blob: cc3ef727edf2b40350faebf0319d82669c82e8fa [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/test/audio_processing_simulator.h"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "api/audio/echo_canceller3_config_json.h"
#include "api/audio/echo_canceller3_factory.h"
#include "modules/audio_processing/aec_dump/aec_dump_factory.h"
#include "modules/audio_processing/echo_control_mobile_impl.h"
#include "modules/audio_processing/include/audio_processing.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "modules/audio_processing/test/fake_recording_device.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/strings/json.h"
#include "rtc_base/strings/string_builder.h"
namespace webrtc {
namespace test {
namespace {
// Helper for reading JSON from a file and parsing it to an AEC3 configuration.
EchoCanceller3Config ReadAec3ConfigFromJsonFile(const std::string& filename) {
std::string json_string;
std::string s;
std::ifstream f(filename.c_str());
if (f.fail()) {
std::cout << "Failed to open the file " << filename << std::endl;
RTC_CHECK_NOTREACHED();
}
while (std::getline(f, s)) {
json_string += s;
}
bool parsing_successful;
EchoCanceller3Config cfg;
Aec3ConfigFromJsonString(json_string, &cfg, &parsing_successful);
if (!parsing_successful) {
std::cout << "Parsing of json string failed: " << std::endl
<< json_string << std::endl;
RTC_CHECK_NOTREACHED();
}
RTC_CHECK(EchoCanceller3Config::Validate(&cfg));
return cfg;
}
std::string GetIndexedOutputWavFilename(const std::string& wav_name,
int counter) {
rtc::StringBuilder ss;
ss << wav_name.substr(0, wav_name.size() - 4) << "_" << counter
<< wav_name.substr(wav_name.size() - 4);
return ss.Release();
}
void WriteEchoLikelihoodGraphFileHeader(std::ofstream* output_file) {
(*output_file) << "import numpy as np" << std::endl
<< "import matplotlib.pyplot as plt" << std::endl
<< "y = np.array([";
}
void WriteEchoLikelihoodGraphFileFooter(std::ofstream* output_file) {
(*output_file) << "])" << std::endl
<< "if __name__ == '__main__':" << std::endl
<< " x = np.arange(len(y))*.01" << std::endl
<< " plt.plot(x, y)" << std::endl
<< " plt.ylabel('Echo likelihood')" << std::endl
<< " plt.xlabel('Time (s)')" << std::endl
<< " plt.show()" << std::endl;
}
// RAII class for execution time measurement. Updates the provided
// ApiCallStatistics based on the time between ScopedTimer creation and
// leaving the enclosing scope.
class ScopedTimer {
public:
ScopedTimer(ApiCallStatistics* api_call_statistics_,
ApiCallStatistics::CallType call_type)
: start_time_(rtc::TimeNanos()),
call_type_(call_type),
api_call_statistics_(api_call_statistics_) {}
~ScopedTimer() {
api_call_statistics_->Add(rtc::TimeNanos() - start_time_, call_type_);
}
private:
const int64_t start_time_;
const ApiCallStatistics::CallType call_type_;
ApiCallStatistics* const api_call_statistics_;
};
} // namespace
SimulationSettings::SimulationSettings() = default;
SimulationSettings::SimulationSettings(const SimulationSettings&) = default;
SimulationSettings::~SimulationSettings() = default;
AudioProcessingSimulator::AudioProcessingSimulator(
const SimulationSettings& settings,
rtc::scoped_refptr<AudioProcessing> audio_processing,
std::unique_ptr<AudioProcessingBuilder> ap_builder)
: settings_(settings),
ap_(std::move(audio_processing)),
analog_mic_level_(settings.initial_mic_level),
fake_recording_device_(
settings.initial_mic_level,
settings_.simulate_mic_gain ? *settings.simulated_mic_kind : 0),
worker_queue_("file_writer_task_queue") {
RTC_CHECK(!settings_.dump_internal_data || WEBRTC_APM_DEBUG_DUMP == 1);
if (settings_.dump_start_frame || settings_.dump_end_frame) {
ApmDataDumper::SetActivated(!settings_.dump_start_frame);
} else {
ApmDataDumper::SetActivated(settings_.dump_internal_data);
}
if (settings_.dump_set_to_use) {
ApmDataDumper::SetDumpSetToUse(*settings_.dump_set_to_use);
}
if (settings_.dump_internal_data_output_dir.has_value()) {
ApmDataDumper::SetOutputDirectory(
settings_.dump_internal_data_output_dir.value());
}
if (settings_.ed_graph_output_filename &&
!settings_.ed_graph_output_filename->empty()) {
residual_echo_likelihood_graph_writer_.open(
*settings_.ed_graph_output_filename);
RTC_CHECK(residual_echo_likelihood_graph_writer_.is_open());
WriteEchoLikelihoodGraphFileHeader(&residual_echo_likelihood_graph_writer_);
}
if (settings_.simulate_mic_gain)
RTC_LOG(LS_VERBOSE) << "Simulating analog mic gain";
// Create the audio processing object.
RTC_CHECK(!(ap_ && ap_builder))
<< "The AudioProcessing and the AudioProcessingBuilder cannot both be "
"specified at the same time.";
if (ap_) {
RTC_CHECK(!settings_.aec_settings_filename);
RTC_CHECK(!settings_.print_aec_parameter_values);
} else {
// Use specied builder if such is provided, otherwise create a new builder.
std::unique_ptr<AudioProcessingBuilder> builder =
!!ap_builder ? std::move(ap_builder)
: std::make_unique<AudioProcessingBuilder>();
// Create and set an EchoCanceller3Factory if needed.
const bool use_aec = settings_.use_aec && *settings_.use_aec;
if (use_aec) {
EchoCanceller3Config cfg;
if (settings_.aec_settings_filename) {
if (settings_.use_verbose_logging) {
std::cout << "Reading AEC Parameters from JSON input." << std::endl;
}
cfg = ReadAec3ConfigFromJsonFile(*settings_.aec_settings_filename);
}
if (settings_.linear_aec_output_filename) {
cfg.filter.export_linear_aec_output = true;
}
if (settings_.print_aec_parameter_values) {
if (!settings_.use_quiet_output) {
std::cout << "AEC settings:" << std::endl;
}
std::cout << Aec3ConfigToJsonString(cfg) << std::endl;
}
auto echo_control_factory = std::make_unique<EchoCanceller3Factory>(cfg);
builder->SetEchoControlFactory(std::move(echo_control_factory));
}
// Create an audio processing object.
ap_ = builder->Create();
RTC_CHECK(ap_);
}
}
AudioProcessingSimulator::~AudioProcessingSimulator() {
if (residual_echo_likelihood_graph_writer_.is_open()) {
WriteEchoLikelihoodGraphFileFooter(&residual_echo_likelihood_graph_writer_);
residual_echo_likelihood_graph_writer_.close();
}
}
void AudioProcessingSimulator::ProcessStream(bool fixed_interface) {
// Optionally use the fake recording device to simulate analog gain.
if (settings_.simulate_mic_gain) {
if (settings_.aec_dump_input_filename) {
// When the analog gain is simulated and an AEC dump is used as input, set
// the undo level to `aec_dump_mic_level_` to virtually restore the
// unmodified microphone signal level.
fake_recording_device_.SetUndoMicLevel(aec_dump_mic_level_);
}
if (fixed_interface) {
fake_recording_device_.SimulateAnalogGain(fwd_frame_.data);
} else {
fake_recording_device_.SimulateAnalogGain(in_buf_.get());
}
// Notify the current mic level to AGC.
ap_->set_stream_analog_level(fake_recording_device_.MicLevel());
} else {
// Notify the current mic level to AGC.
ap_->set_stream_analog_level(settings_.aec_dump_input_filename
? aec_dump_mic_level_
: analog_mic_level_);
}
// Post any scheduled runtime settings.
if (settings_.frame_for_sending_capture_output_used_false &&
*settings_.frame_for_sending_capture_output_used_false ==
static_cast<int>(num_process_stream_calls_)) {
ap_->PostRuntimeSetting(
AudioProcessing::RuntimeSetting::CreateCaptureOutputUsedSetting(false));
}
if (settings_.frame_for_sending_capture_output_used_true &&
*settings_.frame_for_sending_capture_output_used_true ==
static_cast<int>(num_process_stream_calls_)) {
ap_->PostRuntimeSetting(
AudioProcessing::RuntimeSetting::CreateCaptureOutputUsedSetting(true));
}
// Process the current audio frame.
if (fixed_interface) {
{
const auto st = ScopedTimer(&api_call_statistics_,
ApiCallStatistics::CallType::kCapture);
RTC_CHECK_EQ(
AudioProcessing::kNoError,
ap_->ProcessStream(fwd_frame_.data.data(), fwd_frame_.config,
fwd_frame_.config, fwd_frame_.data.data()));
}
fwd_frame_.CopyTo(out_buf_.get());
} else {
const auto st = ScopedTimer(&api_call_statistics_,
ApiCallStatistics::CallType::kCapture);
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->ProcessStream(in_buf_->channels(), in_config_,
out_config_, out_buf_->channels()));
}
// Store the mic level suggested by AGC.
// Note that when the analog gain is simulated and an AEC dump is used as
// input, `analog_mic_level_` will not be used with set_stream_analog_level().
analog_mic_level_ = ap_->recommended_stream_analog_level();
if (settings_.simulate_mic_gain) {
fake_recording_device_.SetMicLevel(analog_mic_level_);
}
if (buffer_memory_writer_) {
RTC_CHECK(!buffer_file_writer_);
buffer_memory_writer_->Write(*out_buf_);
} else if (buffer_file_writer_) {
RTC_CHECK(!buffer_memory_writer_);
buffer_file_writer_->Write(*out_buf_);
}
if (linear_aec_output_file_writer_) {
bool output_available = ap_->GetLinearAecOutput(linear_aec_output_buf_);
RTC_CHECK(output_available);
RTC_CHECK_GT(linear_aec_output_buf_.size(), 0);
RTC_CHECK_EQ(linear_aec_output_buf_[0].size(), 160);
for (size_t k = 0; k < linear_aec_output_buf_[0].size(); ++k) {
for (size_t ch = 0; ch < linear_aec_output_buf_.size(); ++ch) {
RTC_CHECK_EQ(linear_aec_output_buf_[ch].size(), 160);
float sample = FloatToFloatS16(linear_aec_output_buf_[ch][k]);
linear_aec_output_file_writer_->WriteSamples(&sample, 1);
}
}
}
if (residual_echo_likelihood_graph_writer_.is_open()) {
auto stats = ap_->GetStatistics();
residual_echo_likelihood_graph_writer_
<< stats.residual_echo_likelihood.value_or(-1.f) << ", ";
}
++num_process_stream_calls_;
}
void AudioProcessingSimulator::ProcessReverseStream(bool fixed_interface) {
if (fixed_interface) {
{
const auto st = ScopedTimer(&api_call_statistics_,
ApiCallStatistics::CallType::kRender);
RTC_CHECK_EQ(
AudioProcessing::kNoError,
ap_->ProcessReverseStream(rev_frame_.data.data(), rev_frame_.config,
rev_frame_.config, rev_frame_.data.data()));
}
rev_frame_.CopyTo(reverse_out_buf_.get());
} else {
const auto st = ScopedTimer(&api_call_statistics_,
ApiCallStatistics::CallType::kRender);
RTC_CHECK_EQ(AudioProcessing::kNoError,
ap_->ProcessReverseStream(
reverse_in_buf_->channels(), reverse_in_config_,
reverse_out_config_, reverse_out_buf_->channels()));
}
if (reverse_buffer_file_writer_) {
reverse_buffer_file_writer_->Write(*reverse_out_buf_);
}
++num_reverse_process_stream_calls_;
}
void AudioProcessingSimulator::SetupBuffersConfigsOutputs(
int input_sample_rate_hz,
int output_sample_rate_hz,
int reverse_input_sample_rate_hz,
int reverse_output_sample_rate_hz,
int input_num_channels,
int output_num_channels,
int reverse_input_num_channels,
int reverse_output_num_channels) {
in_config_ = StreamConfig(input_sample_rate_hz, input_num_channels);
in_buf_.reset(new ChannelBuffer<float>(
rtc::CheckedDivExact(input_sample_rate_hz, kChunksPerSecond),
input_num_channels));
reverse_in_config_ =
StreamConfig(reverse_input_sample_rate_hz, reverse_input_num_channels);
reverse_in_buf_.reset(new ChannelBuffer<float>(
rtc::CheckedDivExact(reverse_input_sample_rate_hz, kChunksPerSecond),
reverse_input_num_channels));
out_config_ = StreamConfig(output_sample_rate_hz, output_num_channels);
out_buf_.reset(new ChannelBuffer<float>(
rtc::CheckedDivExact(output_sample_rate_hz, kChunksPerSecond),
output_num_channels));
reverse_out_config_ =
StreamConfig(reverse_output_sample_rate_hz, reverse_output_num_channels);
reverse_out_buf_.reset(new ChannelBuffer<float>(
rtc::CheckedDivExact(reverse_output_sample_rate_hz, kChunksPerSecond),
reverse_output_num_channels));
fwd_frame_.SetFormat(input_sample_rate_hz, input_num_channels);
rev_frame_.SetFormat(reverse_input_sample_rate_hz,
reverse_input_num_channels);
if (settings_.use_verbose_logging) {
rtc::LogMessage::LogToDebug(rtc::LS_VERBOSE);
std::cout << "Sample rates:" << std::endl;
std::cout << " Forward input: " << input_sample_rate_hz << std::endl;
std::cout << " Forward output: " << output_sample_rate_hz << std::endl;
std::cout << " Reverse input: " << reverse_input_sample_rate_hz
<< std::endl;
std::cout << " Reverse output: " << reverse_output_sample_rate_hz
<< std::endl;
std::cout << "Number of channels: " << std::endl;
std::cout << " Forward input: " << input_num_channels << std::endl;
std::cout << " Forward output: " << output_num_channels << std::endl;
std::cout << " Reverse input: " << reverse_input_num_channels << std::endl;
std::cout << " Reverse output: " << reverse_output_num_channels
<< std::endl;
}
SetupOutput();
}
void AudioProcessingSimulator::SelectivelyToggleDataDumping(
int init_index,
int capture_frames_since_init) const {
if (!(settings_.dump_start_frame || settings_.dump_end_frame)) {
return;
}
if (settings_.init_to_process && *settings_.init_to_process != init_index) {
return;
}
if (settings_.dump_start_frame &&
*settings_.dump_start_frame == capture_frames_since_init) {
ApmDataDumper::SetActivated(true);
}
if (settings_.dump_end_frame &&
*settings_.dump_end_frame == capture_frames_since_init) {
ApmDataDumper::SetActivated(false);
}
}
void AudioProcessingSimulator::SetupOutput() {
if (settings_.output_filename) {
std::string filename;
if (settings_.store_intermediate_output) {
filename = GetIndexedOutputWavFilename(*settings_.output_filename,
output_reset_counter_);
} else {
filename = *settings_.output_filename;
}
std::unique_ptr<WavWriter> out_file(
new WavWriter(filename, out_config_.sample_rate_hz(),
static_cast<size_t>(out_config_.num_channels()),
settings_.wav_output_format));
buffer_file_writer_.reset(new ChannelBufferWavWriter(std::move(out_file)));
} else if (settings_.aec_dump_input_string.has_value()) {
buffer_memory_writer_ = std::make_unique<ChannelBufferVectorWriter>(
settings_.processed_capture_samples);
}
if (settings_.linear_aec_output_filename) {
std::string filename;
if (settings_.store_intermediate_output) {
filename = GetIndexedOutputWavFilename(
*settings_.linear_aec_output_filename, output_reset_counter_);
} else {
filename = *settings_.linear_aec_output_filename;
}
linear_aec_output_file_writer_.reset(
new WavWriter(filename, 16000, out_config_.num_channels(),
settings_.wav_output_format));
linear_aec_output_buf_.resize(out_config_.num_channels());
}
if (settings_.reverse_output_filename) {
std::string filename;
if (settings_.store_intermediate_output) {
filename = GetIndexedOutputWavFilename(*settings_.reverse_output_filename,
output_reset_counter_);
} else {
filename = *settings_.reverse_output_filename;
}
std::unique_ptr<WavWriter> reverse_out_file(
new WavWriter(filename, reverse_out_config_.sample_rate_hz(),
static_cast<size_t>(reverse_out_config_.num_channels()),
settings_.wav_output_format));
reverse_buffer_file_writer_.reset(
new ChannelBufferWavWriter(std::move(reverse_out_file)));
}
++output_reset_counter_;
}
void AudioProcessingSimulator::DetachAecDump() {
if (settings_.aec_dump_output_filename) {
ap_->DetachAecDump();
}
}
void AudioProcessingSimulator::ConfigureAudioProcessor() {
AudioProcessing::Config apm_config;
if (settings_.use_ts) {
apm_config.transient_suppression.enabled = *settings_.use_ts != 0;
}
if (settings_.multi_channel_render) {
apm_config.pipeline.multi_channel_render = *settings_.multi_channel_render;
}
if (settings_.multi_channel_capture) {
apm_config.pipeline.multi_channel_capture =
*settings_.multi_channel_capture;
}
if (settings_.use_agc2) {
apm_config.gain_controller2.enabled = *settings_.use_agc2;
if (settings_.agc2_fixed_gain_db) {
apm_config.gain_controller2.fixed_digital.gain_db =
*settings_.agc2_fixed_gain_db;
}
if (settings_.agc2_use_adaptive_gain) {
apm_config.gain_controller2.adaptive_digital.enabled =
*settings_.agc2_use_adaptive_gain;
}
}
if (settings_.use_pre_amplifier) {
apm_config.pre_amplifier.enabled = *settings_.use_pre_amplifier;
if (settings_.pre_amplifier_gain_factor) {
apm_config.pre_amplifier.fixed_gain_factor =
*settings_.pre_amplifier_gain_factor;
}
}
if (settings_.use_analog_mic_gain_emulation) {
if (*settings_.use_analog_mic_gain_emulation) {
apm_config.capture_level_adjustment.enabled = true;
apm_config.capture_level_adjustment.analog_mic_gain_emulation.enabled =
true;
} else {
apm_config.capture_level_adjustment.analog_mic_gain_emulation.enabled =
false;
}
}
if (settings_.analog_mic_gain_emulation_initial_level) {
apm_config.capture_level_adjustment.analog_mic_gain_emulation
.initial_level = *settings_.analog_mic_gain_emulation_initial_level;
}
if (settings_.use_capture_level_adjustment) {
apm_config.capture_level_adjustment.enabled =
*settings_.use_capture_level_adjustment;
}
if (settings_.pre_gain_factor) {
apm_config.capture_level_adjustment.pre_gain_factor =
*settings_.pre_gain_factor;
}
if (settings_.post_gain_factor) {
apm_config.capture_level_adjustment.post_gain_factor =
*settings_.post_gain_factor;
}
const bool use_aec = settings_.use_aec && *settings_.use_aec;
const bool use_aecm = settings_.use_aecm && *settings_.use_aecm;
if (use_aec || use_aecm) {
apm_config.echo_canceller.enabled = true;
apm_config.echo_canceller.mobile_mode = use_aecm;
}
apm_config.echo_canceller.export_linear_aec_output =
!!settings_.linear_aec_output_filename;
if (settings_.use_hpf) {
apm_config.high_pass_filter.enabled = *settings_.use_hpf;
}
if (settings_.use_vad) {
apm_config.voice_detection.enabled = *settings_.use_vad;
}
if (settings_.use_agc) {
apm_config.gain_controller1.enabled = *settings_.use_agc;
}
if (settings_.agc_mode) {
apm_config.gain_controller1.mode =
static_cast<webrtc::AudioProcessing::Config::GainController1::Mode>(
*settings_.agc_mode);
}
if (settings_.use_agc_limiter) {
apm_config.gain_controller1.enable_limiter = *settings_.use_agc_limiter;
}
if (settings_.agc_target_level) {
apm_config.gain_controller1.target_level_dbfs = *settings_.agc_target_level;
}
if (settings_.agc_compression_gain) {
apm_config.gain_controller1.compression_gain_db =
*settings_.agc_compression_gain;
}
if (settings_.use_analog_agc) {
apm_config.gain_controller1.analog_gain_controller.enabled =
*settings_.use_analog_agc;
}
if (settings_.analog_agc_disable_digital_adaptive) {
apm_config.gain_controller1.analog_gain_controller.enable_digital_adaptive =
*settings_.analog_agc_disable_digital_adaptive;
}
if (settings_.use_ed) {
apm_config.residual_echo_detector.enabled = *settings_.use_ed;
}
if (settings_.maximum_internal_processing_rate) {
apm_config.pipeline.maximum_internal_processing_rate =
*settings_.maximum_internal_processing_rate;
}
if (settings_.use_ns) {
apm_config.noise_suppression.enabled = *settings_.use_ns;
}
if (settings_.ns_level) {
const int level = *settings_.ns_level;
RTC_CHECK_GE(level, 0);
RTC_CHECK_LE(level, 3);
apm_config.noise_suppression.level =
static_cast<AudioProcessing::Config::NoiseSuppression::Level>(level);
}
if (settings_.ns_analysis_on_linear_aec_output) {
apm_config.noise_suppression.analyze_linear_aec_output_when_available =
*settings_.ns_analysis_on_linear_aec_output;
}
ap_->ApplyConfig(apm_config);
if (settings_.use_ts) {
// Default to key pressed if activating the transient suppressor with
// continuous key events.
ap_->set_stream_key_pressed(*settings_.use_ts == 2);
}
if (settings_.aec_dump_output_filename) {
ap_->AttachAecDump(AecDumpFactory::Create(
*settings_.aec_dump_output_filename, -1, &worker_queue_));
}
}
} // namespace test
} // namespace webrtc