedsRtcpTransport());
EXPECT_EQ(0, rtcp_mux_activated_callbacks1_);
EXPECT_TRUE(SendAccept());
EXPECT_FALSE(channel1_->NeedsRtcpTransport());
EXPECT_EQ(1, rtcp_mux_activated_callbacks1_);
SendRtp1();
SendRtp2();
SendRtcp1();
SendRtcp2();
WaitForThreads();
EXPECT_TRUE(CheckRtp1());
EXPECT_TRUE(CheckRtp2());
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckNoRtp2());
EXPECT_TRUE(CheckRtcp1());
EXPECT_TRUE(CheckRtcp2());
EXPECT_TRUE(CheckNoRtcp1());
EXPECT_TRUE(CheckNoRtcp2());
}
// Check that RTP and RTCP are transmitted ok when both sides
// require mux.
void SendRequireRtcpMuxToRequireRtcpMux() {
CreateChannels(RTCP_MUX | RTCP_MUX_REQUIRED, RTCP_MUX | RTCP_MUX_REQUIRED);
EXPECT_TRUE(SendInitiate());
EXPECT_FALSE(channel1_->NeedsRtcpTransport());
EXPECT_FALSE(channel2_->NeedsRtcpTransport());
EXPECT_TRUE(SendAccept());
EXPECT_FALSE(channel1_->NeedsRtcpTransport());
SendRtp1();
SendRtp2();
SendRtcp1();
SendRtcp2();
WaitForThreads();
EXPECT_TRUE(CheckRtp1());
EXPECT_TRUE(CheckRtp2());
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckNoRtp2());
EXPECT_TRUE(CheckRtcp1());
EXPECT_TRUE(CheckRtcp2());
EXPECT_TRUE(CheckNoRtcp1());
EXPECT_TRUE(CheckNoRtcp2());
}
// Check that SendAccept fails if the answerer doesn't support mux
// and the offerer requires it.
void SendRequireRtcpMuxToNoRtcpMux() {
CreateChannels(RTCP_MUX | RTCP_MUX_REQUIRED, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_FALSE(channel1_->NeedsRtcpTransport());
EXPECT_TRUE(channel2_->NeedsRtcpTransport());
EXPECT_FALSE(SendAccept());
}
// Check that RTCP data sent by the initiator before the accept is not muxed.
void SendEarlyRtcpMuxToRtcp() {
CreateChannels(RTCP_MUX, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(channel1_->NeedsRtcpTransport());
EXPECT_TRUE(channel2_->NeedsRtcpTransport());
// RTCP can be sent before the call is accepted, if the transport is ready.
// It should not be muxed though, as the remote side doesn't support mux.
SendRtcp1();
WaitForThreads();
EXPECT_TRUE(CheckNoRtp2());
EXPECT_TRUE(CheckRtcp2());
// Send RTCP packet from callee and verify that it is received.
SendRtcp2();
WaitForThreads();
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckRtcp1());
// Complete call setup and ensure everything is still OK.
EXPECT_TRUE(SendAccept());
EXPECT_TRUE(channel1_->NeedsRtcpTransport());
SendRtcp1();
SendRtcp2();
WaitForThreads();
EXPECT_TRUE(CheckRtcp2());
EXPECT_TRUE(CheckRtcp1());
}
// Check that RTCP data is not muxed until both sides have enabled muxing,
// but that we properly demux before we get the accept message, since there
// is a race between RTP data and the jingle accept.
void SendEarlyRtcpMuxToRtcpMux() {
CreateChannels(RTCP_MUX, RTCP_MUX);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(channel1_->NeedsRtcpTransport());
EXPECT_FALSE(channel2_->NeedsRtcpTransport());
// RTCP can't be sent yet, since the RTCP transport isn't writable, and
// we haven't yet received the accept that says we should mux.
SendRtcp1();
WaitForThreads();
EXPECT_TRUE(CheckNoRtcp2());
// Send muxed RTCP packet from callee and verify that it is received.
SendRtcp2();
WaitForThreads();
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckRtcp1());
// Complete call setup and ensure everything is still OK.
EXPECT_EQ(0, rtcp_mux_activated_callbacks1_);
EXPECT_TRUE(SendAccept());
EXPECT_FALSE(channel1_->NeedsRtcpTransport());
EXPECT_EQ(1, rtcp_mux_activated_callbacks1_);
SendRtcp1();
SendRtcp2();
WaitForThreads();
EXPECT_TRUE(CheckRtcp2());
EXPECT_TRUE(CheckRtcp1());
}
// Test that we properly send SRTP with RTCP in both directions.
// You can pass in DTLS, RTCP_MUX, and RAW_PACKET_TRANSPORT as flags.
void SendSrtpToSrtp(int flags1_in = 0, int flags2_in = 0) {
RTC_CHECK((flags1_in & ~(RTCP_MUX | DTLS | RAW_PACKET_TRANSPORT)) == 0);
RTC_CHECK((flags2_in & ~(RTCP_MUX | DTLS | RAW_PACKET_TRANSPORT)) == 0);
int flags1 = SECURE | flags1_in;
int flags2 = SECURE | flags2_in;
bool dtls1 = !!(flags1_in & DTLS);
bool dtls2 = !!(flags2_in & DTLS);
CreateChannels(flags1, flags2);
EXPECT_FALSE(channel1_->srtp_active());
EXPECT_FALSE(channel2_->srtp_active());
EXPECT_TRUE(SendInitiate());
WaitForThreads();
EXPECT_TRUE(channel1_->writable());
EXPECT_TRUE(channel2_->writable());
EXPECT_TRUE(SendAccept());
EXPECT_TRUE(channel1_->srtp_active());
EXPECT_TRUE(channel2_->srtp_active());
EXPECT_EQ(dtls1 && dtls2, channel1_->dtls_active());
EXPECT_EQ(dtls1 && dtls2, channel2_->dtls_active());
SendRtp1();
SendRtp2();
SendRtcp1();
SendRtcp2();
WaitForThreads();
EXPECT_TRUE(CheckRtp1());
EXPECT_TRUE(CheckRtp2());
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckNoRtp2());
EXPECT_TRUE(CheckRtcp1());
EXPECT_TRUE(CheckRtcp2());
EXPECT_TRUE(CheckNoRtcp1());
EXPECT_TRUE(CheckNoRtcp2());
}
// Test that we properly handling SRTP negotiating down to RTP.
void SendSrtpToRtp() {
CreateChannels(SECURE, 0);
EXPECT_FALSE(channel1_->srtp_active());
EXPECT_FALSE(channel2_->srtp_active());
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
EXPECT_FALSE(channel1_->srtp_active());
EXPECT_FALSE(channel2_->srtp_active());
SendRtp1();
SendRtp2();
SendRtcp1();
SendRtcp2();
WaitForThreads();
EXPECT_TRUE(CheckRtp1());
EXPECT_TRUE(CheckRtp2());
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckNoRtp2());
EXPECT_TRUE(CheckRtcp1());
EXPECT_TRUE(CheckRtcp2());
EXPECT_TRUE(CheckNoRtcp1());
EXPECT_TRUE(CheckNoRtcp2());
}
// Test that we can send and receive early media when a provisional answer is
// sent and received. The test uses SRTP, RTCP mux and SSRC mux.
void SendEarlyMediaUsingRtcpMuxSrtp() {
int sequence_number1_1 = 0, sequence_number2_2 = 0;
CreateChannels(SSRC_MUX | RTCP_MUX | SECURE,
SSRC_MUX | RTCP_MUX | SECURE);
EXPECT_TRUE(SendOffer());
EXPECT_TRUE(SendProvisionalAnswer());
EXPECT_TRUE(channel1_->srtp_active());
EXPECT_TRUE(channel2_->srtp_active());
EXPECT_TRUE(channel1_->NeedsRtcpTransport());
EXPECT_TRUE(channel2_->NeedsRtcpTransport());
WaitForThreads(); // Wait for 'sending' flag go through network thread.
SendCustomRtcp1(kSsrc1);
SendCustomRtp1(kSsrc1, ++sequence_number1_1);
WaitForThreads();
EXPECT_TRUE(CheckCustomRtcp2(kSsrc1));
EXPECT_TRUE(CheckCustomRtp2(kSsrc1, sequence_number1_1));
// Send packets from callee and verify that it is received.
SendCustomRtcp2(kSsrc2);
SendCustomRtp2(kSsrc2, ++sequence_number2_2);
WaitForThreads();
EXPECT_TRUE(CheckCustomRtcp1(kSsrc2));
EXPECT_TRUE(CheckCustomRtp1(kSsrc2, sequence_number2_2));
// Complete call setup and ensure everything is still OK.
EXPECT_EQ(0, rtcp_mux_activated_callbacks1_);
EXPECT_EQ(0, rtcp_mux_activated_callbacks2_);
EXPECT_TRUE(SendFinalAnswer());
EXPECT_FALSE(channel1_->NeedsRtcpTransport());
EXPECT_FALSE(channel2_->NeedsRtcpTransport());
EXPECT_EQ(1, rtcp_mux_activated_callbacks1_);
EXPECT_EQ(1, rtcp_mux_activated_callbacks2_);
EXPECT_TRUE(channel1_->srtp_active());
EXPECT_TRUE(channel2_->srtp_active());
SendCustomRtcp1(kSsrc1);
SendCustomRtp1(kSsrc1, ++sequence_number1_1);
SendCustomRtcp2(kSsrc2);
SendCustomRtp2(kSsrc2, ++sequence_number2_2);
WaitForThreads();
EXPECT_TRUE(CheckCustomRtcp2(kSsrc1));
EXPECT_TRUE(CheckCustomRtp2(kSsrc1, sequence_number1_1));
EXPECT_TRUE(CheckCustomRtcp1(kSsrc2));
EXPECT_TRUE(CheckCustomRtp1(kSsrc2, sequence_number2_2));
}
// Test that we properly send RTP without SRTP from a thread.
void SendRtpToRtpOnThread() {
CreateChannels(0, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
ScopedCallThread send_rtp1([this] { SendRtp1(); });
ScopedCallThread send_rtp2([this] { SendRtp2(); });
ScopedCallThread send_rtcp1([this] { SendRtcp1(); });
ScopedCallThread send_rtcp2([this] { SendRtcp2(); });
rtc::Thread* involved_threads[] = {send_rtp1.thread(), send_rtp2.thread(),
send_rtcp1.thread(),
send_rtcp2.thread()};
WaitForThreads(involved_threads);
EXPECT_TRUE(CheckRtp1());
EXPECT_TRUE(CheckRtp2());
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckNoRtp2());
EXPECT_TRUE(CheckRtcp1());
EXPECT_TRUE(CheckRtcp2());
EXPECT_TRUE(CheckNoRtcp1());
EXPECT_TRUE(CheckNoRtcp2());
}
// Test that we properly send SRTP with RTCP from a thread.
void SendSrtpToSrtpOnThread() {
CreateChannels(SECURE, SECURE);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
ScopedCallThread send_rtp1([this] { SendRtp1(); });
ScopedCallThread send_rtp2([this] { SendRtp2(); });
ScopedCallThread send_rtcp1([this] { SendRtcp1(); });
ScopedCallThread send_rtcp2([this] { SendRtcp2(); });
rtc::Thread* involved_threads[] = {send_rtp1.thread(), send_rtp2.thread(),
send_rtcp1.thread(),
send_rtcp2.thread()};
WaitForThreads(involved_threads);
EXPECT_TRUE(CheckRtp1());
EXPECT_TRUE(CheckRtp2());
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckNoRtp2());
EXPECT_TRUE(CheckRtcp1());
EXPECT_TRUE(CheckRtcp2());
EXPECT_TRUE(CheckNoRtcp1());
EXPECT_TRUE(CheckNoRtcp2());
}
// Test that the mediachannel retains its sending state after the transport
// becomes non-writable.
void SendWithWritabilityLoss() {
CreateChannels(RTCP_MUX | RTCP_MUX_REQUIRED, RTCP_MUX | RTCP_MUX_REQUIRED);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
EXPECT_FALSE(channel1_->NeedsRtcpTransport());
EXPECT_FALSE(channel2_->NeedsRtcpTransport());
SendRtp1();
SendRtp2();
WaitForThreads();
EXPECT_TRUE(CheckRtp1());
EXPECT_TRUE(CheckRtp2());
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckNoRtp2());
// Lose writability, which should fail.
network_thread_->Invoke<void>(RTC_FROM_HERE, [this] {
fake_rtp_dtls_transport1_->SetWritable(false);
});
SendRtp1();
SendRtp2();
WaitForThreads();
EXPECT_TRUE(CheckRtp1());
EXPECT_TRUE(CheckNoRtp2());
// Regain writability
network_thread_->Invoke<void>(RTC_FROM_HERE, [this] {
fake_rtp_dtls_transport1_->SetWritable(true);
});
EXPECT_TRUE(media_channel1_->sending());
SendRtp1();
SendRtp2();
WaitForThreads();
EXPECT_TRUE(CheckRtp1());
EXPECT_TRUE(CheckRtp2());
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckNoRtp2());
// Lose writability completely
network_thread_->Invoke<void>(RTC_FROM_HERE, [this] {
bool asymmetric = true;
fake_rtp_dtls_transport1_->SetDestination(nullptr, asymmetric);
});
EXPECT_TRUE(media_channel1_->sending());
// Should fail also.
SendRtp1();
SendRtp2();
WaitForThreads();
EXPECT_TRUE(CheckRtp1());
EXPECT_TRUE(CheckNoRtp2());
EXPECT_TRUE(CheckNoRtp1());
// Gain writability back
network_thread_->Invoke<void>(RTC_FROM_HERE, [this] {
bool asymmetric = true;
fake_rtp_dtls_transport1_->SetDestination(fake_rtp_dtls_transport2_.get(),
asymmetric);
});
EXPECT_TRUE(media_channel1_->sending());
SendRtp1();
SendRtp2();
WaitForThreads();
EXPECT_TRUE(CheckRtp1());
EXPECT_TRUE(CheckRtp2());
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckNoRtp2());
}
void SendBundleToBundle(
const int* pl_types, int len, bool rtcp_mux, bool secure) {
ASSERT_EQ(2, len);
int sequence_number1_1 = 0, sequence_number2_2 = 0;
// Only pl_type1 was added to the bundle filter for both |channel1_|
// and |channel2_|.
int pl_type1 = pl_types[0];
int pl_type2 = pl_types[1];
int flags = SSRC_MUX;
if (secure) flags |= SECURE;
if (rtcp_mux) {
flags |= RTCP_MUX;
}
CreateChannels(flags, flags);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(channel1_->NeedsRtcpTransport());
EXPECT_EQ(rtcp_mux, !channel2_->NeedsRtcpTransport());
EXPECT_TRUE(SendAccept());
EXPECT_EQ(rtcp_mux, !channel1_->NeedsRtcpTransport());
EXPECT_EQ(rtcp_mux, !channel2_->NeedsRtcpTransport());
EXPECT_TRUE(channel1_->HandlesPayloadType(pl_type1));
EXPECT_TRUE(channel2_->HandlesPayloadType(pl_type1));
EXPECT_FALSE(channel1_->HandlesPayloadType(pl_type2));
EXPECT_FALSE(channel2_->HandlesPayloadType(pl_type2));
// Both channels can receive pl_type1 only.
SendCustomRtp1(kSsrc1, ++sequence_number1_1, pl_type1);
SendCustomRtp2(kSsrc2, ++sequence_number2_2, pl_type1);
WaitForThreads();
EXPECT_TRUE(CheckCustomRtp2(kSsrc1, sequence_number1_1, pl_type1));
EXPECT_TRUE(CheckCustomRtp1(kSsrc2, sequence_number2_2, pl_type1));
EXPECT_TRUE(CheckNoRtp1());
EXPECT_TRUE(CheckNoRtp2());
// RTCP test
SendCustomRtp1(kSsrc1, ++sequence_number1_1, pl_type2);
SendCustomRtp2(kSsrc2, ++sequence_number2_2, pl_type2);
WaitForThreads();
EXPECT_FALSE(CheckCustomRtp2(kSsrc1, sequence_number1_1, pl_type2));
EXPECT_FALSE(CheckCustomRtp1(kSsrc2, sequence_number2_2, pl_type2));
SendCustomRtcp1(kSsrc1);
SendCustomRtcp2(kSsrc2);
WaitForThreads();
EXPECT_TRUE(CheckCustomRtcp1(kSsrc2));
EXPECT_TRUE(CheckNoRtcp1());
EXPECT_TRUE(CheckCustomRtcp2(kSsrc1));
EXPECT_TRUE(CheckNoRtcp2());
SendCustomRtcp1(kSsrc2);
SendCustomRtcp2(kSsrc1);
WaitForThreads();
// Bundle filter shouldn't filter out any RTCP.
EXPECT_TRUE(CheckCustomRtcp1(kSsrc1));
EXPECT_TRUE(CheckCustomRtcp2(kSsrc2));
}
// Test that the media monitor can be run and gives callbacks.
void TestMediaMonitor() {
CreateChannels(0, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
channel1_->StartMediaMonitor(100);
channel2_->StartMediaMonitor(100);
// Ensure we get callbacks and stop.
EXPECT_TRUE_WAIT(media_info_callbacks1_ > 0, kDefaultTimeout);
EXPECT_TRUE_WAIT(media_info_callbacks2_ > 0, kDefaultTimeout);
channel1_->StopMediaMonitor();
channel2_->StopMediaMonitor();
// Ensure a restart of a stopped monitor works.
channel1_->StartMediaMonitor(100);
EXPECT_TRUE_WAIT(media_info_callbacks1_ > 0, kDefaultTimeout);
channel1_->StopMediaMonitor();
// Ensure stopping a stopped monitor is OK.
channel1_->StopMediaMonitor();
}
void TestSetContentFailure() {
CreateChannels(0, 0);
std::string err;
std::unique_ptr<typename T::Content> content(
CreateMediaContentWithStream(1));
media_channel1_->set_fail_set_recv_codecs(true);
EXPECT_FALSE(
channel1_->SetLocalContent(content.get(), cricket::CA_OFFER, &err));
EXPECT_FALSE(
channel1_->SetLocalContent(content.get(), cricket::CA_ANSWER, &err));
media_channel1_->set_fail_set_send_codecs(true);
EXPECT_FALSE(
channel1_->SetRemoteContent(content.get(), cricket::CA_OFFER, &err));
media_channel1_->set_fail_set_send_codecs(true);
EXPECT_FALSE(
channel1_->SetRemoteContent(content.get(), cricket::CA_ANSWER, &err));
}
void TestSendTwoOffers() {
CreateChannels(0, 0);
std::string err;
std::unique_ptr<typename T::Content> content1(
CreateMediaContentWithStream(1));
EXPECT_TRUE(
channel1_->SetLocalContent(content1.get(), cricket::CA_OFFER, &err));
EXPECT_TRUE(media_channel1_->HasSendStream(1));
std::unique_ptr<typename T::Content> content2(
CreateMediaContentWithStream(2));
EXPECT_TRUE(
channel1_->SetLocalContent(content2.get(), cricket::CA_OFFER, &err));
EXPECT_FALSE(media_channel1_->HasSendStream(1));
EXPECT_TRUE(media_channel1_->HasSendStream(2));
}
void TestReceiveTwoOffers() {
CreateChannels(0, 0);
std::string err;
std::unique_ptr<typename T::Content> content1(
CreateMediaContentWithStream(1));
EXPECT_TRUE(
channel1_->SetRemoteContent(content1.get(), cricket::CA_OFFER, &err));
EXPECT_TRUE(media_channel1_->HasRecvStream(1));
std::unique_ptr<typename T::Content> content2(
CreateMediaContentWithStream(2));
EXPECT_TRUE(
channel1_->SetRemoteContent(content2.get(), cricket::CA_OFFER, &err));
EXPECT_FALSE(media_channel1_->HasRecvStream(1));
EXPECT_TRUE(media_channel1_->HasRecvStream(2));
}
void TestSendPrAnswer() {
CreateChannels(0, 0);
std::string err;
// Receive offer
std::unique_ptr<typename T::Content> content1(
CreateMediaContentWithStream(1));
EXPECT_TRUE(
channel1_->SetRemoteContent(content1.get(), cricket::CA_OFFER, &err));
EXPECT_TRUE(media_channel1_->HasRecvStream(1));
// Send PR answer
std::unique_ptr<typename T::Content> content2(
CreateMediaContentWithStream(2));
EXPECT_TRUE(
channel1_->SetLocalContent(content2.get(), cricket::CA_PRANSWER, &err));
EXPECT_TRUE(media_channel1_->HasRecvStream(1));
EXPECT_TRUE(media_channel1_->HasSendStream(2));
// Send answer
std::unique_ptr<typename T::Content> content3(
CreateMediaContentWithStream(3));
EXPECT_TRUE(
channel1_->SetLocalContent(content3.get(), cricket::CA_ANSWER, &err));
EXPECT_TRUE(media_channel1_->HasRecvStream(1));
EXPECT_FALSE(media_channel1_->HasSendStream(2));
EXPECT_TRUE(media_channel1_->HasSendStream(3));
}
void TestReceivePrAnswer() {
CreateChannels(0, 0);
std::string err;
// Send offer
std::unique_ptr<typename T::Content> content1(
CreateMediaContentWithStream(1));
EXPECT_TRUE(
channel1_->SetLocalContent(content1.get(), cricket::CA_OFFER, &err));
EXPECT_TRUE(media_channel1_->HasSendStream(1));
// Receive PR answer
std::unique_ptr<typename T::Content> content2(
CreateMediaContentWithStream(2));
EXPECT_TRUE(channel1_->SetRemoteContent(content2.get(),
cricket::CA_PRANSWER, &err));
EXPECT_TRUE(media_channel1_->HasSendStream(1));
EXPECT_TRUE(media_channel1_->HasRecvStream(2));
// Receive answer
std::unique_ptr<typename T::Content> content3(
CreateMediaContentWithStream(3));
EXPECT_TRUE(
channel1_->SetRemoteContent(content3.get(), cricket::CA_ANSWER, &err));
EXPECT_TRUE(media_channel1_->HasSendStream(1));
EXPECT_FALSE(media_channel1_->HasRecvStream(2));
EXPECT_TRUE(media_channel1_->HasRecvStream(3));
}
void TestFlushRtcp() {
CreateChannels(0, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
EXPECT_TRUE(channel1_->NeedsRtcpTransport());
EXPECT_TRUE(channel2_->NeedsRtcpTransport());
// Send RTCP1 from a different thread.
ScopedCallThread send_rtcp([this] { SendRtcp1(); });
// The sending message is only posted. channel2_ should be empty.
EXPECT_TRUE(CheckNoRtcp2());
rtc::Thread* wait_for[] = {send_rtcp.thread()};
WaitForThreads(wait_for); // Ensure rtcp was posted
// When channel1_ is deleted, the RTCP packet should be sent out to
// channel2_.
channel1_.reset();
WaitForThreads();
EXPECT_TRUE(CheckRtcp2());
}
void TestOnTransportReadyToSend() {
CreateChannels(0, 0);
EXPECT_FALSE(media_channel1_->ready_to_send());
channel1_->OnTransportReadyToSend(true);
WaitForThreads();
EXPECT_TRUE(media_channel1_->ready_to_send());
channel1_->OnTransportReadyToSend(false);
WaitForThreads();
EXPECT_FALSE(media_channel1_->ready_to_send());
}
void TestOnTransportReadyToSendWithRtcpMux() {
CreateChannels(0, 0);
typename T::Content content;
CreateContent(0, kPcmuCodec, kH264Codec, &content);
// Both sides agree on mux. Should signal that RTCP mux is fully active.
content.set_rtcp_mux(true);
EXPECT_TRUE(channel1_->SetLocalContent(&content, CA_OFFER, NULL));
EXPECT_EQ(0, rtcp_mux_activated_callbacks1_);
EXPECT_TRUE(channel1_->SetRemoteContent(&content, CA_ANSWER, NULL));
EXPECT_EQ(1, rtcp_mux_activated_callbacks1_);
cricket::FakeDtlsTransport* rtp = fake_rtp_dtls_transport1_.get();
EXPECT_FALSE(media_channel1_->ready_to_send());
// In the case of rtcp mux, the SignalReadyToSend() from rtp channel
// should trigger the MediaChannel's OnReadyToSend.
network_thread_->Invoke<void>(RTC_FROM_HERE,
[rtp] { rtp->SignalReadyToSend(rtp); });
WaitForThreads();
EXPECT_TRUE(media_channel1_->ready_to_send());
// TODO(zstein): Find a way to test this without making
// OnTransportReadyToSend public.
network_thread_->Invoke<void>(
RTC_FROM_HERE, [this] { channel1_->OnTransportReadyToSend(false); });
WaitForThreads();
EXPECT_FALSE(media_channel1_->ready_to_send());
}
bool SetRemoteContentWithBitrateLimit(int remote_limit) {
typename T::Content content;
CreateContent(0, kPcmuCodec, kH264Codec, &content);
content.set_bandwidth(remote_limit);
return channel1_->SetRemoteContent(&content, CA_OFFER, NULL);
}
webrtc::RtpParameters BitrateLimitedParameters(rtc::Optional<int> limit) {
webrtc::RtpParameters parameters;
webrtc::RtpEncodingParameters encoding;
encoding.max_bitrate_bps = std::move(limit);
parameters.encodings.push_back(encoding);
return parameters;
}
void VerifyMaxBitrate(const webrtc::RtpParameters& parameters,
rtc::Optional<int> expected_bitrate) {
EXPECT_EQ(1UL, parameters.encodings.size());
EXPECT_EQ(expected_bitrate, parameters.encodings[0].max_bitrate_bps);
}
void DefaultMaxBitrateIsUnlimited() {
CreateChannels(0, 0);
EXPECT_TRUE(
channel1_->SetLocalContent(&local_media_content1_, CA_OFFER, NULL));
EXPECT_EQ(media_channel1_->max_bps(), -1);
VerifyMaxBitrate(media_channel1_->GetRtpSendParameters(kSsrc1),
rtc::nullopt);
}
void CanChangeMaxBitrate() {
CreateChannels(0, 0);
EXPECT_TRUE(
channel1_->SetLocalContent(&local_media_content1_, CA_OFFER, NULL));
EXPECT_TRUE(channel1_->SetRtpSendParameters(
kSsrc1, BitrateLimitedParameters(1000)));
VerifyMaxBitrate(channel1_->GetRtpSendParameters(kSsrc1), 1000);
VerifyMaxBitrate(media_channel1_->GetRtpSendParameters(kSsrc1), 1000);
EXPECT_EQ(-1, media_channel1_->max_bps());
EXPECT_TRUE(channel1_->SetRtpSendParameters(
kSsrc1, BitrateLimitedParameters(rtc::nullopt)));
VerifyMaxBitrate(channel1_->GetRtpSendParameters(kSsrc1), rtc::nullopt);
VerifyMaxBitrate(media_channel1_->GetRtpSendParameters(kSsrc1),
rtc::nullopt);
EXPECT_EQ(-1, media_channel1_->max_bps());
}
// Test that when a channel gets new transports with a call to
// |SetTransports|, the socket options from the old transports are merged with
// the options on the new transport.
// For example, audio and video may use separate socket options, but initially
// be unbundled, then later become bundled. When this happens, their preferred
// socket options should be merged to the underlying transport they share.
void SocketOptionsMergedOnSetTransport() {
constexpr int kSndBufSize = 4000;
constexpr int kRcvBufSize = 8000;
CreateChannels(0, 0);
channel1_->SetOption(cricket::BaseChannel::ST_RTP,
rtc::Socket::Option::OPT_SNDBUF, kSndBufSize);
channel2_->SetOption(cricket::BaseChannel::ST_RTP,
rtc::Socket::Option::OPT_RCVBUF, kRcvBufSize);
channel1_->SetTransports(channel2_->rtp_dtls_transport(),
channel2_->rtcp_dtls_transport());
int option_val;
ASSERT_TRUE(channel1_->rtp_dtls_transport()->GetOption(
rtc::Socket::Option::OPT_SNDBUF, &option_val));
EXPECT_EQ(kSndBufSize, option_val);
ASSERT_TRUE(channel1_->rtp_dtls_transport()->GetOption(
rtc::Socket::Option::OPT_RCVBUF, &option_val));
EXPECT_EQ(kRcvBufSize, option_val);
}
protected:
void WaitForThreads() { WaitForThreads(rtc::ArrayView<rtc::Thread*>()); }
static void ProcessThreadQueue(rtc::Thread* thread) {
RTC_DCHECK(thread->IsCurrent());
while (!thread->empty()) {
thread->ProcessMessages(0);
}
}
void WaitForThreads(rtc::ArrayView<rtc::Thread*> threads) {
// |threads| and current thread post packets to network thread.
for (rtc::Thread* thread : threads) {
thread->Invoke<void>(RTC_FROM_HERE,
[thread] { ProcessThreadQueue(thread); });
}
ProcessThreadQueue(rtc::Thread::Current());
// Network thread move them around and post back to worker = current thread.
if (!network_thread_->IsCurrent()) {
network_thread_->Invoke<void>(
RTC_FROM_HERE, [this] { ProcessThreadQueue(network_thread_); });
}
// Worker thread = current Thread process received messages.
ProcessThreadQueue(rtc::Thread::Current());
}
// TODO(pbos): Remove playout from all media channels and let renderers mute
// themselves.
const bool verify_playout_;
std::unique_ptr<rtc::Thread> network_thread_keeper_;
rtc::Thread* network_thread_;
std::unique_ptr<cricket::FakeDtlsTransport> fake_rtp_dtls_transport1_;
std::unique_ptr<cricket::FakeDtlsTransport> fake_rtcp_dtls_transport1_;
std::unique_ptr<cricket::FakeDtlsTransport> fake_rtp_dtls_transport2_;
std::unique_ptr<cricket::FakeDtlsTransport> fake_rtcp_dtls_transport2_;
std::unique_ptr<rtc::FakePacketTransport> fake_rtp_packet_transport1_;
std::unique_ptr<rtc::FakePacketTransport> fake_rtcp_packet_transport1_;
std::unique_ptr<rtc::FakePacketTransport> fake_rtp_packet_transport2_;
std::unique_ptr<rtc::FakePacketTransport> fake_rtcp_packet_transport2_;
cricket::FakeMediaEngine media_engine_;
// The media channels are owned by the voice channel objects below.
typename T::MediaChannel* media_channel1_ = nullptr;
typename T::MediaChannel* media_channel2_ = nullptr;
std::unique_ptr<typename T::Channel> channel1_;
std::unique_ptr<typename T::Channel> channel2_;
typename T::Content local_media_content1_;
typename T::Content local_media_content2_;
typename T::Content remote_media_content1_;
typename T::Content remote_media_content2_;
// The RTP and RTCP packets to send in the tests.
rtc::Buffer rtp_packet_;
rtc::Buffer rtcp_packet_;
int media_info_callbacks1_ = 0;
int media_info_callbacks2_ = 0;
int rtcp_mux_activated_callbacks1_ = 0;
int rtcp_mux_activated_callbacks2_ = 0;
cricket::CandidatePairInterface* last_selected_candidate_pair_;
};
template<>
void ChannelTest<VoiceTraits>::CreateContent(
int flags,
const cricket::AudioCodec& audio_codec,
const cricket::VideoCodec& video_codec,
cricket::AudioContentDescription* audio) {
audio->AddCodec(audio_codec);
audio->set_rtcp_mux((flags & RTCP_MUX) != 0);
if (flags & SECURE) {
audio->AddCrypto(cricket::CryptoParams(
1, rtc::CS_AES_CM_128_HMAC_SHA1_32,
"inline:" + rtc::CreateRandomString(40), std::string()));
}
}
template<>
void ChannelTest<VoiceTraits>::CopyContent(
const cricket::AudioContentDescription& source,
cricket::AudioContentDescription* audio) {
*audio = source;
}
template<>
bool ChannelTest<VoiceTraits>::CodecMatches(const cricket::AudioCodec& c1,
const cricket::AudioCodec& c2) {
return c1.name == c2.name && c1.clockrate == c2.clockrate &&
c1.bitrate == c2.bitrate && c1.channels == c2.channels;
}
template <>
void ChannelTest<VoiceTraits>::AddLegacyStreamInContent(
uint32_t ssrc,
int flags,
cricket::AudioContentDescription* audio) {
audio->AddLegacyStream(ssrc);
}
class VoiceChannelSingleThreadTest : public ChannelTest<VoiceTraits> {
public:
typedef ChannelTest<VoiceTraits> Base;
VoiceChannelSingleThreadTest()
: Base(true, kPcmuFrame, kRtcpReport, NetworkIsWorker::Yes) {}
};
class VoiceChannelDoubleThreadTest : public ChannelTest<VoiceTraits> {
public:
typedef ChannelTest<VoiceTraits> Base;
VoiceChannelDoubleThreadTest()
: Base(true, kPcmuFrame, kRtcpReport, NetworkIsWorker::No) {}
};
class VoiceChannelWithEncryptedRtpHeaderExtensionsSingleThreadTest
: public ChannelTest<VoiceTraits> {
public:
typedef ChannelTest<VoiceTraits> Base;
VoiceChannelWithEncryptedRtpHeaderExtensionsSingleThreadTest()
: Base(true, kPcmuFrameWithExtensions, kRtcpReport,
NetworkIsWorker::Yes) {}
};
class VoiceChannelWithEncryptedRtpHeaderExtensionsDoubleThreadTest
: public ChannelTest<VoiceTraits> {
public:
typedef ChannelTest<VoiceTraits> Base;
VoiceChannelWithEncryptedRtpHeaderExtensionsDoubleThreadTest()
: Base(true, kPcmuFrameWithExtensions, kRtcpReport,
NetworkIsWorker::No) {}
};
// override to add NULL parameter
template <>
std::unique_ptr<cricket::VideoChannel> ChannelTest<VideoTraits>::CreateChannel(
rtc::Thread* worker_thread,
rtc::Thread* network_thread,
cricket::MediaEngineInterface* engine,
std::unique_ptr<cricket::FakeVideoMediaChannel> ch,
cricket::DtlsTransportInternal* fake_rtp_dtls_transport,
cricket::DtlsTransportInternal* fake_rtcp_dtls_transport,
rtc::PacketTransportInternal* fake_rtp_packet_transport,
rtc::PacketTransportInternal* fake_rtcp_packet_transport,
int flags) {
rtc::Thread* signaling_thread = rtc::Thread::Current();
auto channel = rtc::MakeUnique<cricket::VideoChannel>(
worker_thread, network_thread, signaling_thread, std::move(ch),
cricket::CN_VIDEO, (flags & RTCP_MUX_REQUIRED) != 0,
(flags & SECURE) != 0);
if (!channel->NeedsRtcpTransport()) {
fake_rtcp_dtls_transport = nullptr;
}
channel->Init_w(fake_rtp_dtls_transport, fake_rtcp_dtls_transport,
fake_rtp_packet_transport, fake_rtcp_packet_transport);
return channel;
}
// override to add 0 parameter
template<>
bool ChannelTest<VideoTraits>::AddStream1(int id) {
return channel1_->AddRecvStream(cricket::StreamParams::CreateLegacy(id));
}
template<>
void ChannelTest<VideoTraits>::CreateContent(
int flags,
const cricket::AudioCodec& audio_codec,
const cricket::VideoCodec& video_codec,
cricket::VideoContentDescription* video) {
video->AddCodec(video_codec);
video->set_rtcp_mux((flags & RTCP_MUX) != 0);
if (flags & SECURE) {
video->AddCrypto(cricket::CryptoParams(
1, rtc::CS_AES_CM_128_HMAC_SHA1_80,
"inline:" + rtc::CreateRandomString(40), std::string()));
}
}
template<>
void ChannelTest<VideoTraits>::CopyContent(
const cricket::VideoContentDescription& source,
cricket::VideoContentDescription* video) {
*video = source;
}
template<>
bool ChannelTest<VideoTraits>::CodecMatches(const cricket::VideoCodec& c1,
const cricket::VideoCodec& c2) {
return c1.name == c2.name;
}
template <>
void ChannelTest<VideoTraits>::AddLegacyStreamInContent(
uint32_t ssrc,
int flags,
cricket::VideoContentDescription* video) {
video->AddLegacyStream(ssrc);
}
class VideoChannelSingleThreadTest : public ChannelTest<VideoTraits> {
public:
typedef ChannelTest<VideoTraits> Base;
VideoChannelSingleThreadTest()
: Base(false, kH264Packet, kRtcpReport, NetworkIsWorker::Yes) {}
};
class VideoChannelDoubleThreadTest : public ChannelTest<VideoTraits> {
public:
typedef ChannelTest<VideoTraits> Base;
VideoChannelDoubleThreadTest()
: Base(false, kH264Packet, kRtcpReport, NetworkIsWorker::No) {}
};
TEST_F(VoiceChannelSingleThreadTest, TestInit) {
Base::TestInit();
EXPECT_FALSE(media_channel1_->IsStreamMuted(0));
EXPECT_TRUE(media_channel1_->dtmf_info_queue().empty());
}
TEST_F(VoiceChannelSingleThreadTest, TestDeinit) {
Base::TestDeinit();
}
TEST_F(VoiceChannelSingleThreadTest, TestSetContents) {
Base::TestSetContents();
}
TEST_F(VoiceChannelSingleThreadTest, TestSetContentsNullOffer) {
Base::TestSetContentsNullOffer();
}
TEST_F(VoiceChannelSingleThreadTest, TestSetContentsRtcpMux) {
Base::TestSetContentsRtcpMux();
}
TEST_F(VoiceChannelSingleThreadTest, TestSetContentsRtcpMuxWithPrAnswer) {
Base::TestSetContentsRtcpMux();
}
TEST_F(VoiceChannelSingleThreadTest, TestStreams) {
Base::TestStreams();
}
TEST_F(VoiceChannelSingleThreadTest, TestChangeStreamParamsInContent) {
Base::TestChangeStreamParamsInContent();
}
TEST_F(VoiceChannelWithEncryptedRtpHeaderExtensionsSingleThreadTest,
TestChangeEncryptedHeaderExtensionsDtls) {
int flags = DTLS;
Base::TestChangeEncryptedHeaderExtensions(flags);
}
TEST_F(VoiceChannelWithEncryptedRtpHeaderExtensionsSingleThreadTest,
TestChangeEncryptedHeaderExtensionsDtlsScenario1) {
int flags = DTLS;
Base::TestChangeEncryptedHeaderExtensions(flags, DTLS_BEFORE_OFFER_ANSWER);
}
TEST_F(VoiceChannelWithEncryptedRtpHeaderExtensionsSingleThreadTest,
TestChangeEncryptedHeaderExtensionsDtlsScenario2) {
int flags = DTLS;
Base::TestChangeEncryptedHeaderExtensions(flags, DTLS_AFTER_CHANNEL2_READY);
}
TEST_F(VoiceChannelWithEncryptedRtpHeaderExtensionsSingleThreadTest,
TestChangeEncryptedHeaderExtensionsDtlsGcm) {
int flags = DTLS | GCM_CIPHER;
Base::TestChangeEncryptedHeaderExtensions(flags);
}
TEST_F(VoiceChannelWithEncryptedRtpHeaderExtensionsSingleThreadTest,
TestChangeEncryptedHeaderExtensionsDtlsGcmScenario1) {
int flags = DTLS | GCM_CIPHER;
Base::TestChangeEncryptedHeaderExtensions(flags, DTLS_BEFORE_OFFER_ANSWER);
}
TEST_F(VoiceChannelWithEncryptedRtpHeaderExtensionsSingleThreadTest,
TestChangeEncryptedHeaderExtensionsDtlsGcmScenario2) {
int flags = DTLS | GCM_CIPHER;
Base::TestChangeEncryptedHeaderExtensions(flags, DTLS_AFTER_CHANNEL2_READY);
}
TEST_F(VoiceChannelWithEncryptedRtpHeaderExtensionsSingleThreadTest,
TestChangeEncryptedHeaderExtensionsSDES) {
int flags = 0;
Base::TestChangeEncryptedHeaderExtensions(flags);
}
TEST_F(VoiceChannelSingleThreadTest, TestPlayoutAndSendingStates) {
Base::TestPlayoutAndSendingStates();
}
TEST_F(VoiceChannelSingleThreadTest, TestMuteStream) {
CreateChannels(0, 0);
// Test that we can Mute the default channel even though the sending SSRC
// is unknown.
EXPECT_FALSE(media_channel1_->IsStreamMuted(0));
EXPECT_TRUE(channel1_->SetAudioSend(0, false, nullptr, nullptr));
EXPECT_TRUE(media_channel1_->IsStreamMuted(0));
EXPECT_TRUE(channel1_->SetAudioSend(0, true, nullptr, nullptr));
EXPECT_FALSE(media_channel1_->IsStreamMuted(0));
// Test that we can not mute an unknown SSRC.
EXPECT_FALSE(channel1_->SetAudioSend(kSsrc1, false, nullptr, nullptr));
SendInitiate();
// After the local session description has been set, we can mute a stream
// with its SSRC.
EXPECT_TRUE(channel1_->SetAudioSend(kSsrc1, false, nullptr, nullptr));
EXPECT_TRUE(media_channel1_->IsStreamMuted(kSsrc1));
EXPECT_TRUE(channel1_->SetAudioSend(kSsrc1, true, nullptr, nullptr));
EXPECT_FALSE(media_channel1_->IsStreamMuted(kSsrc1));
}
TEST_F(VoiceChannelSingleThreadTest, TestMediaContentDirection) {
Base::TestMediaContentDirection();
}
TEST_F(VoiceChannelSingleThreadTest, TestNetworkRouteChanges) {
Base::TestNetworkRouteChanges();
}
TEST_F(VoiceChannelSingleThreadTest, TestCallSetup) {
Base::TestCallSetup();
}
TEST_F(VoiceChannelSingleThreadTest, TestCallTeardownRtcpMux) {
Base::TestCallTeardownRtcpMux();
}
TEST_F(VoiceChannelSingleThreadTest, SendRtpToRtp) {
Base::SendRtpToRtp();
}
TEST_F(VoiceChannelSingleThreadTest, SendRtcpToRtcp) {
Base::SendRtcpToRtcp();
}
TEST_F(VoiceChannelSingleThreadTest, SendRtcpMuxToRtcp) {
Base::SendRtcpMuxToRtcp();
}
TEST_F(VoiceChannelSingleThreadTest, SendRtcpMuxToRtcpMux) {
Base::SendRtcpMuxToRtcpMux();
}
TEST_F(VoiceChannelSingleThreadTest, SendRequireRtcpMuxToRtcpMux) {
Base::SendRequireRtcpMuxToRtcpMux();
}
TEST_F(VoiceChannelSingleThreadTest, SendRtcpMuxToRequireRtcpMux) {
Base::SendRtcpMuxToRequireRtcpMux();
}
TEST_F(VoiceChannelSingleThreadTest, SendRequireRtcpMuxToRequireRtcpMux) {
Base::SendRequireRtcpMuxToRequireRtcpMux();
}
TEST_F(VoiceChannelSingleThreadTest, SendRequireRtcpMuxToNoRtcpMux) {
Base::SendRequireRtcpMuxToNoRtcpMux();
}
TEST_F(VoiceChannelSingleThreadTest, SendEarlyRtcpMuxToRtcp) {
Base::SendEarlyRtcpMuxToRtcp();
}
TEST_F(VoiceChannelSingleThreadTest, SendEarlyRtcpMuxToRtcpMux) {
Base::SendEarlyRtcpMuxToRtcpMux();
}
TEST_F(VoiceChannelSingleThreadTest, SendSrtpToSrtpRtcpMux) {
Base::SendSrtpToSrtp(RTCP_MUX, RTCP_MUX);
}
TEST_F(VoiceChannelSingleThreadTest, SendSrtpToRtp) {
Base::SendSrtpToSrtp();
}
TEST_F(VoiceChannelSingleThreadTest, SendSrtcpMux) {
Base::SendSrtpToSrtp(RTCP_MUX, RTCP_MUX);
}
TEST_F(VoiceChannelSingleThreadTest, SendDtlsSrtpToSrtp) {
Base::SendSrtpToSrtp(DTLS, 0);
}
TEST_F(VoiceChannelSingleThreadTest, SendDtlsSrtpToDtlsSrtp) {
Base::SendSrtpToSrtp(DTLS, DTLS);
}
TEST_F(VoiceChannelSingleThreadTest, SendDtlsSrtpToDtlsSrtpRtcpMux) {
Base::SendSrtpToSrtp(DTLS | RTCP_MUX, DTLS | RTCP_MUX);
}
// Test using the channel with a raw packet interface, as opposed to a DTLS
// transport interface.
TEST_F(VoiceChannelSingleThreadTest, SendSrtpToSrtpWithRawPacketTransport) {
Base::SendSrtpToSrtp(RAW_PACKET_TRANSPORT, RAW_PACKET_TRANSPORT);
}
TEST_F(VoiceChannelSingleThreadTest, SendEarlyMediaUsingRtcpMuxSrtp) {
Base::SendEarlyMediaUsingRtcpMuxSrtp();
}
TEST_F(VoiceChannelSingleThreadTest, SendRtpToRtpOnThread) {
Base::SendRtpToRtpOnThread();
}
TEST_F(VoiceChannelSingleThreadTest, SendSrtpToSrtpOnThread) {
Base::SendSrtpToSrtpOnThread();
}
TEST_F(VoiceChannelSingleThreadTest, SendWithWritabilityLoss) {
Base::SendWithWritabilityLoss();
}
TEST_F(VoiceChannelSingleThreadTest, TestMediaMonitor) {
Base::TestMediaMonitor();
}
// Test that InsertDtmf properly forwards to the media channel.
TEST_F(VoiceChannelSingleThreadTest, TestInsertDtmf) {
CreateChannels(0, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
EXPECT_EQ(0U, media_channel1_->dtmf_info_queue().size());
EXPECT_TRUE(channel1_->InsertDtmf(1, 3, 100));
EXPECT_TRUE(channel1_->InsertDtmf(2, 5, 110));
EXPECT_TRUE(channel1_->InsertDtmf(3, 7, 120));
ASSERT_EQ(3U, media_channel1_->dtmf_info_queue().size());
EXPECT_TRUE(CompareDtmfInfo(media_channel1_->dtmf_info_queue()[0],
1, 3, 100));
EXPECT_TRUE(CompareDtmfInfo(media_channel1_->dtmf_info_queue()[1],
2, 5, 110));
EXPECT_TRUE(CompareDtmfInfo(media_channel1_->dtmf_info_queue()[2],
3, 7, 120));
}
TEST_F(VoiceChannelSingleThreadTest, TestSetContentFailure) {
Base::TestSetContentFailure();
}
TEST_F(VoiceChannelSingleThreadTest, TestSendTwoOffers) {
Base::TestSendTwoOffers();
}
TEST_F(VoiceChannelSingleThreadTest, TestReceiveTwoOffers) {
Base::TestReceiveTwoOffers();
}
TEST_F(VoiceChannelSingleThreadTest, TestSendPrAnswer) {
Base::TestSendPrAnswer();
}
TEST_F(VoiceChannelSingleThreadTest, TestReceivePrAnswer) {
Base::TestReceivePrAnswer();
}
TEST_F(VoiceChannelSingleThreadTest, TestFlushRtcp) {
Base::TestFlushRtcp();
}
TEST_F(VoiceChannelSingleThreadTest, TestOnTransportReadyToSend) {
Base::TestOnTransportReadyToSend();
}
TEST_F(VoiceChannelSingleThreadTest, TestOnTransportReadyToSendWithRtcpMux) {
Base::TestOnTransportReadyToSendWithRtcpMux();
}
// Test that we can scale the output volume properly for 1:1 calls.
TEST_F(VoiceChannelSingleThreadTest, TestScaleVolume1to1Call) {
CreateChannels(0, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
double volume;
// Default is (1.0).
EXPECT_TRUE(media_channel1_->GetOutputVolume(0, &volume));
EXPECT_DOUBLE_EQ(1.0, volume);
// invalid ssrc.
EXPECT_FALSE(media_channel1_->GetOutputVolume(3, &volume));
// Set scale to (1.5).
EXPECT_TRUE(channel1_->SetOutputVolume(0, 1.5));
EXPECT_TRUE(media_channel1_->GetOutputVolume(0, &volume));
EXPECT_DOUBLE_EQ(1.5, volume);
// Set scale to (0).
EXPECT_TRUE(channel1_->SetOutputVolume(0, 0.0));
EXPECT_TRUE(media_channel1_->GetOutputVolume(0, &volume));
EXPECT_DOUBLE_EQ(0.0, volume);
}
// Test that we can scale the output volume properly for multiway calls.
TEST_F(VoiceChannelSingleThreadTest, TestScaleVolumeMultiwayCall) {
CreateChannels(0, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
EXPECT_TRUE(AddStream1(1));
EXPECT_TRUE(AddStream1(2));
double volume;
// Default is (1.0).
EXPECT_TRUE(media_channel1_->GetOutputVolume(0, &volume));
EXPECT_DOUBLE_EQ(1.0, volume);
EXPECT_TRUE(media_channel1_->GetOutputVolume(1, &volume));
EXPECT_DOUBLE_EQ(1.0, volume);
EXPECT_TRUE(media_channel1_->GetOutputVolume(2, &volume));
EXPECT_DOUBLE_EQ(1.0, volume);
// invalid ssrc.
EXPECT_FALSE(media_channel1_->GetOutputVolume(3, &volume));
// Set scale to (1.5) for ssrc = 1.
EXPECT_TRUE(channel1_->SetOutputVolume(1, 1.5));
EXPECT_TRUE(media_channel1_->GetOutputVolume(1, &volume));
EXPECT_DOUBLE_EQ(1.5, volume);
EXPECT_TRUE(media_channel1_->GetOutputVolume(2, &volume));
EXPECT_DOUBLE_EQ(1.0, volume);
EXPECT_TRUE(media_channel1_->GetOutputVolume(0, &volume));
EXPECT_DOUBLE_EQ(1.0, volume);
// Set scale to (0) for all ssrcs.
EXPECT_TRUE(channel1_->SetOutputVolume(0, 0.0));
EXPECT_TRUE(media_channel1_->GetOutputVolume(0, &volume));
EXPECT_DOUBLE_EQ(0.0, volume);
EXPECT_TRUE(media_channel1_->GetOutputVolume(1, &volume));
EXPECT_DOUBLE_EQ(0.0, volume);
EXPECT_TRUE(media_channel1_->GetOutputVolume(2, &volume));
EXPECT_DOUBLE_EQ(0.0, volume);
}
TEST_F(VoiceChannelSingleThreadTest, SendBundleToBundle) {
Base::SendBundleToBundle(kAudioPts, arraysize(kAudioPts), false, false);
}
TEST_F(VoiceChannelSingleThreadTest, SendBundleToBundleSecure) {
Base::SendBundleToBundle(kAudioPts, arraysize(kAudioPts), false, true);
}
TEST_F(VoiceChannelSingleThreadTest, SendBundleToBundleWithRtcpMux) {
Base::SendBundleToBundle(kAudioPts, arraysize(kAudioPts), true, false);
}
TEST_F(VoiceChannelSingleThreadTest, SendBundleToBundleWithRtcpMuxSecure) {
Base::SendBundleToBundle(kAudioPts, arraysize(kAudioPts), true, true);
}
TEST_F(VoiceChannelSingleThreadTest, DefaultMaxBitrateIsUnlimited) {
Base::DefaultMaxBitrateIsUnlimited();
}
TEST_F(VoiceChannelSingleThreadTest, CanChangeMaxBitrate) {
Base::CanChangeMaxBitrate();
}
TEST_F(VoiceChannelSingleThreadTest, SocketOptionsMergedOnSetTransport) {
Base::SocketOptionsMergedOnSetTransport();
}
// VoiceChannelDoubleThreadTest
TEST_F(VoiceChannelDoubleThreadTest, TestInit) {
Base::TestInit();
EXPECT_FALSE(media_channel1_->IsStreamMuted(0));
EXPECT_TRUE(media_channel1_->dtmf_info_queue().empty());
}
TEST_F(VoiceChannelDoubleThreadTest, TestDeinit) {
Base::TestDeinit();
}
TEST_F(VoiceChannelDoubleThreadTest, TestSetContents) {
Base::TestSetContents();
}
TEST_F(VoiceChannelDoubleThreadTest, TestSetContentsNullOffer) {
Base::TestSetContentsNullOffer();
}
TEST_F(VoiceChannelDoubleThreadTest, TestSetContentsRtcpMux) {
Base::TestSetContentsRtcpMux();
}
TEST_F(VoiceChannelDoubleThreadTest, TestSetContentsRtcpMuxWithPrAnswer) {
Base::TestSetContentsRtcpMux();
}
TEST_F(VoiceChannelDoubleThreadTest, TestStreams) {
Base::TestStreams();
}
TEST_F(VoiceChannelDoubleThreadTest, TestChangeStreamParamsInContent) {
Base::TestChangeStreamParamsInContent();
}
TEST_F(VoiceChannelWithEncryptedRtpHeaderExtensionsDoubleThreadTest,
TestChangeEncryptedHeaderExtensionsDtls) {
int flags = DTLS;
Base::TestChangeEncryptedHeaderExtensions(flags);
}
TEST_F(VoiceChannelWithEncryptedRtpHeaderExtensionsDoubleThreadTest,
TestChangeEncryptedHeaderExtensionsDtlsScenario1) {
int flags = DTLS;
Base::TestChangeEncryptedHeaderExtensions(flags, DTLS_BEFORE_OFFER_ANSWER);
}
TEST_F(VoiceChannelWithEncryptedRtpHeaderExtensionsDoubleThreadTest,
TestChangeEncryptedHeaderExtensionsDtlsScenario2) {
int flags = DTLS;
Base::TestChangeEncryptedHeaderExtensions(flags, DTLS_AFTER_CHANNEL2_READY);
}
TEST_F(VoiceChannelWithEncryptedRtpHeaderExtensionsDoubleThreadTest,
TestChangeEncryptedHeaderExtensionsDtlsGcm) {
int flags = DTLS | GCM_CIPHER;
Base::TestChangeEncryptedHeaderExtensions(flags);
}
TEST_F(VoiceChannelWithEncryptedRtpHeaderExtensionsDoubleThreadTest,
TestChangeEncryptedHeaderExtensionsDtlsGcmScenario1) {
int flags = DTLS | GCM_CIPHER;
Base::TestChangeEncryptedHeaderExtensions(flags, DTLS_BEFORE_OFFER_ANSWER);
}
TEST_F(VoiceChannelWithEncryptedRtpHeaderExtensionsDoubleThreadTest,
TestChangeEncryptedHeaderExtensionsDtlsGcmScenario2) {
int flags = DTLS | GCM_CIPHER;
Base::TestChangeEncryptedHeaderExtensions(flags, DTLS_AFTER_CHANNEL2_READY);
}
TEST_F(VoiceChannelWithEncryptedRtpHeaderExtensionsDoubleThreadTest,
TestChangeEncryptedHeaderExtensionsSDES) {
int flags = 0;
Base::TestChangeEncryptedHeaderExtensions(flags);
}
TEST_F(VoiceChannelDoubleThreadTest, TestPlayoutAndSendingStates) {
Base::TestPlayoutAndSendingStates();
}
TEST_F(VoiceChannelDoubleThreadTest, TestMuteStream) {
CreateChannels(0, 0);
// Test that we can Mute the default channel even though the sending SSRC
// is unknown.
EXPECT_FALSE(media_channel1_->IsStreamMuted(0));
EXPECT_TRUE(channel1_->SetAudioSend(0, false, nullptr, nullptr));
EXPECT_TRUE(media_channel1_->IsStreamMuted(0));
EXPECT_TRUE(channel1_->SetAudioSend(0, true, nullptr, nullptr));
EXPECT_FALSE(media_channel1_->IsStreamMuted(0));
// Test that we can not mute an unknown SSRC.
EXPECT_FALSE(channel1_->SetAudioSend(kSsrc1, false, nullptr, nullptr));
SendInitiate();
// After the local session description has been set, we can mute a stream
// with its SSRC.
EXPECT_TRUE(channel1_->SetAudioSend(kSsrc1, false, nullptr, nullptr));
EXPECT_TRUE(media_channel1_->IsStreamMuted(kSsrc1));
EXPECT_TRUE(channel1_->SetAudioSend(kSsrc1, true, nullptr, nullptr));
EXPECT_FALSE(media_channel1_->IsStreamMuted(kSsrc1));
}
TEST_F(VoiceChannelDoubleThreadTest, TestMediaContentDirection) {
Base::TestMediaContentDirection();
}
TEST_F(VoiceChannelDoubleThreadTest, TestNetworkRouteChanges) {
Base::TestNetworkRouteChanges();
}
TEST_F(VoiceChannelDoubleThreadTest, TestCallSetup) {
Base::TestCallSetup();
}
TEST_F(VoiceChannelDoubleThreadTest, TestCallTeardownRtcpMux) {
Base::TestCallTeardownRtcpMux();
}
TEST_F(VoiceChannelDoubleThreadTest, SendRtpToRtp) {
Base::SendRtpToRtp();
}
TEST_F(VoiceChannelDoubleThreadTest, SendRtcpToRtcp) {
Base::SendRtcpToRtcp();
}
TEST_F(VoiceChannelDoubleThreadTest, SendRtcpMuxToRtcp) {
Base::SendRtcpMuxToRtcp();
}
TEST_F(VoiceChannelDoubleThreadTest, SendRtcpMuxToRtcpMux) {
Base::SendRtcpMuxToRtcpMux();
}
TEST_F(VoiceChannelDoubleThreadTest, SendRequireRtcpMuxToRtcpMux) {
Base::SendRequireRtcpMuxToRtcpMux();
}
TEST_F(VoiceChannelDoubleThreadTest, SendRtcpMuxToRequireRtcpMux) {
Base::SendRtcpMuxToRequireRtcpMux();
}
TEST_F(VoiceChannelDoubleThreadTest, SendRequireRtcpMuxToRequireRtcpMux) {
Base::SendRequireRtcpMuxToRequireRtcpMux();
}
TEST_F(VoiceChannelDoubleThreadTest, SendRequireRtcpMuxToNoRtcpMux) {
Base::SendRequireRtcpMuxToNoRtcpMux();
}
TEST_F(VoiceChannelDoubleThreadTest, SendEarlyRtcpMuxToRtcp) {
Base::SendEarlyRtcpMuxToRtcp();
}
TEST_F(VoiceChannelDoubleThreadTest, SendEarlyRtcpMuxToRtcpMux) {
Base::SendEarlyRtcpMuxToRtcpMux();
}
TEST_F(VoiceChannelDoubleThreadTest, SendSrtpToSrtpRtcpMux) {
Base::SendSrtpToSrtp(RTCP_MUX, RTCP_MUX);
}
TEST_F(VoiceChannelDoubleThreadTest, SendSrtpToRtp) {
Base::SendSrtpToSrtp();
}
TEST_F(VoiceChannelDoubleThreadTest, SendSrtcpMux) {
Base::SendSrtpToSrtp(RTCP_MUX, RTCP_MUX);
}
TEST_F(VoiceChannelDoubleThreadTest, SendDtlsSrtpToSrtp) {
Base::SendSrtpToSrtp(DTLS, 0);
}
TEST_F(VoiceChannelDoubleThreadTest, SendDtlsSrtpToDtlsSrtp) {
Base::SendSrtpToSrtp(DTLS, DTLS);
}
TEST_F(VoiceChannelDoubleThreadTest, SendDtlsSrtpToDtlsSrtpRtcpMux) {
Base::SendSrtpToSrtp(DTLS | RTCP_MUX, DTLS | RTCP_MUX);
}
// Test using the channel with a raw packet interface, as opposed to a DTLS
// transport interface.
TEST_F(VoiceChannelDoubleThreadTest, SendSrtpToSrtpWithRawPacketTransport) {
Base::SendSrtpToSrtp(RAW_PACKET_TRANSPORT, RAW_PACKET_TRANSPORT);
}
TEST_F(VoiceChannelDoubleThreadTest, SendEarlyMediaUsingRtcpMuxSrtp) {
Base::SendEarlyMediaUsingRtcpMuxSrtp();
}
TEST_F(VoiceChannelDoubleThreadTest, SendRtpToRtpOnThread) {
Base::SendRtpToRtpOnThread();
}
TEST_F(VoiceChannelDoubleThreadTest, SendSrtpToSrtpOnThread) {
Base::SendSrtpToSrtpOnThread();
}
TEST_F(VoiceChannelDoubleThreadTest, SendWithWritabilityLoss) {
Base::SendWithWritabilityLoss();
}
TEST_F(VoiceChannelDoubleThreadTest, TestMediaMonitor) {
Base::TestMediaMonitor();
}
// Test that InsertDtmf properly forwards to the media channel.
TEST_F(VoiceChannelDoubleThreadTest, TestInsertDtmf) {
CreateChannels(0, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
EXPECT_EQ(0U, media_channel1_->dtmf_info_queue().size());
EXPECT_TRUE(channel1_->InsertDtmf(1, 3, 100));
EXPECT_TRUE(channel1_->InsertDtmf(2, 5, 110));
EXPECT_TRUE(channel1_->InsertDtmf(3, 7, 120));
ASSERT_EQ(3U, media_channel1_->dtmf_info_queue().size());
EXPECT_TRUE(
CompareDtmfInfo(media_channel1_->dtmf_info_queue()[0], 1, 3, 100));
EXPECT_TRUE(
CompareDtmfInfo(media_channel1_->dtmf_info_queue()[1], 2, 5, 110));
EXPECT_TRUE(
CompareDtmfInfo(media_channel1_->dtmf_info_queue()[2], 3, 7, 120));
}
TEST_F(VoiceChannelDoubleThreadTest, TestSetContentFailure) {
Base::TestSetContentFailure();
}
TEST_F(VoiceChannelDoubleThreadTest, TestSendTwoOffers) {
Base::TestSendTwoOffers();
}
TEST_F(VoiceChannelDoubleThreadTest, TestReceiveTwoOffers) {
Base::TestReceiveTwoOffers();
}
TEST_F(VoiceChannelDoubleThreadTest, TestSendPrAnswer) {
Base::TestSendPrAnswer();
}
TEST_F(VoiceChannelDoubleThreadTest, TestReceivePrAnswer) {
Base::TestReceivePrAnswer();
}
TEST_F(VoiceChannelDoubleThreadTest, TestFlushRtcp) {
Base::TestFlushRtcp();
}
TEST_F(VoiceChannelDoubleThreadTest, TestOnTransportReadyToSend) {
Base::TestOnTransportReadyToSend();
}
TEST_F(VoiceChannelDoubleThreadTest, TestOnTransportReadyToSendWithRtcpMux) {
Base::TestOnTransportReadyToSendWithRtcpMux();
}
// Test that we can scale the output volume properly for 1:1 calls.
TEST_F(VoiceChannelDoubleThreadTest, TestScaleVolume1to1Call) {
CreateChannels(0, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
double volume;
// Default is (1.0).
EXPECT_TRUE(media_channel1_->GetOutputVolume(0, &volume));
EXPECT_DOUBLE_EQ(1.0, volume);
// invalid ssrc.
EXPECT_FALSE(media_channel1_->GetOutputVolume(3, &volume));
// Set scale to (1.5).
EXPECT_TRUE(channel1_->SetOutputVolume(0, 1.5));
EXPECT_TRUE(media_channel1_->GetOutputVolume(0, &volume));
EXPECT_DOUBLE_EQ(1.5, volume);
// Set scale to (0).
EXPECT_TRUE(channel1_->SetOutputVolume(0, 0.0));
EXPECT_TRUE(media_channel1_->GetOutputVolume(0, &volume));
EXPECT_DOUBLE_EQ(0.0, volume);
}
// Test that we can scale the output volume properly for multiway calls.
TEST_F(VoiceChannelDoubleThreadTest, TestScaleVolumeMultiwayCall) {
CreateChannels(0, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
EXPECT_TRUE(AddStream1(1));
EXPECT_TRUE(AddStream1(2));
double volume;
// Default is (1.0).
EXPECT_TRUE(media_channel1_->GetOutputVolume(0, &volume));
EXPECT_DOUBLE_EQ(1.0, volume);
EXPECT_TRUE(media_channel1_->GetOutputVolume(1, &volume));
EXPECT_DOUBLE_EQ(1.0, volume);
EXPECT_TRUE(media_channel1_->GetOutputVolume(2, &volume));
EXPECT_DOUBLE_EQ(1.0, volume);
// invalid ssrc.
EXPECT_FALSE(media_channel1_->GetOutputVolume(3, &volume));
// Set scale to (1.5) for ssrc = 1.
EXPECT_TRUE(channel1_->SetOutputVolume(1, 1.5));
EXPECT_TRUE(media_channel1_->GetOutputVolume(1, &volume));
EXPECT_DOUBLE_EQ(1.5, volume);
EXPECT_TRUE(media_channel1_->GetOutputVolume(2, &volume));
EXPECT_DOUBLE_EQ(1.0, volume);
EXPECT_TRUE(media_channel1_->GetOutputVolume(0, &volume));
EXPECT_DOUBLE_EQ(1.0, volume);
// Set scale to (0) for all ssrcs.
EXPECT_TRUE(channel1_->SetOutputVolume(0, 0.0));
EXPECT_TRUE(media_channel1_->GetOutputVolume(0, &volume));
EXPECT_DOUBLE_EQ(0.0, volume);
EXPECT_TRUE(media_channel1_->GetOutputVolume(1, &volume));
EXPECT_DOUBLE_EQ(0.0, volume);
EXPECT_TRUE(media_channel1_->GetOutputVolume(2, &volume));
EXPECT_DOUBLE_EQ(0.0, volume);
}
TEST_F(VoiceChannelDoubleThreadTest, SendBundleToBundle) {
Base::SendBundleToBundle(kAudioPts, arraysize(kAudioPts), false, false);
}
TEST_F(VoiceChannelDoubleThreadTest, SendBundleToBundleSecure) {
Base::SendBundleToBundle(kAudioPts, arraysize(kAudioPts), false, true);
}
TEST_F(VoiceChannelDoubleThreadTest, SendBundleToBundleWithRtcpMux) {
Base::SendBundleToBundle(kAudioPts, arraysize(kAudioPts), true, false);
}
TEST_F(VoiceChannelDoubleThreadTest, SendBundleToBundleWithRtcpMuxSecure) {
Base::SendBundleToBundle(kAudioPts, arraysize(kAudioPts), true, true);
}
TEST_F(VoiceChannelDoubleThreadTest, DefaultMaxBitrateIsUnlimited) {
Base::DefaultMaxBitrateIsUnlimited();
}
TEST_F(VoiceChannelDoubleThreadTest, CanChangeMaxBitrate) {
Base::CanChangeMaxBitrate();
}
TEST_F(VoiceChannelDoubleThreadTest, SocketOptionsMergedOnSetTransport) {
Base::SocketOptionsMergedOnSetTransport();
}
// VideoChannelSingleThreadTest
TEST_F(VideoChannelSingleThreadTest, TestInit) {
Base::TestInit();
}
TEST_F(VideoChannelSingleThreadTest, TestDeinit) {
Base::TestDeinit();
}
TEST_F(VideoChannelSingleThreadTest, TestSetContents) {
Base::TestSetContents();
}
TEST_F(VideoChannelSingleThreadTest, TestSetContentsNullOffer) {
Base::TestSetContentsNullOffer();
}
TEST_F(VideoChannelSingleThreadTest, TestSetContentsRtcpMux) {
Base::TestSetContentsRtcpMux();
}
TEST_F(VideoChannelSingleThreadTest, TestSetContentsRtcpMuxWithPrAnswer) {
Base::TestSetContentsRtcpMux();
}
TEST_F(VideoChannelSingleThreadTest, TestStreams) {
Base::TestStreams();
}
TEST_F(VideoChannelSingleThreadTest, TestChangeStreamParamsInContent) {
Base::TestChangeStreamParamsInContent();
}
TEST_F(VideoChannelSingleThreadTest, TestPlayoutAndSendingStates) {
Base::TestPlayoutAndSendingStates();
}
TEST_F(VideoChannelSingleThreadTest, TestMuteStream) {
CreateChannels(0, 0);
// Test that we can Mute the default channel even though the sending SSRC
// is unknown.
EXPECT_FALSE(media_channel1_->IsStreamMuted(0));
EXPECT_TRUE(channel1_->SetVideoSend(0, false, nullptr, nullptr));
EXPECT_TRUE(media_channel1_->IsStreamMuted(0));
EXPECT_TRUE(channel1_->SetVideoSend(0, true, nullptr, nullptr));
EXPECT_FALSE(media_channel1_->IsStreamMuted(0));
// Test that we can not mute an unknown SSRC.
EXPECT_FALSE(channel1_->SetVideoSend(kSsrc1, false, nullptr, nullptr));
SendInitiate();
// After the local session description has been set, we can mute a stream
// with its SSRC.
EXPECT_TRUE(channel1_->SetVideoSend(kSsrc1, false, nullptr, nullptr));
EXPECT_TRUE(media_channel1_->IsStreamMuted(kSsrc1));
EXPECT_TRUE(channel1_->SetVideoSend(kSsrc1, true, nullptr, nullptr));
EXPECT_FALSE(media_channel1_->IsStreamMuted(kSsrc1));
}
TEST_F(VideoChannelSingleThreadTest, TestMediaContentDirection) {
Base::TestMediaContentDirection();
}
TEST_F(VideoChannelSingleThreadTest, TestNetworkRouteChanges) {
Base::TestNetworkRouteChanges();
}
TEST_F(VideoChannelSingleThreadTest, TestCallSetup) {
Base::TestCallSetup();
}
TEST_F(VideoChannelSingleThreadTest, TestCallTeardownRtcpMux) {
Base::TestCallTeardownRtcpMux();
}
TEST_F(VideoChannelSingleThreadTest, SendRtpToRtp) {
Base::SendRtpToRtp();
}
TEST_F(VideoChannelSingleThreadTest, SendRtcpToRtcp) {
Base::SendRtcpToRtcp();
}
TEST_F(VideoChannelSingleThreadTest, SendRtcpMuxToRtcp) {
Base::SendRtcpMuxToRtcp();
}
TEST_F(VideoChannelSingleThreadTest, SendRtcpMuxToRtcpMux) {
Base::SendRtcpMuxToRtcpMux();
}
TEST_F(VideoChannelSingleThreadTest, SendRequireRtcpMuxToRtcpMux) {
Base::SendRequireRtcpMuxToRtcpMux();
}
TEST_F(VideoChannelSingleThreadTest, SendRtcpMuxToRequireRtcpMux) {
Base::SendRtcpMuxToRequireRtcpMux();
}
TEST_F(VideoChannelSingleThreadTest, SendRequireRtcpMuxToRequireRtcpMux) {
Base::SendRequireRtcpMuxToRequireRtcpMux();
}
TEST_F(VideoChannelSingleThreadTest, SendRequireRtcpMuxToNoRtcpMux) {
Base::SendRequireRtcpMuxToNoRtcpMux();
}
TEST_F(VideoChannelSingleThreadTest, SendEarlyRtcpMuxToRtcp) {
Base::SendEarlyRtcpMuxToRtcp();
}
TEST_F(VideoChannelSingleThreadTest, SendEarlyRtcpMuxToRtcpMux) {
Base::SendEarlyRtcpMuxToRtcpMux();
}
TEST_F(VideoChannelSingleThreadTest, SendSrtpToSrtp) {
Base::SendSrtpToSrtp();
}
TEST_F(VideoChannelSingleThreadTest, SendSrtpToRtp) {
Base::SendSrtpToSrtp();
}
TEST_F(VideoChannelSingleThreadTest, SendDtlsSrtpToSrtp) {
Base::SendSrtpToSrtp(DTLS, 0);
}
TEST_F(VideoChannelSingleThreadTest, SendDtlsSrtpToDtlsSrtp) {
Base::SendSrtpToSrtp(DTLS, DTLS);
}
TEST_F(VideoChannelSingleThreadTest, SendDtlsSrtpToDtlsSrtpRtcpMux) {
Base::SendSrtpToSrtp(DTLS | RTCP_MUX, DTLS | RTCP_MUX);
}
// Test using the channel with a raw packet interface, as opposed to a DTLS
// transport interface.
TEST_F(VideoChannelSingleThreadTest, SendSrtpToSrtpWithRawPacketTransport) {
Base::SendSrtpToSrtp(RAW_PACKET_TRANSPORT, RAW_PACKET_TRANSPORT);
}
TEST_F(VideoChannelSingleThreadTest, SendSrtcpMux) {
Base::SendSrtpToSrtp(RTCP_MUX, RTCP_MUX);
}
TEST_F(VideoChannelSingleThreadTest, SendEarlyMediaUsingRtcpMuxSrtp) {
Base::SendEarlyMediaUsingRtcpMuxSrtp();
}
TEST_F(VideoChannelSingleThreadTest, SendRtpToRtpOnThread) {
Base::SendRtpToRtpOnThread();
}
TEST_F(VideoChannelSingleThreadTest, SendSrtpToSrtpOnThread) {
Base::SendSrtpToSrtpOnThread();
}
TEST_F(VideoChannelSingleThreadTest, SendWithWritabilityLoss) {
Base::SendWithWritabilityLoss();
}
TEST_F(VideoChannelSingleThreadTest, TestMediaMonitor) {
Base::TestMediaMonitor();
}
TEST_F(VideoChannelSingleThreadTest, TestSetContentFailure) {
Base::TestSetContentFailure();
}
TEST_F(VideoChannelSingleThreadTest, TestSendTwoOffers) {
Base::TestSendTwoOffers();
}
TEST_F(VideoChannelSingleThreadTest, TestReceiveTwoOffers) {
Base::TestReceiveTwoOffers();
}
TEST_F(VideoChannelSingleThreadTest, TestSendPrAnswer) {
Base::TestSendPrAnswer();
}
TEST_F(VideoChannelSingleThreadTest, TestReceivePrAnswer) {
Base::TestReceivePrAnswer();
}
TEST_F(VideoChannelSingleThreadTest, TestFlushRtcp) {
Base::TestFlushRtcp();
}
TEST_F(VideoChannelSingleThreadTest, SendBundleToBundle) {
Base::SendBundleToBundle(kVideoPts, arraysize(kVideoPts), false, false);
}
TEST_F(VideoChannelSingleThreadTest, SendBundleToBundleSecure) {
Base::SendBundleToBundle(kVideoPts, arraysize(kVideoPts), false, true);
}
TEST_F(VideoChannelSingleThreadTest, SendBundleToBundleWithRtcpMux) {
Base::SendBundleToBundle(kVideoPts, arraysize(kVideoPts), true, false);
}
TEST_F(VideoChannelSingleThreadTest, SendBundleToBundleWithRtcpMuxSecure) {
Base::SendBundleToBundle(kVideoPts, arraysize(kVideoPts), true, true);
}
TEST_F(VideoChannelSingleThreadTest, TestOnTransportReadyToSend) {
Base::TestOnTransportReadyToSend();
}
TEST_F(VideoChannelSingleThreadTest, TestOnTransportReadyToSendWithRtcpMux) {
Base::TestOnTransportReadyToSendWithRtcpMux();
}
TEST_F(VideoChannelSingleThreadTest, DefaultMaxBitrateIsUnlimited) {
Base::DefaultMaxBitrateIsUnlimited();
}
TEST_F(VideoChannelSingleThreadTest, CanChangeMaxBitrate) {
Base::CanChangeMaxBitrate();
}
TEST_F(VideoChannelSingleThreadTest, SocketOptionsMergedOnSetTransport) {
Base::SocketOptionsMergedOnSetTransport();
}
// VideoChannelDoubleThreadTest
TEST_F(VideoChannelDoubleThreadTest, TestInit) {
Base::TestInit();
}
TEST_F(VideoChannelDoubleThreadTest, TestDeinit) {
Base::TestDeinit();
}
TEST_F(VideoChannelDoubleThreadTest, TestSetContents) {
Base::TestSetContents();
}
TEST_F(VideoChannelDoubleThreadTest, TestSetContentsNullOffer) {
Base::TestSetContentsNullOffer();
}
TEST_F(VideoChannelDoubleThreadTest, TestSetContentsRtcpMux) {
Base::TestSetContentsRtcpMux();
}
TEST_F(VideoChannelDoubleThreadTest, TestSetContentsRtcpMuxWithPrAnswer) {
Base::TestSetContentsRtcpMux();
}
TEST_F(VideoChannelDoubleThreadTest, TestStreams) {
Base::TestStreams();
}
TEST_F(VideoChannelDoubleThreadTest, TestChangeStreamParamsInContent) {
Base::TestChangeStreamParamsInContent();
}
TEST_F(VideoChannelDoubleThreadTest, TestPlayoutAndSendingStates) {
Base::TestPlayoutAndSendingStates();
}
TEST_F(VideoChannelDoubleThreadTest, TestMuteStream) {
CreateChannels(0, 0);
// Test that we can Mute the default channel even though the sending SSRC
// is unknown.
EXPECT_FALSE(media_channel1_->IsStreamMuted(0));
EXPECT_TRUE(channel1_->SetVideoSend(0, false, nullptr, nullptr));
EXPECT_TRUE(media_channel1_->IsStreamMuted(0));
EXPECT_TRUE(channel1_->SetVideoSend(0, true, nullptr, nullptr));
EXPECT_FALSE(media_channel1_->IsStreamMuted(0));
// Test that we can not mute an unknown SSRC.
EXPECT_FALSE(channel1_->SetVideoSend(kSsrc1, false, nullptr, nullptr));
SendInitiate();
// After the local session description has been set, we can mute a stream
// with its SSRC.
EXPECT_TRUE(channel1_->SetVideoSend(kSsrc1, false, nullptr, nullptr));
EXPECT_TRUE(media_channel1_->IsStreamMuted(kSsrc1));
EXPECT_TRUE(channel1_->SetVideoSend(kSsrc1, true, nullptr, nullptr));
EXPECT_FALSE(media_channel1_->IsStreamMuted(kSsrc1));
}
TEST_F(VideoChannelDoubleThreadTest, TestMediaContentDirection) {
Base::TestMediaContentDirection();
}
TEST_F(VideoChannelDoubleThreadTest, TestNetworkRouteChanges) {
Base::TestNetworkRouteChanges();
}
TEST_F(VideoChannelDoubleThreadTest, TestCallSetup) {
Base::TestCallSetup();
}
TEST_F(VideoChannelDoubleThreadTest, TestCallTeardownRtcpMux) {
Base::TestCallTeardownRtcpMux();
}
TEST_F(VideoChannelDoubleThreadTest, SendRtpToRtp) {
Base::SendRtpToRtp();
}
TEST_F(VideoChannelDoubleThreadTest, SendRtcpToRtcp) {
Base::SendRtcpToRtcp();
}
TEST_F(VideoChannelDoubleThreadTest, SendRtcpMuxToRtcp) {
Base::SendRtcpMuxToRtcp();
}
TEST_F(VideoChannelDoubleThreadTest, SendRtcpMuxToRtcpMux) {
Base::SendRtcpMuxToRtcpMux();
}
TEST_F(VideoChannelDoubleThreadTest, SendRequireRtcpMuxToRtcpMux) {
Base::SendRequireRtcpMuxToRtcpMux();
}
TEST_F(VideoChannelDoubleThreadTest, SendRtcpMuxToRequireRtcpMux) {
Base::SendRtcpMuxToRequireRtcpMux();
}
TEST_F(VideoChannelDoubleThreadTest, SendRequireRtcpMuxToRequireRtcpMux) {
Base::SendRequireRtcpMuxToRequireRtcpMux();
}
TEST_F(VideoChannelDoubleThreadTest, SendRequireRtcpMuxToNoRtcpMux) {
Base::SendRequireRtcpMuxToNoRtcpMux();
}
TEST_F(VideoChannelDoubleThreadTest, SendEarlyRtcpMuxToRtcp) {
Base::SendEarlyRtcpMuxToRtcp();
}
TEST_F(VideoChannelDoubleThreadTest, SendEarlyRtcpMuxToRtcpMux) {
Base::SendEarlyRtcpMuxToRtcpMux();
}
TEST_F(VideoChannelDoubleThreadTest, SendSrtpToSrtp) {
Base::SendSrtpToSrtp();
}
TEST_F(VideoChannelDoubleThreadTest, SendSrtpToRtp) {
Base::SendSrtpToSrtp();
}
TEST_F(VideoChannelDoubleThreadTest, SendDtlsSrtpToSrtp) {
Base::SendSrtpToSrtp(DTLS, 0);
}
TEST_F(VideoChannelDoubleThreadTest, SendDtlsSrtpToDtlsSrtp) {
Base::SendSrtpToSrtp(DTLS, DTLS);
}
TEST_F(VideoChannelDoubleThreadTest, SendDtlsSrtpToDtlsSrtpRtcpMux) {
Base::SendSrtpToSrtp(DTLS | RTCP_MUX, DTLS | RTCP_MUX);
}
// Test using the channel with a raw packet interface, as opposed to a DTLS
// transport interface.
TEST_F(VideoChannelDoubleThreadTest, SendSrtpToSrtpWithRawPacketTransport) {
Base::SendSrtpToSrtp(RAW_PACKET_TRANSPORT, RAW_PACKET_TRANSPORT);
}
TEST_F(VideoChannelDoubleThreadTest, SendSrtcpMux) {
Base::SendSrtpToSrtp(RTCP_MUX, RTCP_MUX);
}
TEST_F(VideoChannelDoubleThreadTest, SendEarlyMediaUsingRtcpMuxSrtp) {
Base::SendEarlyMediaUsingRtcpMuxSrtp();
}
TEST_F(VideoChannelDoubleThreadTest, SendRtpToRtpOnThread) {
Base::SendRtpToRtpOnThread();
}
TEST_F(VideoChannelDoubleThreadTest, SendSrtpToSrtpOnThread) {
Base::SendSrtpToSrtpOnThread();
}
TEST_F(VideoChannelDoubleThreadTest, SendWithWritabilityLoss) {
Base::SendWithWritabilityLoss();
}
TEST_F(VideoChannelDoubleThreadTest, TestMediaMonitor) {
Base::TestMediaMonitor();
}
TEST_F(VideoChannelDoubleThreadTest, TestSetContentFailure) {
Base::TestSetContentFailure();
}
TEST_F(VideoChannelDoubleThreadTest, TestSendTwoOffers) {
Base::TestSendTwoOffers();
}
TEST_F(VideoChannelDoubleThreadTest, TestReceiveTwoOffers) {
Base::TestReceiveTwoOffers();
}
TEST_F(VideoChannelDoubleThreadTest, TestSendPrAnswer) {
Base::TestSendPrAnswer();
}
TEST_F(VideoChannelDoubleThreadTest, TestReceivePrAnswer) {
Base::TestReceivePrAnswer();
}
TEST_F(VideoChannelDoubleThreadTest, TestFlushRtcp) {
Base::TestFlushRtcp();
}
TEST_F(VideoChannelDoubleThreadTest, SendBundleToBundle) {
Base::SendBundleToBundle(kVideoPts, arraysize(kVideoPts), false, false);
}
TEST_F(VideoChannelDoubleThreadTest, SendBundleToBundleSecure) {
Base::SendBundleToBundle(kVideoPts, arraysize(kVideoPts), false, true);
}
TEST_F(VideoChannelDoubleThreadTest, SendBundleToBundleWithRtcpMux) {
Base::SendBundleToBundle(kVideoPts, arraysize(kVideoPts), true, false);
}
TEST_F(VideoChannelDoubleThreadTest, SendBundleToBundleWithRtcpMuxSecure) {
Base::SendBundleToBundle(kVideoPts, arraysize(kVideoPts), true, true);
}
TEST_F(VideoChannelDoubleThreadTest, TestOnTransportReadyToSend) {
Base::TestOnTransportReadyToSend();
}
TEST_F(VideoChannelDoubleThreadTest, TestOnTransportReadyToSendWithRtcpMux) {
Base::TestOnTransportReadyToSendWithRtcpMux();
}
TEST_F(VideoChannelDoubleThreadTest, DefaultMaxBitrateIsUnlimited) {
Base::DefaultMaxBitrateIsUnlimited();
}
TEST_F(VideoChannelDoubleThreadTest, CanChangeMaxBitrate) {
Base::CanChangeMaxBitrate();
}
TEST_F(VideoChannelDoubleThreadTest, SocketOptionsMergedOnSetTransport) {
Base::SocketOptionsMergedOnSetTransport();
}
// RtpDataChannelSingleThreadTest
class RtpDataChannelSingleThreadTest : public ChannelTest<DataTraits> {
public:
typedef ChannelTest<DataTraits> Base;
RtpDataChannelSingleThreadTest()
: Base(true, kDataPacket, kRtcpReport, NetworkIsWorker::Yes) {}
};
// RtpDataChannelDoubleThreadTest
class RtpDataChannelDoubleThreadTest : public ChannelTest<DataTraits> {
public:
typedef ChannelTest<DataTraits> Base;
RtpDataChannelDoubleThreadTest()
: Base(true, kDataPacket, kRtcpReport, NetworkIsWorker::No) {}
};
// Override to avoid engine channel parameter.
template <>
std::unique_ptr<cricket::RtpDataChannel> ChannelTest<DataTraits>::CreateChannel(
rtc::Thread* worker_thread,
rtc::Thread* network_thread,
cricket::MediaEngineInterface* engine,
std::unique_ptr<cricket::FakeDataMediaChannel> ch,
cricket::DtlsTransportInternal* fake_rtp_dtls_transport,
cricket::DtlsTransportInternal* fake_rtcp_dtls_transport,
rtc::PacketTransportInternal* fake_rtp_packet_transport,
rtc::PacketTransportInternal* fake_rtcp_packet_transport,
int flags) {
rtc::Thread* signaling_thread = rtc::Thread::Current();
auto channel = rtc::MakeUnique<cricket::RtpDataChannel>(
worker_thread, network_thread, signaling_thread, std::move(ch),
cricket::CN_DATA, (flags & RTCP_MUX_REQUIRED) != 0,
(flags & SECURE) != 0);
if (!channel->NeedsRtcpTransport()) {
fake_rtcp_dtls_transport = nullptr;
}
channel->Init_w(fake_rtp_dtls_transport, fake_rtcp_dtls_transport,
fake_rtp_packet_transport, fake_rtcp_packet_transport);
return channel;
}
template <>
void ChannelTest<DataTraits>::CreateContent(
int flags,
const cricket::AudioCodec& audio_codec,
const cricket::VideoCodec& video_codec,
cricket::DataContentDescription* data) {
data->AddCodec(kGoogleDataCodec);
data->set_rtcp_mux((flags & RTCP_MUX) != 0);
if (flags & SECURE) {
data->AddCrypto(cricket::CryptoParams(
1, rtc::CS_AES_CM_128_HMAC_SHA1_32,
"inline:" + rtc::CreateRandomString(40), std::string()));
}
}
template <>
void ChannelTest<DataTraits>::CopyContent(
const cricket::DataContentDescription& source,
cricket::DataContentDescription* data) {
*data = source;
}
template <>
bool ChannelTest<DataTraits>::CodecMatches(const cricket::DataCodec& c1,
const cricket::DataCodec& c2) {
return c1.name == c2.name;
}
template <>
void ChannelTest<DataTraits>::AddLegacyStreamInContent(
uint32_t ssrc,
int flags,
cricket::DataContentDescription* data) {
data->AddLegacyStream(ssrc);
}
TEST_F(RtpDataChannelSingleThreadTest, TestInit) {
Base::TestInit();
EXPECT_FALSE(media_channel1_->IsStreamMuted(0));
}
TEST_F(RtpDataChannelSingleThreadTest, TestDeinit) {
Base::TestDeinit();
}
TEST_F(RtpDataChannelSingleThreadTest, TestSetContents) {
Base::TestSetContents();
}
TEST_F(RtpDataChannelSingleThreadTest, TestSetContentsNullOffer) {
Base::TestSetContentsNullOffer();
}
TEST_F(RtpDataChannelSingleThreadTest, TestSetContentsRtcpMux) {
Base::TestSetContentsRtcpMux();
}
TEST_F(RtpDataChannelSingleThreadTest, TestStreams) {
Base::TestStreams();
}
TEST_F(RtpDataChannelSingleThreadTest, TestChangeStreamParamsInContent) {
Base::TestChangeStreamParamsInContent();
}
TEST_F(RtpDataChannelSingleThreadTest, TestPlayoutAndSendingStates) {
Base::TestPlayoutAndSendingStates();
}
TEST_F(RtpDataChannelSingleThreadTest, TestMediaContentDirection) {
Base::TestMediaContentDirection();
}
TEST_F(RtpDataChannelSingleThreadTest, TestCallSetup) {
Base::TestCallSetup();
}
TEST_F(RtpDataChannelSingleThreadTest, TestCallTeardownRtcpMux) {
Base::TestCallTeardownRtcpMux();
}
TEST_F(RtpDataChannelSingleThreadTest, TestOnTransportReadyToSend) {
Base::TestOnTransportReadyToSend();
}
TEST_F(RtpDataChannelSingleThreadTest, TestOnTransportReadyToSendWithRtcpMux) {
Base::TestOnTransportReadyToSendWithRtcpMux();
}
TEST_F(RtpDataChannelSingleThreadTest, SendRtpToRtp) {
Base::SendRtpToRtp();
}
TEST_F(RtpDataChannelSingleThreadTest, SendRtcpToRtcp) {
Base::SendRtcpToRtcp();
}
TEST_F(RtpDataChannelSingleThreadTest, SendRtcpMuxToRtcp) {
Base::SendRtcpMuxToRtcp();
}
TEST_F(RtpDataChannelSingleThreadTest, SendRtcpMuxToRtcpMux) {
Base::SendRtcpMuxToRtcpMux();
}
TEST_F(RtpDataChannelSingleThreadTest, SendEarlyRtcpMuxToRtcp) {
Base::SendEarlyRtcpMuxToRtcp();
}
TEST_F(RtpDataChannelSingleThreadTest, SendEarlyRtcpMuxToRtcpMux) {
Base::SendEarlyRtcpMuxToRtcpMux();
}
TEST_F(RtpDataChannelSingleThreadTest, SendSrtpToSrtp) {
Base::SendSrtpToSrtp();
}
TEST_F(RtpDataChannelSingleThreadTest, SendSrtpToRtp) {
Base::SendSrtpToSrtp();
}
TEST_F(RtpDataChannelSingleThreadTest, SendSrtcpMux) {
Base::SendSrtpToSrtp(RTCP_MUX, RTCP_MUX);
}
TEST_F(RtpDataChannelSingleThreadTest, SendRtpToRtpOnThread) {
Base::SendRtpToRtpOnThread();
}
TEST_F(RtpDataChannelSingleThreadTest, SendSrtpToSrtpOnThread) {
Base::SendSrtpToSrtpOnThread();
}
TEST_F(RtpDataChannelSingleThreadTest, SendWithWritabilityLoss) {
Base::SendWithWritabilityLoss();
}
TEST_F(RtpDataChannelSingleThreadTest, TestMediaMonitor) {
Base::TestMediaMonitor();
}
TEST_F(RtpDataChannelSingleThreadTest, SocketOptionsMergedOnSetTransport) {
Base::SocketOptionsMergedOnSetTransport();
}
TEST_F(RtpDataChannelSingleThreadTest, TestSendData) {
CreateChannels(0, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
cricket::SendDataParams params;
params.ssrc = 42;
unsigned char data[] = {'f', 'o', 'o'};
rtc::CopyOnWriteBuffer payload(data, 3);
cricket::SendDataResult result;
ASSERT_TRUE(media_channel1_->SendData(params, payload, &result));
EXPECT_EQ(params.ssrc, media_channel1_->last_sent_data_params().ssrc);
EXPECT_EQ("foo", media_channel1_->last_sent_data());
}
TEST_F(RtpDataChannelDoubleThreadTest, TestInit) {
Base::TestInit();
EXPECT_FALSE(media_channel1_->IsStreamMuted(0));
}
TEST_F(RtpDataChannelDoubleThreadTest, TestDeinit) {
Base::TestDeinit();
}
TEST_F(RtpDataChannelDoubleThreadTest, TestSetContents) {
Base::TestSetContents();
}
TEST_F(RtpDataChannelDoubleThreadTest, TestSetContentsNullOffer) {
Base::TestSetContentsNullOffer();
}
TEST_F(RtpDataChannelDoubleThreadTest, TestSetContentsRtcpMux) {
Base::TestSetContentsRtcpMux();
}
TEST_F(RtpDataChannelDoubleThreadTest, TestStreams) {
Base::TestStreams();
}
TEST_F(RtpDataChannelDoubleThreadTest, TestChangeStreamParamsInContent) {
Base::TestChangeStreamParamsInContent();
}
TEST_F(RtpDataChannelDoubleThreadTest, TestPlayoutAndSendingStates) {
Base::TestPlayoutAndSendingStates();
}
TEST_F(RtpDataChannelDoubleThreadTest, TestMediaContentDirection) {
Base::TestMediaContentDirection();
}
TEST_F(RtpDataChannelDoubleThreadTest, TestCallSetup) {
Base::TestCallSetup();
}
TEST_F(RtpDataChannelDoubleThreadTest, TestCallTeardownRtcpMux) {
Base::TestCallTeardownRtcpMux();
}
TEST_F(RtpDataChannelDoubleThreadTest, TestOnTransportReadyToSend) {
Base::TestOnTransportReadyToSend();
}
TEST_F(RtpDataChannelDoubleThreadTest, TestOnTransportReadyToSendWithRtcpMux) {
Base::TestOnTransportReadyToSendWithRtcpMux();
}
TEST_F(RtpDataChannelDoubleThreadTest, SendRtpToRtp) {
Base::SendRtpToRtp();
}
TEST_F(RtpDataChannelDoubleThreadTest, SendRtcpToRtcp) {
Base::SendRtcpToRtcp();
}
TEST_F(RtpDataChannelDoubleThreadTest, SendRtcpMuxToRtcp) {
Base::SendRtcpMuxToRtcp();
}
TEST_F(RtpDataChannelDoubleThreadTest, SendRtcpMuxToRtcpMux) {
Base::SendRtcpMuxToRtcpMux();
}
TEST_F(RtpDataChannelDoubleThreadTest, SendEarlyRtcpMuxToRtcp) {
Base::SendEarlyRtcpMuxToRtcp();
}
TEST_F(RtpDataChannelDoubleThreadTest, SendEarlyRtcpMuxToRtcpMux) {
Base::SendEarlyRtcpMuxToRtcpMux();
}
TEST_F(RtpDataChannelDoubleThreadTest, SendSrtpToSrtp) {
Base::SendSrtpToSrtp();
}
TEST_F(RtpDataChannelDoubleThreadTest, SendSrtpToRtp) {
Base::SendSrtpToSrtp();
}
TEST_F(RtpDataChannelDoubleThreadTest, SendSrtcpMux) {
Base::SendSrtpToSrtp(RTCP_MUX, RTCP_MUX);
}
TEST_F(RtpDataChannelDoubleThreadTest, SendRtpToRtpOnThread) {
Base::SendRtpToRtpOnThread();
}
TEST_F(RtpDataChannelDoubleThreadTest, SendSrtpToSrtpOnThread) {
Base::SendSrtpToSrtpOnThread();
}
TEST_F(RtpDataChannelDoubleThreadTest, SendWithWritabilityLoss) {
Base::SendWithWritabilityLoss();
}
TEST_F(RtpDataChannelDoubleThreadTest, TestMediaMonitor) {
Base::TestMediaMonitor();
}
TEST_F(RtpDataChannelDoubleThreadTest, SocketOptionsMergedOnSetTransport) {
Base::SocketOptionsMergedOnSetTransport();
}
TEST_F(RtpDataChannelDoubleThreadTest, TestSendData) {
CreateChannels(0, 0);
EXPECT_TRUE(SendInitiate());
EXPECT_TRUE(SendAccept());
cricket::SendDataParams params;
params.ssrc = 42;
unsigned char data[] = {
'f', 'o', 'o'
};
rtc::CopyOnWriteBuffer payload(data, 3);
cricket::SendDataResult result;
ASSERT_TRUE(media_channel1_->SendData(params, payload, &result));
EXPECT_EQ(params.ssrc,
media_channel1_->last_sent_data_params().ssrc);
EXPECT_EQ("foo", media_channel1_->last_sent_data());
}
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies some DCHECKs are in place.
// Uses VoiceChannel, but any BaseChannel subclass would work.
class BaseChannelDeathTest : public testing::Test {
public:
BaseChannelDeathTest()
: fake_rtp_dtls_transport_("foo", cricket::ICE_CANDIDATE_COMPONENT_RTP),
fake_rtcp_dtls_transport_("foo", cricket::ICE_CANDIDATE_COMPONENT_RTCP),
// RTCP mux not required, SRTP required.
voice_channel_(rtc::Thread::Current(),
rtc::Thread::Current(),
rtc::Thread::Current(),
&fake_media_engine_,
rtc::MakeUnique<cricket::FakeVoiceMediaChannel>(
nullptr,
cricket::AudioOptions()),
cricket::CN_AUDIO,
false,
true) {}
protected:
cricket::FakeMediaEngine fake_media_engine_;
cricket::FakeDtlsTransport fake_rtp_dtls_transport_;
cricket::FakeDtlsTransport fake_rtcp_dtls_transport_;
cricket::VoiceChannel voice_channel_;
};
TEST_F(BaseChannelDeathTest, SetTransportsWithNullRtpTransport) {
voice_channel_.Init_w(&fake_rtp_dtls_transport_, &fake_rtcp_dtls_transport_,
&fake_rtp_dtls_transport_, &fake_rtcp_dtls_transport_);
cricket::FakeDtlsTransport new_rtcp_transport(
"bar", cricket::ICE_CANDIDATE_COMPONENT_RTCP);
EXPECT_DEATH(voice_channel_.SetTransports(nullptr, &new_rtcp_transport), "");
}
TEST_F(BaseChannelDeathTest, SetTransportsWithMissingRtcpTransport) {
voice_channel_.Init_w(&fake_rtp_dtls_transport_, &fake_rtcp_dtls_transport_,
&fake_rtp_dtls_transport_, &fake_rtcp_dtls_transport_);
cricket::FakeDtlsTransport new_rtp_transport(
"bar", cricket::ICE_CANDIDATE_COMPONENT_RTP);
EXPECT_DEATH(voice_channel_.SetTransports(&new_rtp_transport, nullptr), "");
}
TEST_F(BaseChannelDeathTest, SetTransportsWithUnneededRtcpTransport) {
voice_channel_.Init_w(&fake_rtp_dtls_transport_, &fake_rtcp_dtls_transport_,
&fake_rtp_dtls_transport_, &fake_rtcp_dtls_transport_);
// Activate RTCP muxing, simulating offer/answer negotiation.
cricket::AudioContentDescription content;
content.set_rtcp_mux(true);
ASSERT_TRUE(voice_channel_.SetLocalContent(&content, CA_OFFER, nullptr));
ASSERT_TRUE(voice_channel_.SetRemoteContent(&content, CA_ANSWER, nullptr));
cricket::FakeDtlsTransport new_rtp_transport(
"bar", cricket::ICE_CANDIDATE_COMPONENT_RTP);
cricket::FakeDtlsTransport new_rtcp_transport(
"bar", cricket::ICE_CANDIDATE_COMPONENT_RTCP);
// After muxing is enabled, no RTCP transport should be passed in here.
EXPECT_DEATH(
voice_channel_.SetTransports(&new_rtp_transport, &new_rtcp_transport),
"");
}
// This test will probably go away if/when we move the transport name out of
// the transport classes and into their parent classes.
TEST_F(BaseChannelDeathTest, SetTransportsWithMismatchingTransportNames) {
voice_channel_.Init_w(&fake_rtp_dtls_transport_, &fake_rtcp_dtls_transport_,
&fake_rtp_dtls_transport_, &fake_rtcp_dtls_transport_);
cricket::FakeDtlsTransport new_rtp_transport(
"bar", cricket::ICE_CANDIDATE_COMPONENT_RTP);
cricket::FakeDtlsTransport new_rtcp_transport(
"baz", cricket::ICE_CANDIDATE_COMPONENT_RTCP);
EXPECT_DEATH(
voice_channel_.SetTransports(&new_rtp_transport, &new_rtcp_transport),
"");
}
// Not expected to support going from DtlsTransportInternal to
// PacketTransportInternal.
TEST_F(BaseChannelDeathTest, SetTransportsDtlsToNonDtls) {
voice_channel_.Init_w(&fake_rtp_dtls_transport_, &fake_rtcp_dtls_transport_,
&fake_rtp_dtls_transport_, &fake_rtcp_dtls_transport_);
EXPECT_DEATH(
voice_channel_.SetTransports(
static_cast<rtc::PacketTransportInternal*>(&fake_rtp_dtls_transport_),
static_cast<rtc::PacketTransportInternal*>(
&fake_rtp_dtls_transport_)),
"");
}
// Not expected to support going from PacketTransportInternal to
// DtlsTransportInternal.
TEST_F(BaseChannelDeathTest, SetTransportsNonDtlsToDtls) {
voice_channel_.Init_w(nullptr, nullptr, &fake_rtp_dtls_transport_,
&fake_rtcp_dtls_transport_);
EXPECT_DEATH(voice_channel_.SetTransports(&fake_rtp_dtls_transport_,
&fake_rtp_dtls_transport_),
"");
}
#endif // RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// TODO(pthatcher): TestSetReceiver?