blob: 6e62a586ed461a57d0a0e4df32642adfc930ee64 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/aec_state.h"
#include "modules/audio_processing/aec3/aec3_fft.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
void RunNormalUsageTest(size_t num_render_channels,
size_t num_capture_channels) {
// TODO(bugs.webrtc.org/10913): Test with different content in different
// channels.
constexpr int kSampleRateHz = 48000;
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
ApmDataDumper data_dumper(42);
EchoCanceller3Config config;
AecState state(config, num_capture_channels);
absl::optional<DelayEstimate> delay_estimate =
DelayEstimate(DelayEstimate::Quality::kRefined, 10);
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
std::vector<std::array<float, kFftLengthBy2Plus1>> E2_refined(
num_capture_channels);
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
std::vector<std::vector<std::vector<float>>> x(
kNumBands, std::vector<std::vector<float>>(
num_render_channels, std::vector<float>(kBlockSize, 0.f)));
EchoPathVariability echo_path_variability(
false, EchoPathVariability::DelayAdjustment::kNone, false);
std::vector<std::array<float, kBlockSize>> y(num_capture_channels);
std::vector<SubtractorOutput> subtractor_output(num_capture_channels);
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].Reset();
subtractor_output[ch].s_refined.fill(100.f);
subtractor_output[ch].e_refined.fill(100.f);
y[ch].fill(1000.f);
E2_refined[ch].fill(0.f);
Y2[ch].fill(0.f);
}
Aec3Fft fft;
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
converged_filter_frequency_response(
num_capture_channels,
std::vector<std::array<float, kFftLengthBy2Plus1>>(10));
for (auto& v_ch : converged_filter_frequency_response) {
for (auto& v : v_ch) {
v.fill(0.01f);
}
}
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
diverged_filter_frequency_response = converged_filter_frequency_response;
converged_filter_frequency_response[0][2].fill(100.f);
converged_filter_frequency_response[0][2][0] = 1.f;
std::vector<std::vector<float>> impulse_response(
num_capture_channels,
std::vector<float>(
GetTimeDomainLength(config.filter.refined.length_blocks), 0.f));
// Verify that linear AEC usability is true when the filter is converged
for (size_t band = 0; band < kNumBands; ++band) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
std::fill(x[band][ch].begin(), x[band][ch].end(), 101.f);
}
}
for (int k = 0; k < 3000; ++k) {
render_delay_buffer->Insert(x);
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
}
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_refined, Y2, subtractor_output);
}
EXPECT_TRUE(state.UsableLinearEstimate());
// Verify that linear AEC usability becomes false after an echo path
// change is reported
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
}
state.HandleEchoPathChange(EchoPathVariability(
false, EchoPathVariability::DelayAdjustment::kNewDetectedDelay, false));
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_refined, Y2, subtractor_output);
EXPECT_FALSE(state.UsableLinearEstimate());
// Verify that the active render detection works as intended.
for (size_t ch = 0; ch < num_render_channels; ++ch) {
std::fill(x[0][ch].begin(), x[0][ch].end(), 101.f);
}
render_delay_buffer->Insert(x);
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
}
state.HandleEchoPathChange(EchoPathVariability(
true, EchoPathVariability::DelayAdjustment::kNewDetectedDelay, false));
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_refined, Y2, subtractor_output);
EXPECT_FALSE(state.ActiveRender());
for (int k = 0; k < 1000; ++k) {
render_delay_buffer->Insert(x);
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
}
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_refined, Y2, subtractor_output);
}
EXPECT_TRUE(state.ActiveRender());
// Verify that the ERL is properly estimated
for (auto& band : x) {
for (auto& channel : band) {
channel = std::vector<float>(kBlockSize, 0.f);
}
}
for (size_t ch = 0; ch < num_render_channels; ++ch) {
x[0][ch][0] = 5000.f;
}
for (size_t k = 0;
k < render_delay_buffer->GetRenderBuffer()->GetFftBuffer().size(); ++k) {
render_delay_buffer->Insert(x);
if (k == 0) {
render_delay_buffer->Reset();
}
render_delay_buffer->PrepareCaptureProcessing();
}
for (auto& Y2_ch : Y2) {
Y2_ch.fill(10.f * 10000.f * 10000.f);
}
for (size_t k = 0; k < 1000; ++k) {
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
}
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_refined, Y2, subtractor_output);
}
ASSERT_TRUE(state.UsableLinearEstimate());
const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
EXPECT_EQ(erl[0], erl[1]);
for (size_t k = 1; k < erl.size() - 1; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1);
}
EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]);
// Verify that the ERLE is properly estimated
for (auto& E2_refined_ch : E2_refined) {
E2_refined_ch.fill(1.f * 10000.f * 10000.f);
}
for (auto& Y2_ch : Y2) {
Y2_ch.fill(10.f * E2_refined[0][0]);
}
for (size_t k = 0; k < 1000; ++k) {
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
}
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_refined, Y2, subtractor_output);
}
ASSERT_TRUE(state.UsableLinearEstimate());
{
// Note that the render spectrum is built so it does not have energy in
// the odd bands but just in the even bands.
const auto& erle = state.Erle(/*onset_compensated=*/true)[0];
EXPECT_EQ(erle[0], erle[1]);
constexpr size_t kLowFrequencyLimit = 32;
for (size_t k = 2; k < kLowFrequencyLimit; k = k + 2) {
EXPECT_NEAR(4.f, erle[k], 0.1);
}
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; k = k + 2) {
EXPECT_NEAR(1.5f, erle[k], 0.1);
}
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
}
for (auto& E2_refined_ch : E2_refined) {
E2_refined_ch.fill(1.f * 10000.f * 10000.f);
}
for (auto& Y2_ch : Y2) {
Y2_ch.fill(5.f * E2_refined[0][0]);
}
for (size_t k = 0; k < 1000; ++k) {
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
}
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_refined, Y2, subtractor_output);
}
ASSERT_TRUE(state.UsableLinearEstimate());
{
const auto& erle = state.Erle(/*onset_compensated=*/true)[0];
EXPECT_EQ(erle[0], erle[1]);
constexpr size_t kLowFrequencyLimit = 32;
for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 4.f : 1.f, erle[k], 0.1);
}
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
}
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
}
}
} // namespace
class AecStateMultiChannel
: public ::testing::Test,
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
INSTANTIATE_TEST_SUITE_P(MultiChannel,
AecStateMultiChannel,
::testing::Combine(::testing::Values(1, 2, 8),
::testing::Values(1, 2, 8)));
// Verify the general functionality of AecState
TEST_P(AecStateMultiChannel, NormalUsage) {
const size_t num_render_channels = std::get<0>(GetParam());
const size_t num_capture_channels = std::get<1>(GetParam());
RunNormalUsageTest(num_render_channels, num_capture_channels);
}
// Verifies the delay for a converged filter is correctly identified.
TEST(AecState, ConvergedFilterDelay) {
constexpr int kFilterLengthBlocks = 10;
constexpr size_t kNumCaptureChannels = 1;
EchoCanceller3Config config;
AecState state(config, kNumCaptureChannels);
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, 48000, 1));
absl::optional<DelayEstimate> delay_estimate;
std::vector<std::array<float, kFftLengthBy2Plus1>> E2_refined(
kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(kNumCaptureChannels);
std::array<float, kBlockSize> x;
EchoPathVariability echo_path_variability(
false, EchoPathVariability::DelayAdjustment::kNone, false);
std::vector<SubtractorOutput> subtractor_output(kNumCaptureChannels);
for (auto& output : subtractor_output) {
output.Reset();
output.s_refined.fill(100.f);
}
std::array<float, kBlockSize> y;
x.fill(0.f);
y.fill(0.f);
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
frequency_response(
kNumCaptureChannels,
std::vector<std::array<float, kFftLengthBy2Plus1>>(kFilterLengthBlocks));
for (auto& v_ch : frequency_response) {
for (auto& v : v_ch) {
v.fill(0.01f);
}
}
std::vector<std::vector<float>> impulse_response(
kNumCaptureChannels,
std::vector<float>(
GetTimeDomainLength(config.filter.refined.length_blocks), 0.f));
// Verify that the filter delay for a converged filter is properly
// identified.
for (int k = 0; k < kFilterLengthBlocks; ++k) {
for (auto& ir : impulse_response) {
std::fill(ir.begin(), ir.end(), 0.f);
ir[k * kBlockSize + 1] = 1.f;
}
state.HandleEchoPathChange(echo_path_variability);
subtractor_output[0].ComputeMetrics(y);
state.Update(delay_estimate, frequency_response, impulse_response,
*render_delay_buffer->GetRenderBuffer(), E2_refined, Y2,
subtractor_output);
}
}
} // namespace webrtc