| /* |
| * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "api/units/data_rate.h" |
| |
| #include "rtc_base/logging.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| namespace test { |
| |
| TEST(DataRateTest, CompilesWithChecksAndLogs) { |
| DataRate a = DataRate::kbps(300); |
| DataRate b = DataRate::kbps(210); |
| RTC_CHECK_GT(a, b); |
| RTC_LOG(LS_INFO) << a; |
| } |
| |
| TEST(DataRateTest, ConstExpr) { |
| constexpr int64_t kValue = 12345; |
| constexpr DataRate kDataRateZero = DataRate::Zero(); |
| constexpr DataRate kDataRateInf = DataRate::Infinity(); |
| static_assert(kDataRateZero.IsZero(), ""); |
| static_assert(kDataRateInf.IsInfinite(), ""); |
| static_assert(kDataRateInf.bps_or(-1) == -1, ""); |
| static_assert(kDataRateInf > kDataRateZero, ""); |
| |
| constexpr DataRate kDataRateBps = DataRate::BitsPerSec<kValue>(); |
| constexpr DataRate kDataRateKbps = DataRate::KilobitsPerSec<kValue>(); |
| static_assert(kDataRateBps.bps<double>() == kValue, ""); |
| static_assert(kDataRateBps.bps_or(0) == kValue, ""); |
| static_assert(kDataRateKbps.kbps_or(0) == kValue, ""); |
| } |
| |
| TEST(DataRateTest, GetBackSameValues) { |
| const int64_t kValue = 123 * 8; |
| EXPECT_EQ(DataRate::bps(kValue).bps(), kValue); |
| EXPECT_EQ(DataRate::kbps(kValue).kbps(), kValue); |
| } |
| |
| TEST(DataRateTest, GetDifferentPrefix) { |
| const int64_t kValue = 123 * 8000; |
| EXPECT_EQ(DataRate::bps(kValue).kbps(), kValue / 1000); |
| } |
| |
| TEST(DataRateTest, IdentityChecks) { |
| const int64_t kValue = 3000; |
| EXPECT_TRUE(DataRate::Zero().IsZero()); |
| EXPECT_FALSE(DataRate::bps(kValue).IsZero()); |
| |
| EXPECT_TRUE(DataRate::Infinity().IsInfinite()); |
| EXPECT_FALSE(DataRate::Zero().IsInfinite()); |
| EXPECT_FALSE(DataRate::bps(kValue).IsInfinite()); |
| |
| EXPECT_FALSE(DataRate::Infinity().IsFinite()); |
| EXPECT_TRUE(DataRate::bps(kValue).IsFinite()); |
| EXPECT_TRUE(DataRate::Zero().IsFinite()); |
| } |
| |
| TEST(DataRateTest, ComparisonOperators) { |
| const int64_t kSmall = 450; |
| const int64_t kLarge = 451; |
| const DataRate small = DataRate::bps(kSmall); |
| const DataRate large = DataRate::bps(kLarge); |
| |
| EXPECT_EQ(DataRate::Zero(), DataRate::bps(0)); |
| EXPECT_EQ(DataRate::Infinity(), DataRate::Infinity()); |
| EXPECT_EQ(small, small); |
| EXPECT_LE(small, small); |
| EXPECT_GE(small, small); |
| EXPECT_NE(small, large); |
| EXPECT_LE(small, large); |
| EXPECT_LT(small, large); |
| EXPECT_GE(large, small); |
| EXPECT_GT(large, small); |
| EXPECT_LT(DataRate::Zero(), small); |
| EXPECT_GT(DataRate::Infinity(), large); |
| } |
| |
| TEST(DataRateTest, ConvertsToAndFromDouble) { |
| const int64_t kValue = 128; |
| const double kDoubleValue = static_cast<double>(kValue); |
| const double kDoubleKbps = kValue * 1e-3; |
| const double kFloatKbps = static_cast<float>(kDoubleKbps); |
| |
| EXPECT_EQ(DataRate::bps(kValue).bps<double>(), kDoubleValue); |
| EXPECT_EQ(DataRate::bps(kValue).kbps<double>(), kDoubleKbps); |
| EXPECT_EQ(DataRate::bps(kValue).kbps<float>(), kFloatKbps); |
| EXPECT_EQ(DataRate::bps(kDoubleValue).bps(), kValue); |
| EXPECT_EQ(DataRate::kbps(kDoubleKbps).bps(), kValue); |
| |
| const double kInfinity = std::numeric_limits<double>::infinity(); |
| EXPECT_EQ(DataRate::Infinity().bps<double>(), kInfinity); |
| EXPECT_TRUE(DataRate::bps(kInfinity).IsInfinite()); |
| EXPECT_TRUE(DataRate::kbps(kInfinity).IsInfinite()); |
| } |
| TEST(DataRateTest, Clamping) { |
| const DataRate upper = DataRate::kbps(800); |
| const DataRate lower = DataRate::kbps(100); |
| const DataRate under = DataRate::kbps(100); |
| const DataRate inside = DataRate::kbps(500); |
| const DataRate over = DataRate::kbps(1000); |
| EXPECT_EQ(under.Clamped(lower, upper), lower); |
| EXPECT_EQ(inside.Clamped(lower, upper), inside); |
| EXPECT_EQ(over.Clamped(lower, upper), upper); |
| |
| DataRate mutable_rate = lower; |
| mutable_rate.Clamp(lower, upper); |
| EXPECT_EQ(mutable_rate, lower); |
| mutable_rate = inside; |
| mutable_rate.Clamp(lower, upper); |
| EXPECT_EQ(mutable_rate, inside); |
| mutable_rate = over; |
| mutable_rate.Clamp(lower, upper); |
| EXPECT_EQ(mutable_rate, upper); |
| } |
| |
| TEST(DataRateTest, MathOperations) { |
| const int64_t kValueA = 450; |
| const int64_t kValueB = 267; |
| const DataRate rate_a = DataRate::bps(kValueA); |
| const DataRate rate_b = DataRate::bps(kValueB); |
| const int32_t kInt32Value = 123; |
| const double kFloatValue = 123.0; |
| |
| EXPECT_EQ((rate_a + rate_b).bps(), kValueA + kValueB); |
| EXPECT_EQ((rate_a - rate_b).bps(), kValueA - kValueB); |
| |
| EXPECT_EQ((rate_a * kValueB).bps(), kValueA * kValueB); |
| EXPECT_EQ((rate_a * kInt32Value).bps(), kValueA * kInt32Value); |
| EXPECT_EQ((rate_a * kFloatValue).bps(), kValueA * kFloatValue); |
| |
| EXPECT_EQ(rate_a / rate_b, static_cast<double>(kValueA) / kValueB); |
| |
| EXPECT_EQ((rate_a / 10).bps(), kValueA / 10); |
| EXPECT_NEAR((rate_a / 0.5).bps(), kValueA * 2, 1); |
| |
| DataRate mutable_rate = DataRate::bps(kValueA); |
| mutable_rate += rate_b; |
| EXPECT_EQ(mutable_rate.bps(), kValueA + kValueB); |
| mutable_rate -= rate_a; |
| EXPECT_EQ(mutable_rate.bps(), kValueB); |
| } |
| |
| TEST(UnitConversionTest, DataRateAndDataSizeAndTimeDelta) { |
| const int64_t kSeconds = 5; |
| const int64_t kBitsPerSecond = 440; |
| const int64_t kBytes = 44000; |
| const TimeDelta delta_a = TimeDelta::seconds(kSeconds); |
| const DataRate rate_b = DataRate::bps(kBitsPerSecond); |
| const DataSize size_c = DataSize::bytes(kBytes); |
| EXPECT_EQ((delta_a * rate_b).bytes(), kSeconds * kBitsPerSecond / 8); |
| EXPECT_EQ((rate_b * delta_a).bytes(), kSeconds * kBitsPerSecond / 8); |
| EXPECT_EQ((size_c / delta_a).bps(), kBytes * 8 / kSeconds); |
| EXPECT_EQ((size_c / rate_b).seconds(), kBytes * 8 / kBitsPerSecond); |
| } |
| |
| TEST(UnitConversionTest, DataRateAndDataSizeAndFrequency) { |
| const int64_t kHertz = 30; |
| const int64_t kBitsPerSecond = 96000; |
| const int64_t kBytes = 1200; |
| const Frequency freq_a = Frequency::hertz(kHertz); |
| const DataRate rate_b = DataRate::bps(kBitsPerSecond); |
| const DataSize size_c = DataSize::bytes(kBytes); |
| EXPECT_EQ((freq_a * size_c).bps(), kHertz * kBytes * 8); |
| EXPECT_EQ((size_c * freq_a).bps(), kHertz * kBytes * 8); |
| EXPECT_EQ((rate_b / size_c).hertz<int64_t>(), kBitsPerSecond / kBytes / 8); |
| EXPECT_EQ((rate_b / freq_a).bytes(), kBitsPerSecond / kHertz / 8); |
| } |
| |
| TEST(UnitConversionTest, DivisionFailsOnLargeSize) { |
| // Note that the failure is expected since the current implementation is |
| // implementated in a way that does not support division of large sizes. If |
| // the implementation is changed, this test can safely be removed. |
| const int64_t kJustSmallEnoughForDivision = |
| std::numeric_limits<int64_t>::max() / 8000000; |
| const DataSize large_size = DataSize::bytes(kJustSmallEnoughForDivision); |
| const DataRate data_rate = DataRate::kbps(100); |
| const TimeDelta time_delta = TimeDelta::ms(100); |
| EXPECT_TRUE((large_size / data_rate).IsFinite()); |
| EXPECT_TRUE((large_size / time_delta).IsFinite()); |
| #if GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) && RTC_DCHECK_IS_ON |
| const int64_t kToolargeForDivision = kJustSmallEnoughForDivision + 1; |
| const DataSize too_large_size = DataSize::bytes(kToolargeForDivision); |
| EXPECT_DEATH(too_large_size / data_rate, ""); |
| EXPECT_DEATH(too_large_size / time_delta, ""); |
| #endif // GTEST_HAS_DEATH_TEST && !!defined(WEBRTC_ANDROID) && RTC_DCHECK_IS_ON |
| } |
| } // namespace test |
| } // namespace webrtc |