| /* |
| * Copyright 2015 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "rtc_base/bit_buffer.h" |
| |
| #include <algorithm> |
| #include <limits> |
| |
| #include "absl/numeric/bits.h" |
| #include "rtc_base/checks.h" |
| |
| namespace { |
| |
| // Returns the lowest (right-most) `bit_count` bits in `byte`. |
| uint8_t LowestBits(uint8_t byte, size_t bit_count) { |
| RTC_DCHECK_LE(bit_count, 8); |
| return byte & ((1 << bit_count) - 1); |
| } |
| |
| // Returns the highest (left-most) `bit_count` bits in `byte`, shifted to the |
| // lowest bits (to the right). |
| uint8_t HighestBits(uint8_t byte, size_t bit_count) { |
| RTC_DCHECK_LE(bit_count, 8); |
| uint8_t shift = 8 - static_cast<uint8_t>(bit_count); |
| uint8_t mask = 0xFF << shift; |
| return (byte & mask) >> shift; |
| } |
| |
| // Returns the highest byte of `val` in a uint8_t. |
| uint8_t HighestByte(uint64_t val) { |
| return static_cast<uint8_t>(val >> 56); |
| } |
| |
| // Returns the result of writing partial data from `source`, of |
| // `source_bit_count` size in the highest bits, to `target` at |
| // `target_bit_offset` from the highest bit. |
| uint8_t WritePartialByte(uint8_t source, |
| size_t source_bit_count, |
| uint8_t target, |
| size_t target_bit_offset) { |
| RTC_DCHECK(target_bit_offset < 8); |
| RTC_DCHECK(source_bit_count < 9); |
| RTC_DCHECK(source_bit_count <= (8 - target_bit_offset)); |
| // Generate a mask for just the bits we're going to overwrite, so: |
| uint8_t mask = |
| // The number of bits we want, in the most significant bits... |
| static_cast<uint8_t>(0xFF << (8 - source_bit_count)) |
| // ...shifted over to the target offset from the most signficant bit. |
| >> target_bit_offset; |
| |
| // We want the target, with the bits we'll overwrite masked off, or'ed with |
| // the bits from the source we want. |
| return (target & ~mask) | (source >> target_bit_offset); |
| } |
| |
| } // namespace |
| |
| namespace rtc { |
| |
| BitBuffer::BitBuffer(const uint8_t* bytes, size_t byte_count) |
| : bytes_(bytes), byte_count_(byte_count), byte_offset_(), bit_offset_() { |
| RTC_DCHECK(static_cast<uint64_t>(byte_count_) <= |
| std::numeric_limits<uint32_t>::max()); |
| } |
| |
| uint64_t BitBuffer::RemainingBitCount() const { |
| return (static_cast<uint64_t>(byte_count_) - byte_offset_) * 8 - bit_offset_; |
| } |
| |
| bool BitBuffer::ReadUInt8(uint8_t& val) { |
| uint32_t bit_val; |
| if (!ReadBits(sizeof(uint8_t) * 8, bit_val)) { |
| return false; |
| } |
| RTC_DCHECK(bit_val <= std::numeric_limits<uint8_t>::max()); |
| val = static_cast<uint8_t>(bit_val); |
| return true; |
| } |
| |
| bool BitBuffer::ReadUInt16(uint16_t& val) { |
| uint32_t bit_val; |
| if (!ReadBits(sizeof(uint16_t) * 8, bit_val)) { |
| return false; |
| } |
| RTC_DCHECK(bit_val <= std::numeric_limits<uint16_t>::max()); |
| val = static_cast<uint16_t>(bit_val); |
| return true; |
| } |
| |
| bool BitBuffer::ReadUInt32(uint32_t& val) { |
| return ReadBits(sizeof(uint32_t) * 8, val); |
| } |
| |
| bool BitBuffer::PeekBits(size_t bit_count, uint32_t& val) { |
| // TODO(nisse): Could allow bit_count == 0 and always return success. But |
| // current code reads one byte beyond end of buffer in the case that |
| // RemainingBitCount() == 0 and bit_count == 0. |
| RTC_DCHECK(bit_count > 0); |
| if (bit_count > RemainingBitCount() || bit_count > 32) { |
| return false; |
| } |
| const uint8_t* bytes = bytes_ + byte_offset_; |
| size_t remaining_bits_in_current_byte = 8 - bit_offset_; |
| uint32_t bits = LowestBits(*bytes++, remaining_bits_in_current_byte); |
| // If we're reading fewer bits than what's left in the current byte, just |
| // return the portion of this byte that we need. |
| if (bit_count < remaining_bits_in_current_byte) { |
| val = HighestBits(bits, bit_offset_ + bit_count); |
| return true; |
| } |
| // Otherwise, subtract what we've read from the bit count and read as many |
| // full bytes as we can into bits. |
| bit_count -= remaining_bits_in_current_byte; |
| while (bit_count >= 8) { |
| bits = (bits << 8) | *bytes++; |
| bit_count -= 8; |
| } |
| // Whatever we have left is smaller than a byte, so grab just the bits we need |
| // and shift them into the lowest bits. |
| if (bit_count > 0) { |
| bits <<= bit_count; |
| bits |= HighestBits(*bytes, bit_count); |
| } |
| val = bits; |
| return true; |
| } |
| |
| bool BitBuffer::PeekBits(size_t bit_count, uint64_t& val) { |
| // TODO(nisse): Could allow bit_count == 0 and always return success. But |
| // current code reads one byte beyond end of buffer in the case that |
| // RemainingBitCount() == 0 and bit_count == 0. |
| RTC_DCHECK(bit_count > 0); |
| if (bit_count > RemainingBitCount() || bit_count > 64) { |
| return false; |
| } |
| const uint8_t* bytes = bytes_ + byte_offset_; |
| size_t remaining_bits_in_current_byte = 8 - bit_offset_; |
| uint64_t bits = LowestBits(*bytes++, remaining_bits_in_current_byte); |
| // If we're reading fewer bits than what's left in the current byte, just |
| // return the portion of this byte that we need. |
| if (bit_count < remaining_bits_in_current_byte) { |
| val = HighestBits(bits, bit_offset_ + bit_count); |
| return true; |
| } |
| // Otherwise, subtract what we've read from the bit count and read as many |
| // full bytes as we can into bits. |
| bit_count -= remaining_bits_in_current_byte; |
| while (bit_count >= 8) { |
| bits = (bits << 8) | *bytes++; |
| bit_count -= 8; |
| } |
| // Whatever we have left is smaller than a byte, so grab just the bits we need |
| // and shift them into the lowest bits. |
| if (bit_count > 0) { |
| bits <<= bit_count; |
| bits |= HighestBits(*bytes, bit_count); |
| } |
| val = bits; |
| return true; |
| } |
| |
| bool BitBuffer::ReadBits(size_t bit_count, uint32_t& val) { |
| return PeekBits(bit_count, val) && ConsumeBits(bit_count); |
| } |
| |
| bool BitBuffer::ReadBits(size_t bit_count, uint64_t& val) { |
| return PeekBits(bit_count, val) && ConsumeBits(bit_count); |
| } |
| |
| bool BitBuffer::ConsumeBytes(size_t byte_count) { |
| return ConsumeBits(byte_count * 8); |
| } |
| |
| bool BitBuffer::ConsumeBits(size_t bit_count) { |
| if (bit_count > RemainingBitCount()) { |
| return false; |
| } |
| |
| byte_offset_ += (bit_offset_ + bit_count) / 8; |
| bit_offset_ = (bit_offset_ + bit_count) % 8; |
| return true; |
| } |
| |
| bool BitBuffer::ReadNonSymmetric(uint32_t num_values, uint32_t& val) { |
| RTC_DCHECK_GT(num_values, 0); |
| RTC_DCHECK_LE(num_values, uint32_t{1} << 31); |
| if (num_values == 1) { |
| // When there is only one possible value, it requires zero bits to store it. |
| // But ReadBits doesn't support reading zero bits. |
| val = 0; |
| return true; |
| } |
| size_t count_bits = absl::bit_width(num_values); |
| uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values; |
| |
| if (!ReadBits(count_bits - 1, val)) { |
| return false; |
| } |
| |
| if (val < num_min_bits_values) { |
| return true; |
| } |
| |
| uint32_t extra_bit; |
| if (!ReadBits(/*bit_count=*/1, extra_bit)) { |
| return false; |
| } |
| |
| val = (val << 1) + extra_bit - num_min_bits_values; |
| return true; |
| } |
| |
| bool BitBuffer::ReadExponentialGolomb(uint32_t& val) { |
| // Store off the current byte/bit offset, in case we want to restore them due |
| // to a failed parse. |
| size_t original_byte_offset = byte_offset_; |
| size_t original_bit_offset = bit_offset_; |
| |
| // Count the number of leading 0 bits by peeking/consuming them one at a time. |
| size_t zero_bit_count = 0; |
| uint32_t peeked_bit; |
| while (PeekBits(1, peeked_bit) && peeked_bit == 0) { |
| zero_bit_count++; |
| ConsumeBits(1); |
| } |
| |
| // We should either be at the end of the stream, or the next bit should be 1. |
| RTC_DCHECK(!PeekBits(1, peeked_bit) || peeked_bit == 1); |
| |
| // The bit count of the value is the number of zeros + 1. Make sure that many |
| // bits fits in a uint32_t and that we have enough bits left for it, and then |
| // read the value. |
| size_t value_bit_count = zero_bit_count + 1; |
| if (value_bit_count > 32 || !ReadBits(value_bit_count, val)) { |
| RTC_CHECK(Seek(original_byte_offset, original_bit_offset)); |
| return false; |
| } |
| val -= 1; |
| return true; |
| } |
| |
| bool BitBuffer::ReadSignedExponentialGolomb(int32_t& val) { |
| uint32_t unsigned_val; |
| if (!ReadExponentialGolomb(unsigned_val)) { |
| return false; |
| } |
| if ((unsigned_val & 1) == 0) { |
| val = -static_cast<int32_t>(unsigned_val / 2); |
| } else { |
| val = (unsigned_val + 1) / 2; |
| } |
| return true; |
| } |
| |
| void BitBuffer::GetCurrentOffset(size_t* out_byte_offset, |
| size_t* out_bit_offset) { |
| RTC_CHECK(out_byte_offset != nullptr); |
| RTC_CHECK(out_bit_offset != nullptr); |
| *out_byte_offset = byte_offset_; |
| *out_bit_offset = bit_offset_; |
| } |
| |
| bool BitBuffer::Seek(size_t byte_offset, size_t bit_offset) { |
| if (byte_offset > byte_count_ || bit_offset > 7 || |
| (byte_offset == byte_count_ && bit_offset > 0)) { |
| return false; |
| } |
| byte_offset_ = byte_offset; |
| bit_offset_ = bit_offset; |
| return true; |
| } |
| |
| BitBufferWriter::BitBufferWriter(uint8_t* bytes, size_t byte_count) |
| : BitBuffer(bytes, byte_count), writable_bytes_(bytes) {} |
| |
| bool BitBufferWriter::WriteUInt8(uint8_t val) { |
| return WriteBits(val, sizeof(uint8_t) * 8); |
| } |
| |
| bool BitBufferWriter::WriteUInt16(uint16_t val) { |
| return WriteBits(val, sizeof(uint16_t) * 8); |
| } |
| |
| bool BitBufferWriter::WriteUInt32(uint32_t val) { |
| return WriteBits(val, sizeof(uint32_t) * 8); |
| } |
| |
| bool BitBufferWriter::WriteBits(uint64_t val, size_t bit_count) { |
| if (bit_count > RemainingBitCount()) { |
| return false; |
| } |
| size_t total_bits = bit_count; |
| |
| // For simplicity, push the bits we want to read from val to the highest bits. |
| val <<= (sizeof(uint64_t) * 8 - bit_count); |
| |
| uint8_t* bytes = writable_bytes_ + byte_offset_; |
| |
| // The first byte is relatively special; the bit offset to write to may put us |
| // in the middle of the byte, and the total bit count to write may require we |
| // save the bits at the end of the byte. |
| size_t remaining_bits_in_current_byte = 8 - bit_offset_; |
| size_t bits_in_first_byte = |
| std::min(bit_count, remaining_bits_in_current_byte); |
| *bytes = WritePartialByte(HighestByte(val), bits_in_first_byte, *bytes, |
| bit_offset_); |
| if (bit_count <= remaining_bits_in_current_byte) { |
| // Nothing left to write, so quit early. |
| return ConsumeBits(total_bits); |
| } |
| |
| // Subtract what we've written from the bit count, shift it off the value, and |
| // write the remaining full bytes. |
| val <<= bits_in_first_byte; |
| bytes++; |
| bit_count -= bits_in_first_byte; |
| while (bit_count >= 8) { |
| *bytes++ = HighestByte(val); |
| val <<= 8; |
| bit_count -= 8; |
| } |
| |
| // Last byte may also be partial, so write the remaining bits from the top of |
| // val. |
| if (bit_count > 0) { |
| *bytes = WritePartialByte(HighestByte(val), bit_count, *bytes, 0); |
| } |
| |
| // All done! Consume the bits we've written. |
| return ConsumeBits(total_bits); |
| } |
| |
| bool BitBufferWriter::WriteNonSymmetric(uint32_t val, uint32_t num_values) { |
| RTC_DCHECK_LT(val, num_values); |
| RTC_DCHECK_LE(num_values, uint32_t{1} << 31); |
| if (num_values == 1) { |
| // When there is only one possible value, it requires zero bits to store it. |
| // But WriteBits doesn't support writing zero bits. |
| return true; |
| } |
| size_t count_bits = absl::bit_width(num_values); |
| uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values; |
| |
| return val < num_min_bits_values |
| ? WriteBits(val, count_bits - 1) |
| : WriteBits(val + num_min_bits_values, count_bits); |
| } |
| |
| size_t BitBufferWriter::SizeNonSymmetricBits(uint32_t val, |
| uint32_t num_values) { |
| RTC_DCHECK_LT(val, num_values); |
| RTC_DCHECK_LE(num_values, uint32_t{1} << 31); |
| size_t count_bits = absl::bit_width(num_values); |
| uint32_t num_min_bits_values = (uint32_t{1} << count_bits) - num_values; |
| |
| return val < num_min_bits_values ? (count_bits - 1) : count_bits; |
| } |
| |
| bool BitBufferWriter::WriteExponentialGolomb(uint32_t val) { |
| // We don't support reading UINT32_MAX, because it doesn't fit in a uint32_t |
| // when encoded, so don't support writing it either. |
| if (val == std::numeric_limits<uint32_t>::max()) { |
| return false; |
| } |
| uint64_t val_to_encode = static_cast<uint64_t>(val) + 1; |
| |
| // We need to write bit_width(val+1) 0s and then val+1. Since val (as a |
| // uint64_t) has leading zeros, we can just write the total golomb encoded |
| // size worth of bits, knowing the value will appear last. |
| return WriteBits(val_to_encode, absl::bit_width(val_to_encode) * 2 - 1); |
| } |
| |
| bool BitBufferWriter::WriteSignedExponentialGolomb(int32_t val) { |
| if (val == 0) { |
| return WriteExponentialGolomb(0); |
| } else if (val > 0) { |
| uint32_t signed_val = val; |
| return WriteExponentialGolomb((signed_val * 2) - 1); |
| } else { |
| if (val == std::numeric_limits<int32_t>::min()) |
| return false; // Not supported, would cause overflow. |
| uint32_t signed_val = -val; |
| return WriteExponentialGolomb(signed_val * 2); |
| } |
| } |
| |
| } // namespace rtc |