| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "rtc_base/thread.h" |
| |
| #include <memory> |
| |
| #include "api/task_queue/task_queue_factory.h" |
| #include "api/task_queue/task_queue_test.h" |
| #include "rtc_base/async_invoker.h" |
| #include "rtc_base/async_udp_socket.h" |
| #include "rtc_base/atomic_ops.h" |
| #include "rtc_base/event.h" |
| #include "rtc_base/gunit.h" |
| #include "rtc_base/null_socket_server.h" |
| #include "rtc_base/physical_socket_server.h" |
| #include "rtc_base/socket_address.h" |
| #include "rtc_base/task_utils/to_queued_task.h" |
| #include "rtc_base/third_party/sigslot/sigslot.h" |
| #include "test/testsupport/rtc_expect_death.h" |
| |
| #if defined(WEBRTC_WIN) |
| #include <comdef.h> // NOLINT |
| #endif |
| |
| namespace rtc { |
| namespace { |
| |
| using ::webrtc::ToQueuedTask; |
| |
| // Generates a sequence of numbers (collaboratively). |
| class TestGenerator { |
| public: |
| TestGenerator() : last(0), count(0) {} |
| |
| int Next(int prev) { |
| int result = prev + last; |
| last = result; |
| count += 1; |
| return result; |
| } |
| |
| int last; |
| int count; |
| }; |
| |
| struct TestMessage : public MessageData { |
| explicit TestMessage(int v) : value(v) {} |
| |
| int value; |
| }; |
| |
| // Receives on a socket and sends by posting messages. |
| class SocketClient : public TestGenerator, public sigslot::has_slots<> { |
| public: |
| SocketClient(AsyncSocket* socket, |
| const SocketAddress& addr, |
| Thread* post_thread, |
| MessageHandler* phandler) |
| : socket_(AsyncUDPSocket::Create(socket, addr)), |
| post_thread_(post_thread), |
| post_handler_(phandler) { |
| socket_->SignalReadPacket.connect(this, &SocketClient::OnPacket); |
| } |
| |
| ~SocketClient() override { delete socket_; } |
| |
| SocketAddress address() const { return socket_->GetLocalAddress(); } |
| |
| void OnPacket(AsyncPacketSocket* socket, |
| const char* buf, |
| size_t size, |
| const SocketAddress& remote_addr, |
| const int64_t& packet_time_us) { |
| EXPECT_EQ(size, sizeof(uint32_t)); |
| uint32_t prev = reinterpret_cast<const uint32_t*>(buf)[0]; |
| uint32_t result = Next(prev); |
| |
| post_thread_->PostDelayed(RTC_FROM_HERE, 200, post_handler_, 0, |
| new TestMessage(result)); |
| } |
| |
| private: |
| AsyncUDPSocket* socket_; |
| Thread* post_thread_; |
| MessageHandler* post_handler_; |
| }; |
| |
| // Receives messages and sends on a socket. |
| class MessageClient : public MessageHandler, public TestGenerator { |
| public: |
| MessageClient(Thread* pth, Socket* socket) : socket_(socket) {} |
| |
| ~MessageClient() override { delete socket_; } |
| |
| void OnMessage(Message* pmsg) override { |
| TestMessage* msg = static_cast<TestMessage*>(pmsg->pdata); |
| int result = Next(msg->value); |
| EXPECT_GE(socket_->Send(&result, sizeof(result)), 0); |
| delete msg; |
| } |
| |
| private: |
| Socket* socket_; |
| }; |
| |
| class CustomThread : public rtc::Thread { |
| public: |
| CustomThread() |
| : Thread(std::unique_ptr<SocketServer>(new rtc::NullSocketServer())) {} |
| ~CustomThread() override { Stop(); } |
| bool Start() { return false; } |
| |
| bool WrapCurrent() { return Thread::WrapCurrent(); } |
| void UnwrapCurrent() { Thread::UnwrapCurrent(); } |
| }; |
| |
| // A thread that does nothing when it runs and signals an event |
| // when it is destroyed. |
| class SignalWhenDestroyedThread : public Thread { |
| public: |
| SignalWhenDestroyedThread(Event* event) |
| : Thread(std::unique_ptr<SocketServer>(new NullSocketServer())), |
| event_(event) {} |
| |
| ~SignalWhenDestroyedThread() override { |
| Stop(); |
| event_->Set(); |
| } |
| |
| void Run() override { |
| // Do nothing. |
| } |
| |
| private: |
| Event* event_; |
| }; |
| |
| // A bool wrapped in a mutex, to avoid data races. Using a volatile |
| // bool should be sufficient for correct code ("eventual consistency" |
| // between caches is sufficient), but we can't tell the compiler about |
| // that, and then tsan complains about a data race. |
| |
| // See also discussion at |
| // http://stackoverflow.com/questions/7223164/is-mutex-needed-to-synchronize-a-simple-flag-between-pthreads |
| |
| // Using std::atomic<bool> or std::atomic_flag in C++11 is probably |
| // the right thing to do, but those features are not yet allowed. Or |
| // rtc::AtomicInt, if/when that is added. Since the use isn't |
| // performance critical, use a plain critical section for the time |
| // being. |
| |
| class AtomicBool { |
| public: |
| explicit AtomicBool(bool value = false) : flag_(value) {} |
| AtomicBool& operator=(bool value) { |
| CritScope scoped_lock(&cs_); |
| flag_ = value; |
| return *this; |
| } |
| bool get() const { |
| CritScope scoped_lock(&cs_); |
| return flag_; |
| } |
| |
| private: |
| CriticalSection cs_; |
| bool flag_; |
| }; |
| |
| // Function objects to test Thread::Invoke. |
| struct FunctorA { |
| int operator()() { return 42; } |
| }; |
| class FunctorB { |
| public: |
| explicit FunctorB(AtomicBool* flag) : flag_(flag) {} |
| void operator()() { |
| if (flag_) |
| *flag_ = true; |
| } |
| |
| private: |
| AtomicBool* flag_; |
| }; |
| struct FunctorC { |
| int operator()() { |
| Thread::Current()->ProcessMessages(50); |
| return 24; |
| } |
| }; |
| struct FunctorD { |
| public: |
| explicit FunctorD(AtomicBool* flag) : flag_(flag) {} |
| FunctorD(FunctorD&&) = default; |
| FunctorD& operator=(FunctorD&&) = default; |
| void operator()() { |
| if (flag_) |
| *flag_ = true; |
| } |
| |
| private: |
| AtomicBool* flag_; |
| RTC_DISALLOW_COPY_AND_ASSIGN(FunctorD); |
| }; |
| |
| // See: https://code.google.com/p/webrtc/issues/detail?id=2409 |
| TEST(ThreadTest, DISABLED_Main) { |
| const SocketAddress addr("127.0.0.1", 0); |
| |
| // Create the messaging client on its own thread. |
| auto th1 = Thread::CreateWithSocketServer(); |
| Socket* socket = |
| th1->socketserver()->CreateAsyncSocket(addr.family(), SOCK_DGRAM); |
| MessageClient msg_client(th1.get(), socket); |
| |
| // Create the socket client on its own thread. |
| auto th2 = Thread::CreateWithSocketServer(); |
| AsyncSocket* asocket = |
| th2->socketserver()->CreateAsyncSocket(addr.family(), SOCK_DGRAM); |
| SocketClient sock_client(asocket, addr, th1.get(), &msg_client); |
| |
| socket->Connect(sock_client.address()); |
| |
| th1->Start(); |
| th2->Start(); |
| |
| // Get the messages started. |
| th1->PostDelayed(RTC_FROM_HERE, 100, &msg_client, 0, new TestMessage(1)); |
| |
| // Give the clients a little while to run. |
| // Messages will be processed at 100, 300, 500, 700, 900. |
| Thread* th_main = Thread::Current(); |
| th_main->ProcessMessages(1000); |
| |
| // Stop the sending client. Give the receiver a bit longer to run, in case |
| // it is running on a machine that is under load (e.g. the build machine). |
| th1->Stop(); |
| th_main->ProcessMessages(200); |
| th2->Stop(); |
| |
| // Make sure the results were correct |
| EXPECT_EQ(5, msg_client.count); |
| EXPECT_EQ(34, msg_client.last); |
| EXPECT_EQ(5, sock_client.count); |
| EXPECT_EQ(55, sock_client.last); |
| } |
| |
| // Test that setting thread names doesn't cause a malfunction. |
| // There's no easy way to verify the name was set properly at this time. |
| TEST(ThreadTest, Names) { |
| // Default name |
| auto thread = Thread::CreateWithSocketServer(); |
| EXPECT_TRUE(thread->Start()); |
| thread->Stop(); |
| // Name with no object parameter |
| thread = Thread::CreateWithSocketServer(); |
| EXPECT_TRUE(thread->SetName("No object", nullptr)); |
| EXPECT_TRUE(thread->Start()); |
| thread->Stop(); |
| // Really long name |
| thread = Thread::CreateWithSocketServer(); |
| EXPECT_TRUE(thread->SetName("Abcdefghijklmnopqrstuvwxyz1234567890", this)); |
| EXPECT_TRUE(thread->Start()); |
| thread->Stop(); |
| } |
| |
| TEST(ThreadTest, Wrap) { |
| Thread* current_thread = Thread::Current(); |
| ThreadManager::Instance()->SetCurrentThread(nullptr); |
| |
| { |
| CustomThread cthread; |
| EXPECT_TRUE(cthread.WrapCurrent()); |
| EXPECT_EQ(&cthread, Thread::Current()); |
| EXPECT_TRUE(cthread.RunningForTest()); |
| EXPECT_FALSE(cthread.IsOwned()); |
| cthread.UnwrapCurrent(); |
| EXPECT_FALSE(cthread.RunningForTest()); |
| } |
| ThreadManager::Instance()->SetCurrentThread(current_thread); |
| } |
| |
| TEST(ThreadTest, Invoke) { |
| // Create and start the thread. |
| auto thread = Thread::CreateWithSocketServer(); |
| thread->Start(); |
| // Try calling functors. |
| EXPECT_EQ(42, thread->Invoke<int>(RTC_FROM_HERE, FunctorA())); |
| AtomicBool called; |
| FunctorB f2(&called); |
| thread->Invoke<void>(RTC_FROM_HERE, f2); |
| EXPECT_TRUE(called.get()); |
| // Try calling bare functions. |
| struct LocalFuncs { |
| static int Func1() { return 999; } |
| static void Func2() {} |
| }; |
| EXPECT_EQ(999, thread->Invoke<int>(RTC_FROM_HERE, &LocalFuncs::Func1)); |
| thread->Invoke<void>(RTC_FROM_HERE, &LocalFuncs::Func2); |
| } |
| |
| // Verifies that two threads calling Invoke on each other at the same time does |
| // not deadlock but crash. |
| #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) |
| TEST(ThreadTest, TwoThreadsInvokeDeathTest) { |
| ::testing::GTEST_FLAG(death_test_style) = "threadsafe"; |
| AutoThread thread; |
| Thread* main_thread = Thread::Current(); |
| auto other_thread = Thread::CreateWithSocketServer(); |
| other_thread->Start(); |
| other_thread->Invoke<void>(RTC_FROM_HERE, [main_thread] { |
| RTC_EXPECT_DEATH(main_thread->Invoke<void>(RTC_FROM_HERE, [] {}), "loop"); |
| }); |
| } |
| |
| TEST(ThreadTest, ThreeThreadsInvokeDeathTest) { |
| ::testing::GTEST_FLAG(death_test_style) = "threadsafe"; |
| AutoThread thread; |
| Thread* first = Thread::Current(); |
| |
| auto second = Thread::Create(); |
| second->Start(); |
| auto third = Thread::Create(); |
| third->Start(); |
| |
| second->Invoke<void>(RTC_FROM_HERE, [&] { |
| third->Invoke<void>(RTC_FROM_HERE, [&] { |
| RTC_EXPECT_DEATH(first->Invoke<void>(RTC_FROM_HERE, [] {}), "loop"); |
| }); |
| }); |
| } |
| |
| #endif |
| |
| // Verifies that if thread A invokes a call on thread B and thread C is trying |
| // to invoke A at the same time, thread A does not handle C's invoke while |
| // invoking B. |
| TEST(ThreadTest, ThreeThreadsInvoke) { |
| AutoThread thread; |
| Thread* thread_a = Thread::Current(); |
| auto thread_b = Thread::CreateWithSocketServer(); |
| auto thread_c = Thread::CreateWithSocketServer(); |
| thread_b->Start(); |
| thread_c->Start(); |
| |
| class LockedBool { |
| public: |
| explicit LockedBool(bool value) : value_(value) {} |
| |
| void Set(bool value) { |
| CritScope lock(&crit_); |
| value_ = value; |
| } |
| |
| bool Get() { |
| CritScope lock(&crit_); |
| return value_; |
| } |
| |
| private: |
| CriticalSection crit_; |
| bool value_ RTC_GUARDED_BY(crit_); |
| }; |
| |
| struct LocalFuncs { |
| static void Set(LockedBool* out) { out->Set(true); } |
| static void InvokeSet(Thread* thread, LockedBool* out) { |
| thread->Invoke<void>(RTC_FROM_HERE, Bind(&Set, out)); |
| } |
| |
| // Set |out| true and call InvokeSet on |thread|. |
| static void SetAndInvokeSet(LockedBool* out, |
| Thread* thread, |
| LockedBool* out_inner) { |
| out->Set(true); |
| InvokeSet(thread, out_inner); |
| } |
| |
| // Asynchronously invoke SetAndInvokeSet on |thread1| and wait until |
| // |thread1| starts the call. |
| static void AsyncInvokeSetAndWait(AsyncInvoker* invoker, |
| Thread* thread1, |
| Thread* thread2, |
| LockedBool* out) { |
| CriticalSection crit; |
| LockedBool async_invoked(false); |
| |
| invoker->AsyncInvoke<void>( |
| RTC_FROM_HERE, thread1, |
| Bind(&SetAndInvokeSet, &async_invoked, thread2, out)); |
| |
| EXPECT_TRUE_WAIT(async_invoked.Get(), 2000); |
| } |
| }; |
| |
| AsyncInvoker invoker; |
| LockedBool thread_a_called(false); |
| |
| // Start the sequence A --(invoke)--> B --(async invoke)--> C --(invoke)--> A. |
| // Thread B returns when C receives the call and C should be blocked until A |
| // starts to process messages. |
| thread_b->Invoke<void>(RTC_FROM_HERE, |
| Bind(&LocalFuncs::AsyncInvokeSetAndWait, &invoker, |
| thread_c.get(), thread_a, &thread_a_called)); |
| EXPECT_FALSE(thread_a_called.Get()); |
| |
| EXPECT_TRUE_WAIT(thread_a_called.Get(), 2000); |
| } |
| |
| // Set the name on a thread when the underlying QueueDestroyed signal is |
| // triggered. This causes an error if the object is already partially |
| // destroyed. |
| class SetNameOnSignalQueueDestroyedTester : public sigslot::has_slots<> { |
| public: |
| SetNameOnSignalQueueDestroyedTester(Thread* thread) : thread_(thread) { |
| thread->SignalQueueDestroyed.connect( |
| this, &SetNameOnSignalQueueDestroyedTester::OnQueueDestroyed); |
| } |
| |
| void OnQueueDestroyed() { |
| // Makes sure that if we access the Thread while it's being destroyed, that |
| // it doesn't cause a problem because the vtable has been modified. |
| thread_->SetName("foo", nullptr); |
| } |
| |
| private: |
| Thread* thread_; |
| }; |
| |
| TEST(ThreadTest, SetNameOnSignalQueueDestroyed) { |
| auto thread1 = Thread::CreateWithSocketServer(); |
| SetNameOnSignalQueueDestroyedTester tester1(thread1.get()); |
| thread1.reset(); |
| |
| Thread* thread2 = new AutoThread(); |
| SetNameOnSignalQueueDestroyedTester tester2(thread2); |
| delete thread2; |
| } |
| |
| class ThreadQueueTest : public ::testing::Test, public Thread { |
| public: |
| ThreadQueueTest() : Thread(SocketServer::CreateDefault(), true) {} |
| bool IsLocked_Worker() { |
| if (!CritForTest()->TryEnter()) { |
| return true; |
| } |
| CritForTest()->Leave(); |
| return false; |
| } |
| bool IsLocked() { |
| // We have to do this on a worker thread, or else the TryEnter will |
| // succeed, since our critical sections are reentrant. |
| std::unique_ptr<Thread> worker(Thread::CreateWithSocketServer()); |
| worker->Start(); |
| return worker->Invoke<bool>( |
| RTC_FROM_HERE, rtc::Bind(&ThreadQueueTest::IsLocked_Worker, this)); |
| } |
| }; |
| |
| struct DeletedLockChecker { |
| DeletedLockChecker(ThreadQueueTest* test, bool* was_locked, bool* deleted) |
| : test(test), was_locked(was_locked), deleted(deleted) {} |
| ~DeletedLockChecker() { |
| *deleted = true; |
| *was_locked = test->IsLocked(); |
| } |
| ThreadQueueTest* test; |
| bool* was_locked; |
| bool* deleted; |
| }; |
| |
| static void DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(Thread* q) { |
| EXPECT_TRUE(q != nullptr); |
| int64_t now = TimeMillis(); |
| q->PostAt(RTC_FROM_HERE, now, nullptr, 3); |
| q->PostAt(RTC_FROM_HERE, now - 2, nullptr, 0); |
| q->PostAt(RTC_FROM_HERE, now - 1, nullptr, 1); |
| q->PostAt(RTC_FROM_HERE, now, nullptr, 4); |
| q->PostAt(RTC_FROM_HERE, now - 1, nullptr, 2); |
| |
| Message msg; |
| for (size_t i = 0; i < 5; ++i) { |
| memset(&msg, 0, sizeof(msg)); |
| EXPECT_TRUE(q->Get(&msg, 0)); |
| EXPECT_EQ(i, msg.message_id); |
| } |
| |
| EXPECT_FALSE(q->Get(&msg, 0)); // No more messages |
| } |
| |
| TEST_F(ThreadQueueTest, DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder) { |
| Thread q(SocketServer::CreateDefault(), true); |
| DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(&q); |
| |
| NullSocketServer nullss; |
| Thread q_nullss(&nullss, true); |
| DelayedPostsWithIdenticalTimesAreProcessedInFifoOrder(&q_nullss); |
| } |
| |
| TEST_F(ThreadQueueTest, DisposeNotLocked) { |
| bool was_locked = true; |
| bool deleted = false; |
| DeletedLockChecker* d = new DeletedLockChecker(this, &was_locked, &deleted); |
| Dispose(d); |
| Message msg; |
| EXPECT_FALSE(Get(&msg, 0)); |
| EXPECT_TRUE(deleted); |
| EXPECT_FALSE(was_locked); |
| } |
| |
| class DeletedMessageHandler : public MessageHandler { |
| public: |
| explicit DeletedMessageHandler(bool* deleted) : deleted_(deleted) {} |
| ~DeletedMessageHandler() override { *deleted_ = true; } |
| void OnMessage(Message* msg) override {} |
| |
| private: |
| bool* deleted_; |
| }; |
| |
| TEST_F(ThreadQueueTest, DiposeHandlerWithPostedMessagePending) { |
| bool deleted = false; |
| DeletedMessageHandler* handler = new DeletedMessageHandler(&deleted); |
| // First, post a dispose. |
| Dispose(handler); |
| // Now, post a message, which should *not* be returned by Get(). |
| Post(RTC_FROM_HERE, handler, 1); |
| Message msg; |
| EXPECT_FALSE(Get(&msg, 0)); |
| EXPECT_TRUE(deleted); |
| } |
| |
| // Ensure that ProcessAllMessageQueues does its essential function; process |
| // all messages (both delayed and non delayed) up until the current time, on |
| // all registered message queues. |
| TEST(ThreadManager, ProcessAllMessageQueues) { |
| Event entered_process_all_message_queues(true, false); |
| auto a = Thread::CreateWithSocketServer(); |
| auto b = Thread::CreateWithSocketServer(); |
| a->Start(); |
| b->Start(); |
| |
| volatile int messages_processed = 0; |
| auto incrementer = [&messages_processed, |
| &entered_process_all_message_queues] { |
| // Wait for event as a means to ensure Increment doesn't occur outside |
| // of ProcessAllMessageQueues. The event is set by a message posted to |
| // the main thread, which is guaranteed to be handled inside |
| // ProcessAllMessageQueues. |
| entered_process_all_message_queues.Wait(Event::kForever); |
| AtomicOps::Increment(&messages_processed); |
| }; |
| auto event_signaler = [&entered_process_all_message_queues] { |
| entered_process_all_message_queues.Set(); |
| }; |
| |
| // Post messages (both delayed and non delayed) to both threads. |
| a->PostTask(ToQueuedTask(incrementer)); |
| b->PostTask(ToQueuedTask(incrementer)); |
| a->PostDelayedTask(ToQueuedTask(incrementer), 0); |
| b->PostDelayedTask(ToQueuedTask(incrementer), 0); |
| rtc::Thread::Current()->PostTask(ToQueuedTask(event_signaler)); |
| |
| ThreadManager::ProcessAllMessageQueuesForTesting(); |
| EXPECT_EQ(4, AtomicOps::AcquireLoad(&messages_processed)); |
| } |
| |
| // Test that ProcessAllMessageQueues doesn't hang if a thread is quitting. |
| TEST(ThreadManager, ProcessAllMessageQueuesWithQuittingThread) { |
| auto t = Thread::CreateWithSocketServer(); |
| t->Start(); |
| t->Quit(); |
| ThreadManager::ProcessAllMessageQueuesForTesting(); |
| } |
| |
| // Test that ProcessAllMessageQueues doesn't hang if a queue clears its |
| // messages. |
| TEST(ThreadManager, ProcessAllMessageQueuesWithClearedQueue) { |
| Event entered_process_all_message_queues(true, false); |
| auto t = Thread::CreateWithSocketServer(); |
| t->Start(); |
| |
| auto clearer = [&entered_process_all_message_queues] { |
| // Wait for event as a means to ensure Clear doesn't occur outside of |
| // ProcessAllMessageQueues. The event is set by a message posted to the |
| // main thread, which is guaranteed to be handled inside |
| // ProcessAllMessageQueues. |
| entered_process_all_message_queues.Wait(Event::kForever); |
| rtc::Thread::Current()->Clear(nullptr); |
| }; |
| auto event_signaler = [&entered_process_all_message_queues] { |
| entered_process_all_message_queues.Set(); |
| }; |
| |
| // Post messages (both delayed and non delayed) to both threads. |
| t->PostTask(RTC_FROM_HERE, clearer); |
| rtc::Thread::Current()->PostTask(RTC_FROM_HERE, event_signaler); |
| ThreadManager::ProcessAllMessageQueuesForTesting(); |
| } |
| |
| class RefCountedHandler : public MessageHandler, public rtc::RefCountInterface { |
| public: |
| void OnMessage(Message* msg) override {} |
| }; |
| |
| class EmptyHandler : public MessageHandler { |
| public: |
| void OnMessage(Message* msg) override {} |
| }; |
| |
| TEST(ThreadManager, ClearReentrant) { |
| std::unique_ptr<Thread> t(Thread::Create()); |
| EmptyHandler handler; |
| RefCountedHandler* inner_handler( |
| new rtc::RefCountedObject<RefCountedHandler>()); |
| // When the empty handler is destroyed, it will clear messages queued for |
| // itself. The message to be cleared itself wraps a MessageHandler object |
| // (RefCountedHandler) so this will cause the message queue to be cleared |
| // again in a re-entrant fashion, which previously triggered a DCHECK. |
| // The inner handler will be removed in a re-entrant fashion from the |
| // message queue of the thread while the outer handler is removed, verifying |
| // that the iterator is not invalidated in "MessageQueue::Clear". |
| t->Post(RTC_FROM_HERE, inner_handler, 0); |
| t->Post(RTC_FROM_HERE, &handler, 0, |
| new ScopedRefMessageData<RefCountedHandler>(inner_handler)); |
| } |
| |
| class AsyncInvokeTest : public ::testing::Test { |
| public: |
| void IntCallback(int value) { |
| EXPECT_EQ(expected_thread_, Thread::Current()); |
| int_value_ = value; |
| } |
| void SetExpectedThreadForIntCallback(Thread* thread) { |
| expected_thread_ = thread; |
| } |
| |
| protected: |
| enum { kWaitTimeout = 1000 }; |
| AsyncInvokeTest() : int_value_(0), expected_thread_(nullptr) {} |
| |
| int int_value_; |
| Thread* expected_thread_; |
| }; |
| |
| TEST_F(AsyncInvokeTest, FireAndForget) { |
| AsyncInvoker invoker; |
| // Create and start the thread. |
| auto thread = Thread::CreateWithSocketServer(); |
| thread->Start(); |
| // Try calling functor. |
| AtomicBool called; |
| invoker.AsyncInvoke<void>(RTC_FROM_HERE, thread.get(), FunctorB(&called)); |
| EXPECT_TRUE_WAIT(called.get(), kWaitTimeout); |
| thread->Stop(); |
| } |
| |
| TEST_F(AsyncInvokeTest, NonCopyableFunctor) { |
| AsyncInvoker invoker; |
| // Create and start the thread. |
| auto thread = Thread::CreateWithSocketServer(); |
| thread->Start(); |
| // Try calling functor. |
| AtomicBool called; |
| invoker.AsyncInvoke<void>(RTC_FROM_HERE, thread.get(), FunctorD(&called)); |
| EXPECT_TRUE_WAIT(called.get(), kWaitTimeout); |
| thread->Stop(); |
| } |
| |
| TEST_F(AsyncInvokeTest, KillInvokerDuringExecute) { |
| // Use these events to get in a state where the functor is in the middle of |
| // executing, and then to wait for it to finish, ensuring the "EXPECT_FALSE" |
| // is run. |
| Event functor_started; |
| Event functor_continue; |
| Event functor_finished; |
| |
| auto thread = Thread::CreateWithSocketServer(); |
| thread->Start(); |
| volatile bool invoker_destroyed = false; |
| { |
| auto functor = [&functor_started, &functor_continue, &functor_finished, |
| &invoker_destroyed] { |
| functor_started.Set(); |
| functor_continue.Wait(Event::kForever); |
| rtc::Thread::Current()->SleepMs(kWaitTimeout); |
| EXPECT_FALSE(invoker_destroyed); |
| functor_finished.Set(); |
| }; |
| AsyncInvoker invoker; |
| invoker.AsyncInvoke<void>(RTC_FROM_HERE, thread.get(), functor); |
| functor_started.Wait(Event::kForever); |
| |
| // Destroy the invoker while the functor is still executing (doing |
| // SleepMs). |
| functor_continue.Set(); |
| } |
| |
| // If the destructor DIDN'T wait for the functor to finish executing, it will |
| // hit the EXPECT_FALSE(invoker_destroyed) after it finishes sleeping for a |
| // second. |
| invoker_destroyed = true; |
| functor_finished.Wait(Event::kForever); |
| } |
| |
| // Variant of the above test where the async-invoked task calls AsyncInvoke |
| // *again*, for the thread on which the AsyncInvoker is currently being |
| // destroyed. This shouldn't deadlock or crash; this second invocation should |
| // just be ignored. |
| TEST_F(AsyncInvokeTest, KillInvokerDuringExecuteWithReentrantInvoke) { |
| Event functor_started; |
| // Flag used to verify that the recursively invoked task never actually runs. |
| bool reentrant_functor_run = false; |
| |
| Thread* main = Thread::Current(); |
| Thread thread(std::make_unique<NullSocketServer>()); |
| thread.Start(); |
| { |
| AsyncInvoker invoker; |
| auto reentrant_functor = [&reentrant_functor_run] { |
| reentrant_functor_run = true; |
| }; |
| auto functor = [&functor_started, &invoker, main, reentrant_functor] { |
| functor_started.Set(); |
| Thread::Current()->SleepMs(kWaitTimeout); |
| invoker.AsyncInvoke<void>(RTC_FROM_HERE, main, reentrant_functor); |
| }; |
| // This queues a task on |thread| to sleep for |kWaitTimeout| then queue a |
| // task on |main|. But this second queued task should never run, since the |
| // destructor will be entered before it's even invoked. |
| invoker.AsyncInvoke<void>(RTC_FROM_HERE, &thread, functor); |
| functor_started.Wait(Event::kForever); |
| } |
| EXPECT_FALSE(reentrant_functor_run); |
| } |
| |
| TEST_F(AsyncInvokeTest, Flush) { |
| AsyncInvoker invoker; |
| AtomicBool flag1; |
| AtomicBool flag2; |
| // Queue two async calls to the current thread. |
| invoker.AsyncInvoke<void>(RTC_FROM_HERE, Thread::Current(), FunctorB(&flag1)); |
| invoker.AsyncInvoke<void>(RTC_FROM_HERE, Thread::Current(), FunctorB(&flag2)); |
| // Because we haven't pumped messages, these should not have run yet. |
| EXPECT_FALSE(flag1.get()); |
| EXPECT_FALSE(flag2.get()); |
| // Force them to run now. |
| invoker.Flush(Thread::Current()); |
| EXPECT_TRUE(flag1.get()); |
| EXPECT_TRUE(flag2.get()); |
| } |
| |
| TEST_F(AsyncInvokeTest, FlushWithIds) { |
| AsyncInvoker invoker; |
| AtomicBool flag1; |
| AtomicBool flag2; |
| // Queue two async calls to the current thread, one with a message id. |
| invoker.AsyncInvoke<void>(RTC_FROM_HERE, Thread::Current(), FunctorB(&flag1), |
| 5); |
| invoker.AsyncInvoke<void>(RTC_FROM_HERE, Thread::Current(), FunctorB(&flag2)); |
| // Because we haven't pumped messages, these should not have run yet. |
| EXPECT_FALSE(flag1.get()); |
| EXPECT_FALSE(flag2.get()); |
| // Execute pending calls with id == 5. |
| invoker.Flush(Thread::Current(), 5); |
| EXPECT_TRUE(flag1.get()); |
| EXPECT_FALSE(flag2.get()); |
| flag1 = false; |
| // Execute all pending calls. The id == 5 call should not execute again. |
| invoker.Flush(Thread::Current()); |
| EXPECT_FALSE(flag1.get()); |
| EXPECT_TRUE(flag2.get()); |
| } |
| |
| class GuardedAsyncInvokeTest : public ::testing::Test { |
| public: |
| void IntCallback(int value) { |
| EXPECT_EQ(expected_thread_, Thread::Current()); |
| int_value_ = value; |
| } |
| void SetExpectedThreadForIntCallback(Thread* thread) { |
| expected_thread_ = thread; |
| } |
| |
| protected: |
| const static int kWaitTimeout = 1000; |
| GuardedAsyncInvokeTest() : int_value_(0), expected_thread_(nullptr) {} |
| |
| int int_value_; |
| Thread* expected_thread_; |
| }; |
| |
| // Functor for creating an invoker. |
| struct CreateInvoker { |
| CreateInvoker(std::unique_ptr<GuardedAsyncInvoker>* invoker) |
| : invoker_(invoker) {} |
| void operator()() { invoker_->reset(new GuardedAsyncInvoker()); } |
| std::unique_ptr<GuardedAsyncInvoker>* invoker_; |
| }; |
| |
| // Test that we can call AsyncInvoke<void>() after the thread died. |
| TEST_F(GuardedAsyncInvokeTest, KillThreadFireAndForget) { |
| // Create and start the thread. |
| std::unique_ptr<Thread> thread(Thread::Create()); |
| thread->Start(); |
| std::unique_ptr<GuardedAsyncInvoker> invoker; |
| // Create the invoker on |thread|. |
| thread->Invoke<void>(RTC_FROM_HERE, CreateInvoker(&invoker)); |
| // Kill |thread|. |
| thread = nullptr; |
| // Try calling functor. |
| AtomicBool called; |
| EXPECT_FALSE(invoker->AsyncInvoke<void>(RTC_FROM_HERE, FunctorB(&called))); |
| // With thread gone, nothing should happen. |
| WAIT(called.get(), kWaitTimeout); |
| EXPECT_FALSE(called.get()); |
| } |
| |
| // The remaining tests check that GuardedAsyncInvoker behaves as AsyncInvoker |
| // when Thread is still alive. |
| TEST_F(GuardedAsyncInvokeTest, FireAndForget) { |
| GuardedAsyncInvoker invoker; |
| // Try calling functor. |
| AtomicBool called; |
| EXPECT_TRUE(invoker.AsyncInvoke<void>(RTC_FROM_HERE, FunctorB(&called))); |
| EXPECT_TRUE_WAIT(called.get(), kWaitTimeout); |
| } |
| |
| TEST_F(GuardedAsyncInvokeTest, NonCopyableFunctor) { |
| GuardedAsyncInvoker invoker; |
| // Try calling functor. |
| AtomicBool called; |
| EXPECT_TRUE(invoker.AsyncInvoke<void>(RTC_FROM_HERE, FunctorD(&called))); |
| EXPECT_TRUE_WAIT(called.get(), kWaitTimeout); |
| } |
| |
| TEST_F(GuardedAsyncInvokeTest, Flush) { |
| GuardedAsyncInvoker invoker; |
| AtomicBool flag1; |
| AtomicBool flag2; |
| // Queue two async calls to the current thread. |
| EXPECT_TRUE(invoker.AsyncInvoke<void>(RTC_FROM_HERE, FunctorB(&flag1))); |
| EXPECT_TRUE(invoker.AsyncInvoke<void>(RTC_FROM_HERE, FunctorB(&flag2))); |
| // Because we haven't pumped messages, these should not have run yet. |
| EXPECT_FALSE(flag1.get()); |
| EXPECT_FALSE(flag2.get()); |
| // Force them to run now. |
| EXPECT_TRUE(invoker.Flush()); |
| EXPECT_TRUE(flag1.get()); |
| EXPECT_TRUE(flag2.get()); |
| } |
| |
| TEST_F(GuardedAsyncInvokeTest, FlushWithIds) { |
| GuardedAsyncInvoker invoker; |
| AtomicBool flag1; |
| AtomicBool flag2; |
| // Queue two async calls to the current thread, one with a message id. |
| EXPECT_TRUE(invoker.AsyncInvoke<void>(RTC_FROM_HERE, FunctorB(&flag1), 5)); |
| EXPECT_TRUE(invoker.AsyncInvoke<void>(RTC_FROM_HERE, FunctorB(&flag2))); |
| // Because we haven't pumped messages, these should not have run yet. |
| EXPECT_FALSE(flag1.get()); |
| EXPECT_FALSE(flag2.get()); |
| // Execute pending calls with id == 5. |
| EXPECT_TRUE(invoker.Flush(5)); |
| EXPECT_TRUE(flag1.get()); |
| EXPECT_FALSE(flag2.get()); |
| flag1 = false; |
| // Execute all pending calls. The id == 5 call should not execute again. |
| EXPECT_TRUE(invoker.Flush()); |
| EXPECT_FALSE(flag1.get()); |
| EXPECT_TRUE(flag2.get()); |
| } |
| |
| void ThreadIsCurrent(Thread* thread, bool* result, Event* event) { |
| *result = thread->IsCurrent(); |
| event->Set(); |
| } |
| |
| void WaitAndSetEvent(Event* wait_event, Event* set_event) { |
| wait_event->Wait(Event::kForever); |
| set_event->Set(); |
| } |
| |
| // A functor that keeps track of the number of copies and moves. |
| class LifeCycleFunctor { |
| public: |
| struct Stats { |
| size_t copy_count = 0; |
| size_t move_count = 0; |
| }; |
| |
| LifeCycleFunctor(Stats* stats, Event* event) : stats_(stats), event_(event) {} |
| LifeCycleFunctor(const LifeCycleFunctor& other) { *this = other; } |
| LifeCycleFunctor(LifeCycleFunctor&& other) { *this = std::move(other); } |
| |
| LifeCycleFunctor& operator=(const LifeCycleFunctor& other) { |
| stats_ = other.stats_; |
| event_ = other.event_; |
| ++stats_->copy_count; |
| return *this; |
| } |
| |
| LifeCycleFunctor& operator=(LifeCycleFunctor&& other) { |
| stats_ = other.stats_; |
| event_ = other.event_; |
| ++stats_->move_count; |
| return *this; |
| } |
| |
| void operator()() { event_->Set(); } |
| |
| private: |
| Stats* stats_; |
| Event* event_; |
| }; |
| |
| // A functor that verifies the thread it was destroyed on. |
| class DestructionFunctor { |
| public: |
| DestructionFunctor(Thread* thread, bool* thread_was_current, Event* event) |
| : thread_(thread), |
| thread_was_current_(thread_was_current), |
| event_(event) {} |
| ~DestructionFunctor() { |
| // Only signal the event if this was the functor that was invoked to avoid |
| // the event being signaled due to the destruction of temporary/moved |
| // versions of this object. |
| if (was_invoked_) { |
| *thread_was_current_ = thread_->IsCurrent(); |
| event_->Set(); |
| } |
| } |
| |
| void operator()() { was_invoked_ = true; } |
| |
| private: |
| Thread* thread_; |
| bool* thread_was_current_; |
| Event* event_; |
| bool was_invoked_ = false; |
| }; |
| |
| TEST(ThreadPostTaskTest, InvokesWithBind) { |
| std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create()); |
| background_thread->Start(); |
| |
| Event event; |
| background_thread->PostTask(RTC_FROM_HERE, Bind(&Event::Set, &event)); |
| event.Wait(Event::kForever); |
| } |
| |
| TEST(ThreadPostTaskTest, InvokesWithLambda) { |
| std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create()); |
| background_thread->Start(); |
| |
| Event event; |
| background_thread->PostTask(RTC_FROM_HERE, [&event] { event.Set(); }); |
| event.Wait(Event::kForever); |
| } |
| |
| TEST(ThreadPostTaskTest, InvokesWithCopiedFunctor) { |
| std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create()); |
| background_thread->Start(); |
| |
| LifeCycleFunctor::Stats stats; |
| Event event; |
| LifeCycleFunctor functor(&stats, &event); |
| background_thread->PostTask(RTC_FROM_HERE, functor); |
| event.Wait(Event::kForever); |
| |
| EXPECT_EQ(1u, stats.copy_count); |
| EXPECT_EQ(0u, stats.move_count); |
| } |
| |
| TEST(ThreadPostTaskTest, InvokesWithMovedFunctor) { |
| std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create()); |
| background_thread->Start(); |
| |
| LifeCycleFunctor::Stats stats; |
| Event event; |
| LifeCycleFunctor functor(&stats, &event); |
| background_thread->PostTask(RTC_FROM_HERE, std::move(functor)); |
| event.Wait(Event::kForever); |
| |
| EXPECT_EQ(0u, stats.copy_count); |
| EXPECT_EQ(1u, stats.move_count); |
| } |
| |
| TEST(ThreadPostTaskTest, InvokesWithReferencedFunctorShouldCopy) { |
| std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create()); |
| background_thread->Start(); |
| |
| LifeCycleFunctor::Stats stats; |
| Event event; |
| LifeCycleFunctor functor(&stats, &event); |
| LifeCycleFunctor& functor_ref = functor; |
| background_thread->PostTask(RTC_FROM_HERE, functor_ref); |
| event.Wait(Event::kForever); |
| |
| EXPECT_EQ(1u, stats.copy_count); |
| EXPECT_EQ(0u, stats.move_count); |
| } |
| |
| TEST(ThreadPostTaskTest, InvokesWithCopiedFunctorDestroyedOnTargetThread) { |
| std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create()); |
| background_thread->Start(); |
| |
| Event event; |
| bool was_invoked_on_background_thread = false; |
| DestructionFunctor functor(background_thread.get(), |
| &was_invoked_on_background_thread, &event); |
| background_thread->PostTask(RTC_FROM_HERE, functor); |
| event.Wait(Event::kForever); |
| |
| EXPECT_TRUE(was_invoked_on_background_thread); |
| } |
| |
| TEST(ThreadPostTaskTest, InvokesWithMovedFunctorDestroyedOnTargetThread) { |
| std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create()); |
| background_thread->Start(); |
| |
| Event event; |
| bool was_invoked_on_background_thread = false; |
| DestructionFunctor functor(background_thread.get(), |
| &was_invoked_on_background_thread, &event); |
| background_thread->PostTask(RTC_FROM_HERE, std::move(functor)); |
| event.Wait(Event::kForever); |
| |
| EXPECT_TRUE(was_invoked_on_background_thread); |
| } |
| |
| TEST(ThreadPostTaskTest, |
| InvokesWithReferencedFunctorShouldCopyAndDestroyedOnTargetThread) { |
| std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create()); |
| background_thread->Start(); |
| |
| Event event; |
| bool was_invoked_on_background_thread = false; |
| DestructionFunctor functor(background_thread.get(), |
| &was_invoked_on_background_thread, &event); |
| DestructionFunctor& functor_ref = functor; |
| background_thread->PostTask(RTC_FROM_HERE, functor_ref); |
| event.Wait(Event::kForever); |
| |
| EXPECT_TRUE(was_invoked_on_background_thread); |
| } |
| |
| TEST(ThreadPostTaskTest, InvokesOnBackgroundThread) { |
| std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create()); |
| background_thread->Start(); |
| |
| Event event; |
| bool was_invoked_on_background_thread = false; |
| background_thread->PostTask(RTC_FROM_HERE, |
| Bind(&ThreadIsCurrent, background_thread.get(), |
| &was_invoked_on_background_thread, &event)); |
| event.Wait(Event::kForever); |
| |
| EXPECT_TRUE(was_invoked_on_background_thread); |
| } |
| |
| TEST(ThreadPostTaskTest, InvokesAsynchronously) { |
| std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create()); |
| background_thread->Start(); |
| |
| // The first event ensures that SendSingleMessage() is not blocking this |
| // thread. The second event ensures that the message is processed. |
| Event event_set_by_test_thread; |
| Event event_set_by_background_thread; |
| background_thread->PostTask(RTC_FROM_HERE, |
| Bind(&WaitAndSetEvent, &event_set_by_test_thread, |
| &event_set_by_background_thread)); |
| event_set_by_test_thread.Set(); |
| event_set_by_background_thread.Wait(Event::kForever); |
| } |
| |
| TEST(ThreadPostTaskTest, InvokesInPostedOrder) { |
| std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create()); |
| background_thread->Start(); |
| |
| Event first; |
| Event second; |
| Event third; |
| Event fourth; |
| |
| background_thread->PostTask(RTC_FROM_HERE, |
| Bind(&WaitAndSetEvent, &first, &second)); |
| background_thread->PostTask(RTC_FROM_HERE, |
| Bind(&WaitAndSetEvent, &second, &third)); |
| background_thread->PostTask(RTC_FROM_HERE, |
| Bind(&WaitAndSetEvent, &third, &fourth)); |
| |
| // All tasks have been posted before the first one is unblocked. |
| first.Set(); |
| // Only if the chain is invoked in posted order will the last event be set. |
| fourth.Wait(Event::kForever); |
| } |
| |
| TEST(ThreadPostDelayedTaskTest, InvokesAsynchronously) { |
| std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create()); |
| background_thread->Start(); |
| |
| // The first event ensures that SendSingleMessage() is not blocking this |
| // thread. The second event ensures that the message is processed. |
| Event event_set_by_test_thread; |
| Event event_set_by_background_thread; |
| background_thread->PostDelayedTask( |
| RTC_FROM_HERE, |
| Bind(&WaitAndSetEvent, &event_set_by_test_thread, |
| &event_set_by_background_thread), |
| /*milliseconds=*/10); |
| event_set_by_test_thread.Set(); |
| event_set_by_background_thread.Wait(Event::kForever); |
| } |
| |
| TEST(ThreadPostDelayedTaskTest, InvokesInDelayOrder) { |
| ScopedFakeClock clock; |
| std::unique_ptr<rtc::Thread> background_thread(rtc::Thread::Create()); |
| background_thread->Start(); |
| |
| Event first; |
| Event second; |
| Event third; |
| Event fourth; |
| |
| background_thread->PostDelayedTask(RTC_FROM_HERE, |
| Bind(&WaitAndSetEvent, &third, &fourth), |
| /*milliseconds=*/11); |
| background_thread->PostDelayedTask(RTC_FROM_HERE, |
| Bind(&WaitAndSetEvent, &first, &second), |
| /*milliseconds=*/9); |
| background_thread->PostDelayedTask(RTC_FROM_HERE, |
| Bind(&WaitAndSetEvent, &second, &third), |
| /*milliseconds=*/10); |
| |
| // All tasks have been posted before the first one is unblocked. |
| first.Set(); |
| // Only if the chain is invoked in delay order will the last event be set. |
| clock.AdvanceTime(webrtc::TimeDelta::Millis(11)); |
| EXPECT_TRUE(fourth.Wait(0)); |
| } |
| |
| class ThreadFactory : public webrtc::TaskQueueFactory { |
| public: |
| std::unique_ptr<webrtc::TaskQueueBase, webrtc::TaskQueueDeleter> |
| CreateTaskQueue(absl::string_view /* name */, |
| Priority /*priority*/) const override { |
| std::unique_ptr<Thread> thread = Thread::Create(); |
| thread->Start(); |
| return std::unique_ptr<webrtc::TaskQueueBase, webrtc::TaskQueueDeleter>( |
| thread.release()); |
| } |
| }; |
| |
| using ::webrtc::TaskQueueTest; |
| |
| INSTANTIATE_TEST_SUITE_P(RtcThread, |
| TaskQueueTest, |
| ::testing::Values(std::make_unique<ThreadFactory>)); |
| |
| } // namespace |
| } // namespace rtc |