blob: d53a387914194bba53b276b54bc915fef2b7638f [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/thread.h"
#include <memory>
#include "api/task_queue/task_queue_factory.h"
#include "api/task_queue/task_queue_test.h"
#include "rtc_base/async_invoker.h"
#include "rtc_base/async_udp_socket.h"
#include "rtc_base/atomic_ops.h"
#include "rtc_base/event.h"
#include "rtc_base/gunit.h"
#include "rtc_base/null_socket_server.h"
#include "rtc_base/physical_socket_server.h"
#include "rtc_base/socket_address.h"
#include "rtc_base/task_utils/to_queued_task.h"
#include "rtc_base/third_party/sigslot/sigslot.h"
#include "test/testsupport/rtc_expect_death.h"
#if defined(WEBRTC_WIN)
#include <comdef.h> // NOLINT
#endif
namespace rtc {
namespace {
using ::webrtc::ToQueuedTask;
// Generates a sequence of numbers (collaboratively).
class TestGenerator {
public:
TestGenerator() : last(0), count(0) {}
int Next(int prev) {
int result = prev + last;
last = result;
count += 1;
return result;
}
int last;
int count;
};
struct TestMessage : public MessageData {
explicit TestMessage(int v) : value(v) {}
int value;
};
// Receives on a socket and sends by posting messages.
class SocketClient : public TestGenerator, public sigslot::has_slots<> {
public:
SocketClient(AsyncSocket* socket,
const SocketAddress& addr,
Thread* post_thread,
MessageHandler* phandler)
: socket_(AsyncUDPSocket::Create(socket, addr)),
post_thread_(post_thread),
post_handler_(phandler) {
socket_->SignalReadPacket.connect(this, &SocketClient::OnPacket);
}
~SocketClient() override { delete socket_; }
SocketAddress address() const { return socket_->GetLocalAddress(); }
void OnPacket(AsyncPacketSocket* socket,
const char* buf,
size_t size,
const SocketAddress& remote_addr,
const int64_t& packet_time_us) {
EXPECT_EQ(size, sizeof(uint32_t));
uint32_t prev = reinterpret_cast<const uint32_t*>(buf)[0];
uint32_t result = Next(prev);
post_thread_->PostDelayed(RTC_FROM_HERE, 200, post_handler_, 0,
new TestMessage(result));
}
private:
AsyncUDPSocket* socket_;
Thread* post_thread_;
MessageHandler* post_handler_;
};
// Receives messages and sends on a socket.
class MessageClient : public MessageHandler, public TestGenerator {
public:
MessageClient(Thread* pth, Socket* socket) : socket_(socket) {}
~MessageClient() override { delete socket_; }
void OnMessage(Message* pmsg) override {
TestMessage* msg = static_cast<TestMessage*>(pmsg->pdata);
int result = Next(msg->value);
EXPECT_GE(socket_->Send(&result, sizeof(result)), 0);
delete msg;
}
private:
Socket* socket_;
};
class CustomThread : public rtc::Thread {
public:
CustomThread()
: Thread(std::unique_ptr<SocketServer>(new rtc::NullSocketServer())) {}
~CustomThread() override { Stop(); }
bool Start() { return false; }
bool WrapCurrent() { return Thread::WrapCurrent(); }
void UnwrapCurrent() { Thread::UnwrapCurrent(); }
};
// A thread that does nothing when it runs and signals an event
// when it is destroyed.
class SignalWhenDestroyedThread : public Thread {
public:
SignalWhenDestroyedThread(Event* event)
: Thread(std::unique_ptr<SocketServer>(new NullSocketServer())),
event_(event) {}
~SignalWhenDestroyedThread() override {
Stop();
event_->Set();
}
void Run() override {
// Do nothing.
}
private:
Event* event_;
};
// A bool wrapped in a mutex, to avoid data races. Using a volatile
// bool should be sufficient for correct code ("eventual consistency"
// between caches is sufficient), but we can't tell the compiler about
// that, and then tsan complains about a data race.
// See also discussion at
// http://stackoverflow.com/questions/7223164/is-mutex-needed-to-synchronize-a-simple-flag-between-pthreads
// Using std::atomic<bool> or std::atomic_flag in C++11 is probably
// the right thing to do, but those features are not yet allowed. Or
// rtc::AtomicInt, if/when that is added. Since the use isn't
// performance critical, use a plain critical section for the time
// being.
class AtomicBool {
public:
explicit AtomicBool(bool value = false) : flag_(value) {}
AtomicBool& operator=(bool value) {
CritScope scoped_lock(&cs_);
flag_ = value;
return *this;
}
bool get() const {
CritScope scoped_lock(&cs_);
return flag_;
}
private:
CriticalSection cs_;
bool flag_;
};
// Function objects to test Thread::Invoke.
struct FunctorA {
int operator()() { return 42; }
};
class FunctorB {
public:
explicit FunctorB(AtomicBool* flag) : flag_(flag) {}
void operator()() {
if (flag_)
*flag_ = true;
}
private:
AtomicBool* flag_;
};
struct FunctorC {
int operator()() {
Thread::Current()->ProcessMessages(50);
return 24;
}
};
struct FunctorD {
public:
explicit FunctorD(AtomicBool* flag) : flag_(flag) {}
FunctorD(FunctorD&&) = default;
FunctorD& operator=(FunctorD&&) = default;
void operator()() {
if (flag_)
*flag_ = true;
}
private:
AtomicBool* flag_;
RTC_DISALLOW_COPY_AND_ASSIGN(FunctorD);
};
// See: https://code.google.com/p/webrtc/issues/detail?id=2409
TEST(ThreadTest, DISABLED_Main) {
const SocketAddress addr("127.0.0.1", 0);
// Create the messaging client on its own thread.
auto th1 = Thread::CreateWithSocketServer();
Socket* socket =
th1->socketserver()->CreateAsyncSocket(addr.family(), SOCK_DGRAM);
MessageClient msg_client(th1.get(), socket);
// Create the socket client on its own thread.
auto th2 = Thread::CreateWithSocketServer();
AsyncSocket* asocket =
th2->socketserver()->CreateAsyncSocket(addr.family(), SOCK_DGRAM);
SocketClient sock_client(asocket, addr, th1.get(), &msg_client);
socket->Connect(sock_client.address());
th1->Start();
th2->Start();
// Get the messages started.
th1->PostDelayed(RTC_FROM_HERE, 100, &msg_client, 0, new TestMessage(1));
// Give the clients a little while to run.
// Messages will be processed at 100, 300, 500, 700, 900.
Thread* th_main = Thread::Current();
th_main->ProcessMessages(1000);
// Stop the sending client. Give the receiver a bit longer to run, in case
// it is running on a machine that is under load (e.g. the build machine).
th1->Stop();
th_main->ProcessMessages(200);
th2->Stop();
// Make sure the results were correct
EXPECT_EQ(5, msg_client.count);
EXPECT_EQ(34, msg_client.last);
EXPECT_EQ(5, sock_client.count);
EXPECT_EQ(55, sock_client.last);
}
// Test that setting thread names doesn't cause a malfunction.
// There's no easy way to verify the name was set properly at this time.
TEST(ThreadTest, Names) {
// Default name
auto thread = Thread::CreateWithSocketServer();
EXPECT_TRUE(thread->Start());
thread->Stop();
// Name with no object parameter
thread = Thread::CreateWithSocketServer();
EXPECT_TRUE(thread->SetName("No object", nullptr));
EXPECT_TRUE(thread->Start());
thread->Stop();
// Really long name
thread = Thread::CreateWithSocketServer();
EXPECT_TRUE(thread->SetName("Abcdefghijklmnopqrstuvwxyz1234567890", this));
EXPECT_TRUE(thread->Start());
thread->Stop();
}
TEST(ThreadTest, Wrap) {
Thread* current_thread = Thread::Current();
ThreadManager::Instance()->SetCurrentThread(nullptr);
{
CustomThread cthread;
EXPECT_TRUE(cthread.WrapCurrent());
EXPECT_EQ(&cthread, Thread::Current());
EXPECT_TRUE(cthread.RunningForTest());
EXPECT_FALSE(cthread.IsOwned());
cthread.UnwrapCurrent();
EXPECT_FALSE(cthread.RunningForTest());
}
ThreadManager::Instance()->SetCurrentThread(current_thread);
}
TEST(ThreadTest, Invoke) {
// Create and start the thread.
auto thread = Thread::CreateWithSocketServer();
thread->Start();
// Try calling functors.
EXPECT_EQ(42, thread->Invoke<int>(RTC_FROM_HERE, FunctorA()));
AtomicBool called;
FunctorB f2(&called);
thread->Invoke<void>(RTC_FROM_HERE, f2);
EXPECT_TRUE(called.get());
// Try calling bare functions.
struct LocalFuncs {
static int Func1() { return 999; }
static void Func2() {}
};
EXPECT_EQ(999, thread->Invoke<int>(RTC_FROM_HERE, &LocalFuncs::Func1));
thread->Invoke<void>(RTC_FROM_HERE, &LocalFuncs::Func2);
}
// Verifies that two threads calling Invoke on each other at the same time does
// not deadlock but crash.
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
TEST(ThreadTest, TwoThreadsInvokeDeathTest) {
::testing::GTEST_FLAG(death_test_style) = "threadsafe";
AutoThread thread;
Thread* main_thread = Thread::Current();
auto other_thread = Thread::CreateWithSocketServer();
other_thread->Start();
other_thread->Invoke<void>(RTC_FROM_HERE, [main_thread] {
RTC_EXPECT_DEATH(main_thread->Invoke<void>(RTC_FROM_HERE, [] {}), "loop");
});
}
TEST(ThreadTest, ThreeThreadsInvokeDeathTest) {
::testing::GTEST_FLAG(death_test_style) = "threadsafe";
AutoThread thread;
Thread* first = Thread::Current();
auto second = Thread::Create();
second->Start();
auto third = Thread::Create();
third->Start();
second->Invoke<void>(RTC_FROM_HERE, [&] {
third->Invoke<void>(RTC_FROM_HERE, [&] {
RTC_EXPECT_DEATH(first->Invoke<void>(RTC_FROM_HERE, [] {}), "loop");
});
});
}
#endif
// Verifies that if thread A invokes a call on thread B and thread C is trying
// to invoke A at the same time, thread A does not handle C's invoke while
// invoking B.
TEST(ThreadTest, ThreeThreadsInvoke) {
AutoThread thread;
Thread* thread_a = Thread::Current();
auto thread_b = Thread::CreateWithSocketServer();
auto thread_c = Thread::CreateWithSocketServer();
thread_b->Start();
thread_c->Start();
class LockedBool {
public:
explicit LockedBool(bool value) : value_(value) {}
void Set(bool value) {
CritScope lock(&crit_);
value_ = value;
}
bool Get() {
CritScope lock(&crit_);
return value_;
}
private:
CriticalSection crit_;
bool value_ RTC_GUARDED_BY(crit_);
};
struct LocalFuncs {
static void Set(LockedBool* out) { out->Set(true); }
static void InvokeSet(Thread* thread, LockedBool* out) {
thread->Invoke<void>(RTC_FROM_HERE, Bind(&Set, out));
}
// Set |out| true and call InvokeSet on |thread|.
static void SetAndInvokeSet(LockedBool* out,
Thread* thread,
LockedBool* out_inner) {
out->Set(true);
InvokeSet(thread, out_inner);
}
// Asynchronously invoke SetAndInvokeSet on |thread1| and wait until
// |thread1| starts the call.
static void AsyncInvokeSetAndWait(AsyncInvoker* invoker,
Thread* thread1,
Thread* thread2,
LockedBool* out) {
CriticalSection crit;
LockedBool async_invoked(false);
invoker->AsyncInvoke<void>(
RTC_FROM_HERE, thread1,
Bind(&SetAndInvokeSet, &async_invoked, thread2, out));
EXPECT_TRUE_WAIT(async_invoked.Get(), 2000);
}
};
AsyncInvoker invoker;
LockedBool thread_a_called(false);
// Start the sequence A --(invoke)--> B --(async invoke)--> C --(invoke)--> A.
// Thread B returns when C receives the call and C should be blocked until A
// starts to process messages.
thread_b->Invoke<void>(RTC_FROM_HERE,
Bind(&LocalFuncs::AsyncInvokeSetAndWait, &invoker,
thread_c.get(), thread_a, &thread_a_called));
EXPECT_FALSE(thread_a_called.Get());
EXPECT_TRUE_WAIT(thread_a_called.Get(), 2000);
}
// Set the name on a thread when the underlying QueueDestroyed signal is
// triggered. This causes an error if the object is already partially
// destroyed.
class SetNameOnSignalQueueDestroyedTester : public sigslot::has_slots<> {
public:
SetNameOnSignalQueueDestroyedTester(Thread* thread) : thread_(thread) {
thread->SignalQueueDestroyed.connect(
this, &SetNameOnSignalQueueDestroyedTester::OnQueueDestroyed);
}
void OnQueueDestroyed() {
// Makes sure that if we access the Thread while it's being destroyed, that
// it doesn't cause a problem because the vtable has been modified.
thread_->SetName("foo", nullptr);
}
private:
Thread* thread_;
};
TEST(ThreadTest, SetNameOnSignalQueueDestroyed) {
auto thread1 = Thread::CreateWithSocketServer();
SetNameOnSignalQueueDestroyedTester tester1(thread1.get());
thread1.reset();
Thread* thread2 = new AutoThread();
SetNameOnSignalQueueDestroyedTester tester2(thread2);
delete thread2;
}
class ThreadQueueTest : public ::testing::Test, public Thread {
public:
ThreadQueueTest() : Thread(SocketServer::CreateDefault(), true) {}
bool IsLocked_Worker() {
if (!CritForTest()->TryEnter()) {
return true;
}
CritForTest()->Leave();
return false;
}
bool IsLocked() {
// We have to do this on a worker thread, or else the TryEnter will
// succeed, since our critical sections are reentrant.
std::unique_ptr<Thread> worker(Thread::CreateWithSocketServer());
worker->Start();
return worker->Invoke<bool>(
RTC_FROM_HERE, rtc::Bind(&ThreadQueueTest::IsLocked_Worker, this));
}
};
struct DeletedLockChecker {
DeletedLockChecker(ThreadQueueTest* test, bool* was_locked, bool* deleted)
: test(test), was_locked(was_locked), deleted(deleted) {}
~DeletedLockChecker() {
*deleted = true;
*was_locked = test->IsLocked();
}
ThreadQueueTest* test;
bool* was_locked;
bool* deleted;
};
static void DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(Thread* q) {
EXPECT_TRUE(q != nullptr);
int64_t now = TimeMillis();
q->PostAt(RTC_FROM_HERE, now, nullptr, 3);
q->PostAt(RTC_FROM_HERE, now - 2, nullptr, 0);
q->PostAt(RTC_FROM_HERE, now - 1, nullptr, 1);
q->PostAt(RTC_FROM_HERE, now, nullptr, 4);
q->PostAt(RTC_FROM_HERE, now - 1, nullptr, 2);
Message msg;
for (size_t i = 0; i < 5; ++i) {
memset(&msg, 0, sizeof(msg));
EXPECT_TRUE(q->Get(&msg, 0));
EXPECT_EQ(i, msg.message_id);
}
EXPECT_FALSE(q->Get(&msg, 0)); // No more messages
}
TEST_F(ThreadQueueTest, DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder) {
Thread q(SocketServer::CreateDefault(), true);
DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(&q);
NullSocketServer nullss;
Thread q_nullss(&nullss, true);
DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(&q_nullss);
}
TEST_F(ThreadQueueTest, DisposeNotLocked) {
bool was_locked = true;
bool deleted = false;
DeletedLockChecker* d = new DeletedLockChecker(this, &was_locked, &deleted);
Dispose(d);
Message msg;
EXPECT_FALSE(Get(&msg, 0));
EXPECT_TRUE(deleted);
EXPECT_FALSE(was_locked);
}
class DeletedMessageHandler : public MessageHandler {
public:
explicit DeletedMessageHandler(bool* deleted) : deleted_(deleted) {}
~DeletedMessageHandler() override { *deleted_ = true; }
void OnMessage(Message* msg) override {}
private:
bool* deleted_;
};
TEST_F(ThreadQueueTest, DiposeHandlerWithPostedMessagePending) {
bool deleted = false;
DeletedMessageHandler* handler = new DeletedMessageHandler(&deleted);
// First, post a dispose.
Dispose(handler);
// Now, post a message, which should *not* be returned by Get().
Post(RTC_FROM_HERE, handler, 1);
Message msg;
EXPECT_FALSE(Get(&msg, 0));
EXPECT_TRUE(deleted);
}
// Ensure that ProcessAllMessageQueues does its essential function; process
// all messages (both delayed and non delayed) up until the current time, on
// all registered message queues.
TEST(ThreadManager, ProcessAllMessageQueues) {
Event entered_process_all_message_queues(true, false);
auto a = Thread::CreateWithSocketServer();
auto b = Thread::CreateWithSocketServer();
a->Start();
b->Start();
volatile int messages_processed = 0;
auto incrementer = [&messages_processed,
&entered_process_all_message_queues] {
// Wait for event as a means to ensure Increment doesn't occur outside
// of ProcessAllMessageQueues. The event is set by a message posted to
// the main thread, which is guaranteed to be handled inside
// ProcessAllMessageQueues.
entered_process_all_message_queues.Wait(Event::kForever);
AtomicOps::Increment(&messages_processed);
};
auto event_signaler = [&entered_process_all_message_queues] {
entered_process_all_message_queues.Set();
};
// Post messages (both delayed and non delayed) to both threads.
a->PostTask(ToQueuedTask(incrementer));
b->PostTask(ToQueuedTask(incrementer));
a->PostDelayedTask(ToQueuedTask(incrementer), 0);
b->PostDelayedTask(ToQueuedTask(incrementer), 0);
rtc::Thread::Current()->PostTask(ToQueuedTask(event_signaler));
ThreadManager::ProcessAllMessageQueuesForTesting();
EXPECT_EQ(4, AtomicOps::AcquireLoad(&messages_processed));
}
// Test that ProcessAllMessageQueues doesn't hang if a thread is quitting.
TEST(ThreadManager, ProcessAllMessageQueuesWithQuittingThread) {
auto t = Thread::CreateWithSocketServer();
t->Start();
t->Quit();
ThreadManager::ProcessAllMessageQueuesForTesting();
}
// Test that ProcessAllMessageQueues doesn't hang if a queue clears its
// messages.
TEST(ThreadManager, ProcessAllMessageQueuesWithClearedQueue) {
Event entered_process_all_message_queues(true, false);
auto t = Thread::CreateWithSocketServer();
t->Start();
auto clearer = [&entered_process_all_message_queues] {
// Wait for event as a means to ensure Clear doesn't occur outside of
// ProcessAllMessageQueues. The event is set by a message posted to the
// main thread, which is guaranteed to be handled inside
// ProcessAllMessageQueues.
entered_process_all_message_queues.Wait(Event::kForever);
rtc::Thread::Current()->Clear(nullptr);
};
auto event_signaler = [&entered_process_all_message_queues] {
entered_process_all_message_queues.Set();
};
// Post messages (both delayed and non delayed) to both threads.
t->PostTask(RTC_FROM_HERE, clearer);
rtc::Thread::Current()->PostTask(RTC_FROM_HERE, event_signaler);
ThreadManager::ProcessAllMessageQueuesForTesting();
}
class RefCountedHandler : public MessageHandler, public rtc::RefCountInterface {
public:
void OnMessage(Message* msg) override {}
};
class EmptyHandler : public MessageHandler {
public:
void OnMessage(Message* msg) override {}
};
TEST(ThreadManager, ClearReentrant) {
std::unique_ptr<Thread> t(Thread::Create());
EmptyHandler handler;
RefCountedHandler* inner_handler(
new rtc::RefCountedObject<RefCountedHandler>());
// When the empty handler is destroyed, it will clear messages queued for
// itself. The message to be cleared itself wraps a MessageHandler object
// (RefCountedHandler) so this will cause the message queue to be cleared
// again in a re-entrant fashion, which previously triggered a DCHECK.
// The inner handler will be removed in a re-entrant fashion from the
// message queue of the thread while the outer handler is removed, verifying
// that the iterator is not invalidated in "MessageQueue::Clear".
t->Post(RTC_FROM_HERE, inner_handler, 0);
t->Post(RTC_FROM_HERE, &handler, 0,
new ScopedRefMessageData<RefCountedHandler>(inner_handler));
}
class AsyncInvokeTest : public ::testing::Test {
public:
void IntCallback(int value) {
EXPECT_EQ(expected_thread_, Thread::Current());
int_value_ = value;
}
void SetExpectedThreadForIntCallback(Thread* thread) {
expected_thread_ = thread;
}
protected:
enum { kWaitTimeout = 1000 };
AsyncInvokeTest() : int_value_(0), expected_thread_(nullptr) {}
int int_value_;
Thread* expected_thread_;
};
TEST_F(AsyncInvokeTest, FireAndForget) {
AsyncInvoker invoker;
// Create and start the thread.
auto thread = Thread::CreateWithSocketServer();
thread->Start();
// Try calling functor.
AtomicBool called;
invoker.AsyncInvoke<void>(RTC_FROM_HERE, thread.get(), FunctorB(&called));
EXPECT_TRUE_WAIT(called.get(), kWaitTimeout);
thread->Stop();
}
TEST_F(AsyncInvokeTest, NonCopyableFunctor) {
AsyncInvoker invoker;
// Create and start the thread.
auto thread = Thread::CreateWithSocketServer();
thread->Start();
// Try calling functor.
AtomicBool called;
invoker.AsyncInvoke<void>(RTC_FROM_HERE, thread.get(), FunctorD(&called));
EXPECT_TRUE_WAIT(called.get(), kWaitTimeout);
thread->Stop();
}
TEST_F(AsyncInvokeTest, KillInvokerDuringExecute) {
// Use these events to get in a state where the functor is in the middle of
// executing, and then to wait for it to finish, ensuring the "EXPECT_FALSE"
// is run.
Event functor_started;
Event functor_continue;
Event functor_finished;
auto thread = Thread::CreateWithSocketServer();
thread->Start();
volatile bool invoker_destroyed = false;
{
auto functor = [&functor_started, &functor_continue, &functor_finished,
&invoker_destroyed] {
functor_started.Set();
functor_continue.Wait(Event::kForever);
rtc::Thread::Current()->SleepMs(kWaitTimeout);
EXPECT_FALSE(invoker_destroyed);
functor_finished.Set();
};
AsyncInvoker invoker;
invoker.AsyncInvoke<void>(RTC_FROM_HERE, thread.get(), functor);
functor_started.Wait(Event::kForever);
// Destroy the invoker while the functor is still executing (doing
// SleepMs).
functor_continue.Set();
}
// If the destructor DIDN'T wait for the functor to finish executing, it will
// hit the EXPECT_FALSE(invoker_destroyed) after it finishes sleeping for a
// second.
invoker_destroyed = true;
functor_finished.Wait(Event::kForever);
}
// Variant of the above test where the async-invoked task calls AsyncInvoke
// *again*, for the thread on which the AsyncInvoker is currently being
// destroyed. This shouldn't deadlock or crash; this second invocation should
// just be ignored.
TEST_F(AsyncInvokeTest, KillInvokerDuringExecuteWithReentrantInvoke) {
Event functor_started;
// Flag used to verify that the recursively invoked task never actually runs.
bool reentrant_functor_run = false;
Thread* main = Thread::Current();
Thread thread(std::make_unique<NullSocketServer>());
thread.Start();
{
AsyncInvoker invoker;
auto reentrant_functor = [&reentrant_functor_run] {
reentrant_functor_run = true;
};
auto functor = [&functor_started, &invoker, main, reentrant_functor] {
functor_started.Set();
Thread::Current()->SleepMs(kWaitTimeout);
invoker.AsyncInvoke<void>(RTC_FROM_HERE, main, reentrant_functor);
};
// This queues a task on |thread| to sleep for |kWaitTimeout| then queue a
// task on |main|. But this second queued task should never run, since the
// destructor will be entered before it's even invoked.
invoker.AsyncInvoke<void>(RTC_FROM_HERE, &thread, functor);
functor_started.Wait(Event::kForever);
}
EXPECT_FALSE(reentrant_functor_run);
}
TEST_F(AsyncInvokeTest, Flush) {
AsyncInvoker invoker;
AtomicBool flag1;
AtomicBool flag2;
// Queue two async calls to the current thread.
invoker.AsyncInvoke<void>(RTC_FROM_HERE, Thread::Current(), FunctorB(&flag1));
invoker.AsyncInvoke<void>(RTC_FROM_HERE, Thread::Current(), FunctorB(&flag2));
// Because we haven't pumped messages, these should not have run yet.
EXPECT_FALSE(flag1.get());
EXPECT_FALSE(flag2.get());
// Force them to run now.
invoker.Flush(Thread::Current());
EXPECT_TRUE(flag1.get());
EXPECT_TRUE(flag2.get());
}
TEST_F(AsyncInvokeTest, FlushWithIds) {
AsyncInvoker invoker;
AtomicBool flag1;
AtomicBool flag2;
// Queue two async calls to the current thread, one with a message id.
invoker.AsyncInvoke<void>(RTC_FROM_HERE, Thread::Current(), FunctorB(&flag1),
5);
invoker.AsyncInvoke<void>(RTC_FROM_HERE, Thread::Current(), FunctorB(&flag2));
// Because we haven't pumped messages, these should not have run yet.
EXPECT_FALSE(flag1.get());
EXPECT_FALSE(flag2.get());
// Execute pending calls with id == 5.
invoker.Flush(Thread::Current(), 5);
EXPECT_TRUE(flag1.get());
EXPECT_FALSE(flag2.get());
flag1 = false;
// Execute all pending calls. The id == 5 call should not execute again.
invoker.Flush(Thread::Current());
EXPECT_FALSE(flag1.get());
EXPECT_TRUE(flag2.get());
}
class GuardedAsyncInvokeTest : public ::testing::Test {
public:
void IntCallback(int value) {
EXPECT_EQ(expected_thread_, Thread::Current());
int_value_ = value;
}
void SetExpectedThreadForIntCallback(Thread* thread) {
expected_thread_ = thread;
}
protected:
constexpr static int kWaitTimeout = 1000;
GuardedAsyncInvokeTest() : int_value_(0), expected_thread_(nullptr) {}
int int_value_;
Thread* expected_thread_;
};
// Functor for creating an invoker.
struct CreateInvoker {
CreateInvoker(std::unique_ptr<GuardedAsyncInvoker>* invoker)
: invoker_(invoker) {}
void operator()() { invoker_->reset(new GuardedAsyncInvoker()); }
std::unique_ptr<GuardedAsyncInvoker>* invoker_;
};
// Test that we can call AsyncInvoke<void>() after the thread died.
TEST_F(GuardedAsyncInvokeTest, KillThreadFireAndForget) {
// Create and start the thread.
std::unique_ptr<Thread> thread(Thread::Create());
thread->Start();
std::unique_ptr<GuardedAsyncInvoker> invoker;
// Create the invoker on |thread|.
thread->Invoke<void>(RTC_FROM_HERE, CreateInvoker(&invoker));
// Kill |thread|.
thread = nullptr;
// Try calling functor.
AtomicBool called;
EXPECT_FALSE(invoker->AsyncInvoke<void>(RTC_FROM_HERE, FunctorB(&called)));
// With thread gone, nothing should happen.
WAIT(called.get(), kWaitTimeout);
EXPECT_FALSE(called.get());
}
// The remaining tests check that GuardedAsyncInvoker behaves as AsyncInvoker
// when Thread is still alive.
TEST_F(GuardedAsyncInvokeTest, FireAndForget) {
GuardedAsyncInvoker invoker;
// Try calling functor.
AtomicBool called;
EXPECT_TRUE(invoker.AsyncInvoke<void>(RTC_FROM_HERE, FunctorB(&called)));
EXPECT_TRUE_WAIT(called.get(), kWaitTimeout);
}
TEST_F(GuardedAsyncInvokeTest, NonCopyableFunctor) {
GuardedAsyncInvoker invoker;
// Try calling functor.
AtomicBool called;
EXPECT_TRUE(invoker.AsyncInvoke<void>(RTC_FROM_HERE, FunctorD(&called)));
EXPECT_TRUE_WAIT(called.get(), kWaitTimeout);
}
TEST_F(GuardedAsyncInvokeTest, Flush) {
GuardedAsyncInvoker invoker;
AtomicBool flag1;
AtomicBool flag2;
// Queue two async calls to the current thread.
EXPECT_TRUE(invoker.AsyncInvoke<void>(RTC_FROM_HERE, FunctorB(&flag1)));
EXPECT_TRUE(invoker.AsyncInvoke<void>(RTC_FROM_HERE, FunctorB(&flag2)));
// Because we haven't pumped messages, these should not have run yet.
EXPECT_FALSE(flag1.get());
EXPECT_FALSE(flag2.get());
// Force them to run now.
EXPECT_TRUE(invoker.Flush());
EXPECT_TRUE(flag1.get());
EXPECT_TRUE(flag2.get());
}
TEST_F(GuardedAsyncInvokeTest, FlushWithIds) {
GuardedAsyncInvoker invoker;
AtomicBool flag1;
AtomicBool flag2;
// Queue two async calls to the current thread, one with a message id.
EXPECT_TRUE(invoker.AsyncInvoke<void>(RTC_FROM_HERE, FunctorB(&flag1), 5));
EXPECT_TRUE(invoker.AsyncInvoke<void>(RTC_FROM_HERE, FunctorB(&flag2)));
// Because we haven't pumped messages, these should not have run yet.
EXPECT_FALSE(flag1.get());
EXPECT_FALSE(flag2.get());
// Execute pending calls with id == 5.
EXPECT_TRUE(invoker.Flush(5));
EXPECT_TRUE(flag1.get());
EXPECT_FALSE(flag2.get());
flag1 = false;
// Execute all pending calls. The id == 5 call should not execute again.
EXPECT_TRUE(invoker.Flush());
EXPECT_FALSE(flag1.get());
EXPECT_TRUE(flag2.get());
}
void ThreadIsCurrent(Thread* thread, bool* result, Event* event) {
*result = thread->IsCurrent();
event->Set();
}
void WaitAndSetEvent(Event* wait_event, Event* set_event) {
wait_event->Wait(Event::kForever);
set_event->Set();
}
// A functor that keeps track of the number of copies and moves.
class LifeCycleFunctor {
public:
struct Stats {
size_t copy_count = 0;
size_t move_count = 0;
};
LifeCycleFunctor(Stats* stats, Event* event) : stats_(stats), event_(event) {}
LifeCycleFunctor(const LifeCycleFunctor& other) { *this = other; }
LifeCycleFunctor(LifeCycleFunctor&& other) { *this = std::move(other); }
LifeCycleFunctor& operator=(const LifeCycleFunctor& other) {
stats_ = other.stats_;
event_ = other.event_;
++stats_->copy_count;
return *this;
}
LifeCycleFunctor& operator=(LifeCycleFunctor&& other) {
stats_ = other.stats_;
event_ = other.event_;
++stats_->move_count;
return *this;
}
void operator()() { event_->Set(); }
private:
Stats* stats_;
Event* event_;
};
// A functor that verifies the thread it was destroyed on.
class DestructionFunctor {
public:
DestructionFunctor(Thread* thread, bool* thread_was_current, Event* event)
: thread_(thread),
thread_was_current_(thread_was_current),
event_(event) {}
~DestructionFunctor() {
// Only signal the event if this was the functor that was invoked to avoid
// the event being signaled due to the destruction of temporary/moved
// versions of this object.
if (was_invoked_) {
*thread_was_current_ = thread_->IsCurrent();
event_->Set();
}
}
void operator()() { was_invoked_ = true; }
private:
Thread* thread_;
bool* thread_was_current_;
Event* event_;
bool was_invoked_ = false;
};
TEST(ThreadPostTaskTest, InvokesWithBind) {
std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
background_thread->Start();
Event event;
background_thread->PostTask(RTC_FROM_HERE, Bind(&Event::Set, &event));
event.Wait(Event::kForever);
}
TEST(ThreadPostTaskTest, InvokesWithLambda) {
std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
background_thread->Start();
Event event;
background_thread->PostTask(RTC_FROM_HERE, [&event] { event.Set(); });
event.Wait(Event::kForever);
}
TEST(ThreadPostTaskTest, InvokesWithCopiedFunctor) {
std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
background_thread->Start();
LifeCycleFunctor::Stats stats;
Event event;
LifeCycleFunctor functor(&stats, &event);
background_thread->PostTask(RTC_FROM_HERE, functor);
event.Wait(Event::kForever);
EXPECT_EQ(1u, stats.copy_count);
EXPECT_EQ(0u, stats.move_count);
}
TEST(ThreadPostTaskTest, InvokesWithMovedFunctor) {
std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
background_thread->Start();
LifeCycleFunctor::Stats stats;
Event event;
LifeCycleFunctor functor(&stats, &event);
background_thread->PostTask(RTC_FROM_HERE, std::move(functor));
event.Wait(Event::kForever);
EXPECT_EQ(0u, stats.copy_count);
EXPECT_EQ(1u, stats.move_count);
}
TEST(ThreadPostTaskTest, InvokesWithReferencedFunctorShouldCopy) {
std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
background_thread->Start();
LifeCycleFunctor::Stats stats;
Event event;
LifeCycleFunctor functor(&stats, &event);
LifeCycleFunctor& functor_ref = functor;
background_thread->PostTask(RTC_FROM_HERE, functor_ref);
event.Wait(Event::kForever);
EXPECT_EQ(1u, stats.copy_count);
EXPECT_EQ(0u, stats.move_count);
}
TEST(ThreadPostTaskTest, InvokesWithCopiedFunctorDestroyedOnTargetThread) {
std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
background_thread->Start();
Event event;
bool was_invoked_on_background_thread = false;
DestructionFunctor functor(background_thread.get(),
&was_invoked_on_background_thread, &event);
background_thread->PostTask(RTC_FROM_HERE, functor);
event.Wait(Event::kForever);
EXPECT_TRUE(was_invoked_on_background_thread);
}
TEST(ThreadPostTaskTest, InvokesWithMovedFunctorDestroyedOnTargetThread) {
std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
background_thread->Start();
Event event;
bool was_invoked_on_background_thread = false;
DestructionFunctor functor(background_thread.get(),
&was_invoked_on_background_thread, &event);
background_thread->PostTask(RTC_FROM_HERE, std::move(functor));
event.Wait(Event::kForever);
EXPECT_TRUE(was_invoked_on_background_thread);
}
TEST(ThreadPostTaskTest,
InvokesWithReferencedFunctorShouldCopyAndDestroyedOnTargetThread) {
std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
background_thread->Start();
Event event;
bool was_invoked_on_background_thread = false;
DestructionFunctor functor(background_thread.get(),
&was_invoked_on_background_thread, &event);
DestructionFunctor& functor_ref = functor;
background_thread->PostTask(RTC_FROM_HERE, functor_ref);
event.Wait(Event::kForever);
EXPECT_TRUE(was_invoked_on_background_thread);
}
TEST(ThreadPostTaskTest, InvokesOnBackgroundThread) {
std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
background_thread->Start();
Event event;
bool was_invoked_on_background_thread = false;
background_thread->PostTask(RTC_FROM_HERE,
Bind(&ThreadIsCurrent, background_thread.get(),
&was_invoked_on_background_thread, &event));
event.Wait(Event::kForever);
EXPECT_TRUE(was_invoked_on_background_thread);
}
TEST(ThreadPostTaskTest, InvokesAsynchronously) {
std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
background_thread->Start();
// The first event ensures that SendSingleMessage() is not blocking this
// thread. The second event ensures that the message is processed.
Event event_set_by_test_thread;
Event event_set_by_background_thread;
background_thread->PostTask(RTC_FROM_HERE,
Bind(&WaitAndSetEvent, &event_set_by_test_thread,
&event_set_by_background_thread));
event_set_by_test_thread.Set();
event_set_by_background_thread.Wait(Event::kForever);
}
TEST(ThreadPostTaskTest, InvokesInPostedOrder) {
std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
background_thread->Start();
Event first;
Event second;
Event third;
Event fourth;
background_thread->PostTask(RTC_FROM_HERE,
Bind(&WaitAndSetEvent, &first, &second));
background_thread->PostTask(RTC_FROM_HERE,
Bind(&WaitAndSetEvent, &second, &third));
background_thread->PostTask(RTC_FROM_HERE,
Bind(&WaitAndSetEvent, &third, &fourth));
// All tasks have been posted before the first one is unblocked.
first.Set();
// Only if the chain is invoked in posted order will the last event be set.
fourth.Wait(Event::kForever);
}
TEST(ThreadPostDelayedTaskTest, InvokesAsynchronously) {
std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
background_thread->Start();
// The first event ensures that SendSingleMessage() is not blocking this
// thread. The second event ensures that the message is processed.
Event event_set_by_test_thread;
Event event_set_by_background_thread;
background_thread->PostDelayedTask(
RTC_FROM_HERE,
Bind(&WaitAndSetEvent, &event_set_by_test_thread,
&event_set_by_background_thread),
/*milliseconds=*/10);
event_set_by_test_thread.Set();
event_set_by_background_thread.Wait(Event::kForever);
}
TEST(ThreadPostDelayedTaskTest, InvokesInDelayOrder) {
ScopedFakeClock clock;
std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create());
background_thread->Start();
Event first;
Event second;
Event third;
Event fourth;
background_thread->PostDelayedTask(RTC_FROM_HERE,
Bind(&WaitAndSetEvent, &third, &fourth),
/*milliseconds=*/11);
background_thread->PostDelayedTask(RTC_FROM_HERE,
Bind(&WaitAndSetEvent, &first, &second),
/*milliseconds=*/9);
background_thread->PostDelayedTask(RTC_FROM_HERE,
Bind(&WaitAndSetEvent, &second, &third),
/*milliseconds=*/10);
// All tasks have been posted before the first one is unblocked.
first.Set();
// Only if the chain is invoked in delay order will the last event be set.
clock.AdvanceTime(webrtc::TimeDelta::Millis(11));
EXPECT_TRUE(fourth.Wait(0));
}
class ThreadFactory : public webrtc::TaskQueueFactory {
public:
std::unique_ptr<webrtc::TaskQueueBase, webrtc::TaskQueueDeleter>
CreateTaskQueue(absl::string_view /* name */,
Priority /*priority*/) const override {
std::unique_ptr<Thread> thread = Thread::Create();
thread->Start();
return std::unique_ptr<webrtc::TaskQueueBase, webrtc::TaskQueueDeleter>(
thread.release());
}
};
using ::webrtc::TaskQueueTest;
INSTANTIATE_TEST_SUITE_P(RtcThread,
TaskQueueTest,
::testing::Values(std::make_unique<ThreadFactory>));
} // namespace
} // namespace rtc