| /* |
| * Copyright 2019 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "rtc_base/task_utils/repeating_task.h" |
| |
| #include <atomic> |
| #include <chrono> // Not allowed in production per Chromium style guide. |
| #include <memory> |
| #include <thread> // Not allowed in production per Chromium style guide. |
| |
| #include "rtc_base/event.h" |
| #include "rtc_base/task_queue_for_test.h" |
| #include "test/gmock.h" |
| #include "test/gtest.h" |
| |
| // NOTE: Since these tests rely on real time behavior, they will be flaky |
| // if run on heavily loaded systems. |
| namespace webrtc { |
| namespace { |
| using ::testing::AtLeast; |
| using ::testing::Invoke; |
| using ::testing::MockFunction; |
| using ::testing::NiceMock; |
| using ::testing::Return; |
| |
| constexpr TimeDelta kTimeout = TimeDelta::Millis(1000); |
| |
| void Sleep(TimeDelta time_delta) { |
| // Note that Chromium style guide prohibits use of <thread> and <chrono> in |
| // production code, used here since webrtc::SleepMs may return early. |
| std::this_thread::sleep_for(std::chrono::microseconds(time_delta.us())); |
| } |
| |
| class MockClosure { |
| public: |
| MOCK_METHOD(TimeDelta, Call, ()); |
| MOCK_METHOD(void, Delete, ()); |
| }; |
| |
| class MockTaskQueue : public TaskQueueBase { |
| public: |
| MockTaskQueue() : task_queue_setter_(this) {} |
| |
| MOCK_METHOD(void, Delete, (), (override)); |
| MOCK_METHOD(void, PostTask, (std::unique_ptr<QueuedTask> task), (override)); |
| MOCK_METHOD(void, |
| PostDelayedTask, |
| (std::unique_ptr<QueuedTask> task, uint32_t milliseconds), |
| (override)); |
| |
| private: |
| CurrentTaskQueueSetter task_queue_setter_; |
| }; |
| |
| class MoveOnlyClosure { |
| public: |
| explicit MoveOnlyClosure(MockClosure* mock) : mock_(mock) {} |
| MoveOnlyClosure(const MoveOnlyClosure&) = delete; |
| MoveOnlyClosure(MoveOnlyClosure&& other) : mock_(other.mock_) { |
| other.mock_ = nullptr; |
| } |
| ~MoveOnlyClosure() { |
| if (mock_) |
| mock_->Delete(); |
| } |
| TimeDelta operator()() { return mock_->Call(); } |
| |
| private: |
| MockClosure* mock_; |
| }; |
| } // namespace |
| |
| TEST(RepeatingTaskTest, TaskIsStoppedOnStop) { |
| const TimeDelta kShortInterval = TimeDelta::Millis(50); |
| const TimeDelta kLongInterval = TimeDelta::Millis(200); |
| const int kShortIntervalCount = 4; |
| const int kMargin = 1; |
| |
| TaskQueueForTest task_queue("TestQueue"); |
| std::atomic_int counter(0); |
| auto handle = RepeatingTaskHandle::Start(task_queue.Get(), [&] { |
| if (++counter >= kShortIntervalCount) |
| return kLongInterval; |
| return kShortInterval; |
| }); |
| // Sleep long enough to go through the initial phase. |
| Sleep(kShortInterval * (kShortIntervalCount + kMargin)); |
| EXPECT_EQ(counter.load(), kShortIntervalCount); |
| |
| task_queue.PostTask( |
| [handle = std::move(handle)]() mutable { handle.Stop(); }); |
| // Sleep long enough that the task would run at least once more if not |
| // stopped. |
| Sleep(kLongInterval * 2); |
| EXPECT_EQ(counter.load(), kShortIntervalCount); |
| } |
| |
| TEST(RepeatingTaskTest, CompensatesForLongRunTime) { |
| const int kTargetCount = 20; |
| const int kTargetCountMargin = 2; |
| const TimeDelta kRepeatInterval = TimeDelta::Millis(2); |
| // Sleeping inside the task for longer than the repeat interval once, should |
| // be compensated for by repeating the task faster to catch up. |
| const TimeDelta kSleepDuration = TimeDelta::Millis(20); |
| const int kSleepAtCount = 3; |
| |
| std::atomic_int counter(0); |
| TaskQueueForTest task_queue("TestQueue"); |
| RepeatingTaskHandle::Start(task_queue.Get(), [&] { |
| if (++counter == kSleepAtCount) |
| Sleep(kSleepDuration); |
| return kRepeatInterval; |
| }); |
| Sleep(kRepeatInterval * kTargetCount); |
| // Execution time should not have affected the run count, |
| // but we allow some margin to reduce flakiness. |
| EXPECT_GE(counter.load(), kTargetCount - kTargetCountMargin); |
| } |
| |
| TEST(RepeatingTaskTest, CompensatesForShortRunTime) { |
| std::atomic_int counter(0); |
| TaskQueueForTest task_queue("TestQueue"); |
| RepeatingTaskHandle::Start(task_queue.Get(), [&] { |
| ++counter; |
| // Sleeping for the 100 ms should be compensated. |
| Sleep(TimeDelta::Millis(100)); |
| return TimeDelta::Millis(300); |
| }); |
| Sleep(TimeDelta::Millis(400)); |
| |
| // We expect that the task have been called twice, once directly at Start and |
| // once after 300 ms has passed. |
| EXPECT_EQ(counter.load(), 2); |
| } |
| |
| TEST(RepeatingTaskTest, CancelDelayedTaskBeforeItRuns) { |
| rtc::Event done; |
| MockClosure mock; |
| EXPECT_CALL(mock, Call).Times(0); |
| EXPECT_CALL(mock, Delete).WillOnce(Invoke([&done] { done.Set(); })); |
| TaskQueueForTest task_queue("queue"); |
| auto handle = RepeatingTaskHandle::DelayedStart( |
| task_queue.Get(), TimeDelta::Millis(100), MoveOnlyClosure(&mock)); |
| task_queue.PostTask( |
| [handle = std::move(handle)]() mutable { handle.Stop(); }); |
| EXPECT_TRUE(done.Wait(kTimeout.ms())); |
| } |
| |
| TEST(RepeatingTaskTest, CancelTaskAfterItRuns) { |
| rtc::Event done; |
| MockClosure mock; |
| EXPECT_CALL(mock, Call).WillOnce(Return(TimeDelta::Millis(100))); |
| EXPECT_CALL(mock, Delete).WillOnce(Invoke([&done] { done.Set(); })); |
| TaskQueueForTest task_queue("queue"); |
| auto handle = |
| RepeatingTaskHandle::Start(task_queue.Get(), MoveOnlyClosure(&mock)); |
| task_queue.PostTask( |
| [handle = std::move(handle)]() mutable { handle.Stop(); }); |
| EXPECT_TRUE(done.Wait(kTimeout.ms())); |
| } |
| |
| TEST(RepeatingTaskTest, TaskCanStopItself) { |
| std::atomic_int counter(0); |
| TaskQueueForTest task_queue("TestQueue"); |
| RepeatingTaskHandle handle; |
| task_queue.PostTask([&] { |
| handle = RepeatingTaskHandle::Start(task_queue.Get(), [&] { |
| ++counter; |
| handle.Stop(); |
| return TimeDelta::Millis(2); |
| }); |
| }); |
| Sleep(TimeDelta::Millis(10)); |
| EXPECT_EQ(counter.load(), 1); |
| } |
| |
| TEST(RepeatingTaskTest, ZeroReturnValueRepostsTheTask) { |
| NiceMock<MockClosure> closure; |
| rtc::Event done; |
| EXPECT_CALL(closure, Call()) |
| .WillOnce(Return(TimeDelta::Zero())) |
| .WillOnce(Invoke([&done] { |
| done.Set(); |
| return kTimeout; |
| })); |
| TaskQueueForTest task_queue("queue"); |
| RepeatingTaskHandle::Start(task_queue.Get(), MoveOnlyClosure(&closure)); |
| EXPECT_TRUE(done.Wait(kTimeout.ms())); |
| } |
| |
| TEST(RepeatingTaskTest, StartPeriodicTask) { |
| MockFunction<TimeDelta()> closure; |
| rtc::Event done; |
| EXPECT_CALL(closure, Call()) |
| .WillOnce(Return(TimeDelta::Millis(20))) |
| .WillOnce(Return(TimeDelta::Millis(20))) |
| .WillOnce(Invoke([&done] { |
| done.Set(); |
| return kTimeout; |
| })); |
| TaskQueueForTest task_queue("queue"); |
| RepeatingTaskHandle::Start(task_queue.Get(), closure.AsStdFunction()); |
| EXPECT_TRUE(done.Wait(kTimeout.ms())); |
| } |
| |
| TEST(RepeatingTaskTest, Example) { |
| class ObjectOnTaskQueue { |
| public: |
| void DoPeriodicTask() {} |
| TimeDelta TimeUntilNextRun() { return TimeDelta::Millis(100); } |
| void StartPeriodicTask(RepeatingTaskHandle* handle, |
| TaskQueueBase* task_queue) { |
| *handle = RepeatingTaskHandle::Start(task_queue, [this] { |
| DoPeriodicTask(); |
| return TimeUntilNextRun(); |
| }); |
| } |
| }; |
| TaskQueueForTest task_queue("queue"); |
| auto object = std::make_unique<ObjectOnTaskQueue>(); |
| // Create and start the periodic task. |
| RepeatingTaskHandle handle; |
| object->StartPeriodicTask(&handle, task_queue.Get()); |
| // Restart the task |
| task_queue.PostTask( |
| [handle = std::move(handle)]() mutable { handle.Stop(); }); |
| object->StartPeriodicTask(&handle, task_queue.Get()); |
| task_queue.PostTask( |
| [handle = std::move(handle)]() mutable { handle.Stop(); }); |
| struct Destructor { |
| void operator()() { object.reset(); } |
| std::unique_ptr<ObjectOnTaskQueue> object; |
| }; |
| task_queue.PostTask(Destructor{std::move(object)}); |
| // Do not wait for the destructor closure in order to create a race between |
| // task queue destruction and running the desctructor closure. |
| } |
| |
| TEST(RepeatingTaskTest, ClockIntegration) { |
| std::unique_ptr<QueuedTask> delayed_task; |
| uint32_t expected_ms = 0; |
| SimulatedClock clock(Timestamp::Millis(0)); |
| |
| NiceMock<MockTaskQueue> task_queue; |
| ON_CALL(task_queue, PostDelayedTask) |
| .WillByDefault( |
| Invoke([&delayed_task, &expected_ms](std::unique_ptr<QueuedTask> task, |
| uint32_t milliseconds) { |
| EXPECT_EQ(milliseconds, expected_ms); |
| delayed_task = std::move(task); |
| })); |
| |
| expected_ms = 100; |
| RepeatingTaskHandle handle = RepeatingTaskHandle::DelayedStart( |
| &task_queue, TimeDelta::Millis(100), |
| [&clock]() { |
| EXPECT_EQ(Timestamp::Millis(100), clock.CurrentTime()); |
| // Simulate work happening for 10ms. |
| clock.AdvanceTimeMilliseconds(10); |
| return TimeDelta::Millis(100); |
| }, |
| &clock); |
| |
| clock.AdvanceTimeMilliseconds(100); |
| QueuedTask* task_to_run = delayed_task.release(); |
| expected_ms = 90; |
| EXPECT_FALSE(task_to_run->Run()); |
| EXPECT_NE(nullptr, delayed_task.get()); |
| handle.Stop(); |
| } |
| |
| TEST(RepeatingTaskTest, CanBeStoppedAfterTaskQueueDeletedTheRepeatingTask) { |
| std::unique_ptr<QueuedTask> repeating_task; |
| |
| MockTaskQueue task_queue; |
| EXPECT_CALL(task_queue, PostDelayedTask) |
| .WillOnce([&](std::unique_ptr<QueuedTask> task, uint32_t milliseconds) { |
| repeating_task = std::move(task); |
| }); |
| |
| RepeatingTaskHandle handle = |
| RepeatingTaskHandle::DelayedStart(&task_queue, TimeDelta::Millis(100), |
| [] { return TimeDelta::Millis(100); }); |
| |
| // shutdown task queue: delete all pending tasks and run 'regular' task. |
| repeating_task = nullptr; |
| handle.Stop(); |
| } |
| |
| } // namespace webrtc |