blob: c30b82f3ba6a125c7af689e793e77c5e85c9e051 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <time.h>
#include <algorithm>
#include <memory>
#include "webrtc/base/asyncsocket.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/diskcache.h"
#include "webrtc/base/httpclient.h"
#include "webrtc/base/httpcommon-inl.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/pathutils.h"
#include "webrtc/base/socketstream.h"
#include "webrtc/base/stringencode.h"
#include "webrtc/base/stringutils.h"
#include "webrtc/base/thread.h"
namespace rtc {
//////////////////////////////////////////////////////////////////////
// Helpers
//////////////////////////////////////////////////////////////////////
namespace {
const size_t kCacheHeader = 0;
const size_t kCacheBody = 1;
// Convert decimal string to integer
bool HttpStringToUInt(const std::string& str, size_t* val) {
RTC_DCHECK(NULL != val);
char* eos = NULL;
*val = strtoul(str.c_str(), &eos, 10);
return (*eos == '\0');
}
bool HttpShouldCache(const HttpTransaction& t) {
bool verb_allows_cache = (t.request.verb == HV_GET)
|| (t.request.verb == HV_HEAD);
bool is_range_response = t.response.hasHeader(HH_CONTENT_RANGE, NULL);
bool has_expires = t.response.hasHeader(HH_EXPIRES, NULL);
bool request_allows_cache =
has_expires || (std::string::npos != t.request.path.find('?'));
bool response_allows_cache =
has_expires || HttpCodeIsCacheable(t.response.scode);
bool may_cache = verb_allows_cache
&& request_allows_cache
&& response_allows_cache
&& !is_range_response;
std::string value;
if (t.response.hasHeader(HH_CACHE_CONTROL, &value)) {
HttpAttributeList directives;
HttpParseAttributes(value.data(), value.size(), directives);
// Response Directives Summary:
// public - always cacheable
// private - do not cache in a shared cache
// no-cache - may cache, but must revalidate whether fresh or stale
// no-store - sensitive information, do not cache or store in any way
// max-age - supplants Expires for staleness
// s-maxage - use as max-age for shared caches, ignore otherwise
// must-revalidate - may cache, but must revalidate after stale
// proxy-revalidate - shared cache must revalidate
if (HttpHasAttribute(directives, "no-store", NULL)) {
may_cache = false;
} else if (HttpHasAttribute(directives, "public", NULL)) {
may_cache = true;
}
}
return may_cache;
}
enum HttpCacheState {
HCS_FRESH, // In cache, may use
HCS_STALE, // In cache, must revalidate
HCS_NONE // Not in cache
};
HttpCacheState HttpGetCacheState(const HttpTransaction& t) {
// Temporaries
std::string s_temp;
time_t u_temp;
// Current time
time_t now = time(0);
HttpAttributeList cache_control;
if (t.response.hasHeader(HH_CACHE_CONTROL, &s_temp)) {
HttpParseAttributes(s_temp.data(), s_temp.size(), cache_control);
}
// Compute age of cache document
time_t date;
if (!t.response.hasHeader(HH_DATE, &s_temp)
|| !HttpDateToSeconds(s_temp, &date))
return HCS_NONE;
// TODO: Timestamp when cache request sent and response received?
time_t request_time = date;
time_t response_time = date;
time_t apparent_age = 0;
if (response_time > date) {
apparent_age = response_time - date;
}
time_t corrected_received_age = apparent_age;
size_t i_temp;
if (t.response.hasHeader(HH_AGE, &s_temp)
&& HttpStringToUInt(s_temp, (&i_temp))) {
u_temp = static_cast<time_t>(i_temp);
corrected_received_age = std::max(apparent_age, u_temp);
}
time_t response_delay = response_time - request_time;
time_t corrected_initial_age = corrected_received_age + response_delay;
time_t resident_time = now - response_time;
time_t current_age = corrected_initial_age + resident_time;
// Compute lifetime of document
time_t lifetime;
if (HttpHasAttribute(cache_control, "max-age", &s_temp)) {
lifetime = atoi(s_temp.c_str());
} else if (t.response.hasHeader(HH_EXPIRES, &s_temp)
&& HttpDateToSeconds(s_temp, &u_temp)) {
lifetime = u_temp - date;
} else if (t.response.hasHeader(HH_LAST_MODIFIED, &s_temp)
&& HttpDateToSeconds(s_temp, &u_temp)) {
// TODO: Issue warning 113 if age > 24 hours
lifetime = static_cast<size_t>(now - u_temp) / 10;
} else {
return HCS_STALE;
}
return (lifetime > current_age) ? HCS_FRESH : HCS_STALE;
}
enum HttpValidatorStrength {
HVS_NONE,
HVS_WEAK,
HVS_STRONG
};
HttpValidatorStrength
HttpRequestValidatorLevel(const HttpRequestData& request) {
if (HV_GET != request.verb)
return HVS_STRONG;
return request.hasHeader(HH_RANGE, NULL) ? HVS_STRONG : HVS_WEAK;
}
HttpValidatorStrength
HttpResponseValidatorLevel(const HttpResponseData& response) {
std::string value;
if (response.hasHeader(HH_ETAG, &value)) {
bool is_weak = (strnicmp(value.c_str(), "W/", 2) == 0);
return is_weak ? HVS_WEAK : HVS_STRONG;
}
if (response.hasHeader(HH_LAST_MODIFIED, &value)) {
time_t last_modified, date;
if (HttpDateToSeconds(value, &last_modified)
&& response.hasHeader(HH_DATE, &value)
&& HttpDateToSeconds(value, &date)
&& (last_modified + 60 < date)) {
return HVS_STRONG;
}
return HVS_WEAK;
}
return HVS_NONE;
}
std::string GetCacheID(const HttpRequestData& request) {
std::string id, url;
id.append(ToString(request.verb));
id.append("_");
request.getAbsoluteUri(&url);
id.append(url);
return id;
}
} // anonymous namespace
//////////////////////////////////////////////////////////////////////
// Public Helpers
//////////////////////////////////////////////////////////////////////
bool HttpWriteCacheHeaders(const HttpResponseData* response,
StreamInterface* output, size_t* size) {
size_t length = 0;
// Write all unknown and end-to-end headers to a cache file
for (HttpData::const_iterator it = response->begin();
it != response->end(); ++it) {
HttpHeader header;
if (FromString(header, it->first) && !HttpHeaderIsEndToEnd(header))
continue;
length += it->first.length() + 2 + it->second.length() + 2;
if (!output)
continue;
std::string formatted_header(it->first);
formatted_header.append(": ");
formatted_header.append(it->second);
formatted_header.append("\r\n");
StreamResult result = output->WriteAll(formatted_header.data(),
formatted_header.length(),
NULL, NULL);
if (SR_SUCCESS != result) {
return false;
}
}
if (output && (SR_SUCCESS != output->WriteAll("\r\n", 2, NULL, NULL))) {
return false;
}
length += 2;
if (size)
*size = length;
return true;
}
bool HttpReadCacheHeaders(StreamInterface* input, HttpResponseData* response,
HttpData::HeaderCombine combine) {
while (true) {
std::string formatted_header;
StreamResult result = input->ReadLine(&formatted_header);
if ((SR_EOS == result) || (1 == formatted_header.size())) {
break;
}
if (SR_SUCCESS != result) {
return false;
}
size_t end_of_name = formatted_header.find(':');
if (std::string::npos == end_of_name) {
LOG_F(LS_WARNING) << "Malformed cache header";
continue;
}
size_t start_of_value = end_of_name + 1;
size_t end_of_value = formatted_header.length();
while ((start_of_value < end_of_value)
&& isspace(formatted_header[start_of_value]))
++start_of_value;
while ((start_of_value < end_of_value)
&& isspace(formatted_header[end_of_value-1]))
--end_of_value;
size_t value_length = end_of_value - start_of_value;
std::string name(formatted_header.substr(0, end_of_name));
std::string value(formatted_header.substr(start_of_value, value_length));
response->changeHeader(name, value, combine);
}
return true;
}
//////////////////////////////////////////////////////////////////////
// HttpClient
//////////////////////////////////////////////////////////////////////
const size_t kDefaultRetries = 1;
const size_t kMaxRedirects = 5;
HttpClient::HttpClient(const std::string& agent, StreamPool* pool,
HttpTransaction* transaction)
: agent_(agent), pool_(pool),
transaction_(transaction), free_transaction_(false),
retries_(kDefaultRetries), attempt_(0), redirects_(0),
redirect_action_(REDIRECT_DEFAULT),
uri_form_(URI_DEFAULT), cache_(NULL), cache_state_(CS_READY),
resolver_(NULL) {
base_.notify(this);
if (NULL == transaction_) {
free_transaction_ = true;
transaction_ = new HttpTransaction;
}
}
HttpClient::~HttpClient() {
base_.notify(NULL);
base_.abort(HE_SHUTDOWN);
if (resolver_) {
resolver_->Destroy(false);
}
release();
if (free_transaction_)
delete transaction_;
}
void HttpClient::reset() {
server_.Clear();
request().clear(true);
response().clear(true);
context_.reset();
redirects_ = 0;
base_.abort(HE_OPERATION_CANCELLED);
}
void HttpClient::OnResolveResult(AsyncResolverInterface* resolver) {
if (resolver != resolver_) {
return;
}
int error = resolver_->GetError();
server_ = resolver_->address();
resolver_->Destroy(false);
resolver_ = NULL;
if (error != 0) {
LOG(LS_ERROR) << "Error " << error << " resolving name: "
<< server_;
onHttpComplete(HM_CONNECT, HE_CONNECT_FAILED);
} else {
connect();
}
}
void HttpClient::StartDNSLookup() {
resolver_ = new AsyncResolver();
resolver_->SignalDone.connect(this, &HttpClient::OnResolveResult);
resolver_->Start(server_);
}
void HttpClient::set_server(const SocketAddress& address) {
server_ = address;
// Setting 'Host' here allows it to be overridden before starting the request,
// if necessary.
request().setHeader(HH_HOST, HttpAddress(server_, false), true);
}
StreamInterface* HttpClient::GetDocumentStream() {
return base_.GetDocumentStream();
}
void HttpClient::start() {
if (base_.mode() != HM_NONE) {
// call reset() to abort an in-progress request
RTC_NOTREACHED();
return;
}
RTC_DCHECK(!IsCacheActive());
if (request().hasHeader(HH_TRANSFER_ENCODING, NULL)) {
// Exact size must be known on the client. Instead of using chunked
// encoding, wrap data with auto-caching file or memory stream.
RTC_NOTREACHED();
return;
}
attempt_ = 0;
// If no content has been specified, using length of 0.
request().setHeader(HH_CONTENT_LENGTH, "0", false);
if (!agent_.empty()) {
request().setHeader(HH_USER_AGENT, agent_, false);
}
UriForm uri_form = uri_form_;
if (PROXY_HTTPS == proxy_.type) {
// Proxies require absolute form
uri_form = URI_ABSOLUTE;
request().version = HVER_1_0;
request().setHeader(HH_PROXY_CONNECTION, "Keep-Alive", false);
} else {
request().setHeader(HH_CONNECTION, "Keep-Alive", false);
}
if (URI_ABSOLUTE == uri_form) {
// Convert to absolute uri form
std::string url;
if (request().getAbsoluteUri(&url)) {
request().path = url;
} else {
LOG(LS_WARNING) << "Couldn't obtain absolute uri";
}
} else if (URI_RELATIVE == uri_form) {
// Convert to relative uri form
std::string host, path;
if (request().getRelativeUri(&host, &path)) {
request().setHeader(HH_HOST, host);
request().path = path;
} else {
LOG(LS_WARNING) << "Couldn't obtain relative uri";
}
}
if ((NULL != cache_) && CheckCache()) {
return;
}
connect();
}
void HttpClient::connect() {
int stream_err;
if (server_.IsUnresolvedIP()) {
StartDNSLookup();
return;
}
StreamInterface* stream = pool_->RequestConnectedStream(server_, &stream_err);
if (stream == NULL) {
RTC_DCHECK(0 != stream_err);
LOG(LS_ERROR) << "RequestConnectedStream error: " << stream_err;
onHttpComplete(HM_CONNECT, HE_CONNECT_FAILED);
} else {
base_.attach(stream);
if (stream->GetState() == SS_OPEN) {
base_.send(&transaction_->request);
}
}
}
void HttpClient::prepare_get(const std::string& url) {
reset();
Url<char> purl(url);
set_server(SocketAddress(purl.host(), purl.port()));
request().verb = HV_GET;
request().path = purl.full_path();
}
void HttpClient::prepare_post(const std::string& url,
const std::string& content_type,
StreamInterface* request_doc) {
reset();
Url<char> purl(url);
set_server(SocketAddress(purl.host(), purl.port()));
request().verb = HV_POST;
request().path = purl.full_path();
request().setContent(content_type, request_doc);
}
void HttpClient::release() {
if (StreamInterface* stream = base_.detach()) {
pool_->ReturnConnectedStream(stream);
}
}
bool HttpClient::ShouldRedirect(std::string* location) const {
// TODO: Unittest redirection.
if ((REDIRECT_NEVER == redirect_action_)
|| !HttpCodeIsRedirection(response().scode)
|| !response().hasHeader(HH_LOCATION, location)
|| (redirects_ >= kMaxRedirects))
return false;
return (REDIRECT_ALWAYS == redirect_action_)
|| (HC_SEE_OTHER == response().scode)
|| (HV_HEAD == request().verb)
|| (HV_GET == request().verb);
}
bool HttpClient::BeginCacheFile() {
RTC_DCHECK(NULL != cache_);
RTC_DCHECK(CS_READY == cache_state_);
std::string id = GetCacheID(request());
CacheLock lock(cache_, id, true);
if (!lock.IsLocked()) {
LOG_F(LS_WARNING) << "Couldn't lock cache";
return false;
}
if (HE_NONE != WriteCacheHeaders(id)) {
return false;
}
std::unique_ptr<StreamInterface> stream(
cache_->WriteResource(id, kCacheBody));
if (!stream) {
LOG_F(LS_ERROR) << "Couldn't open body cache";
return false;
}
lock.Commit();
// Let's secretly replace the response document with Folgers Crystals,
// er, StreamTap, so that we can mirror the data to our cache.
StreamInterface* output = response().document.release();
if (!output) {
output = new NullStream;
}
StreamTap* tap = new StreamTap(output, stream.release());
response().document.reset(tap);
return true;
}
HttpError HttpClient::WriteCacheHeaders(const std::string& id) {
std::unique_ptr<StreamInterface> stream(
cache_->WriteResource(id, kCacheHeader));
if (!stream) {
LOG_F(LS_ERROR) << "Couldn't open header cache";
return HE_CACHE;
}
if (!HttpWriteCacheHeaders(&transaction_->response, stream.get(), NULL)) {
LOG_F(LS_ERROR) << "Couldn't write header cache";
return HE_CACHE;
}
return HE_NONE;
}
void HttpClient::CompleteCacheFile() {
// Restore previous response document
StreamTap* tap = static_cast<StreamTap*>(response().document.release());
response().document.reset(tap->Detach());
int error;
StreamResult result = tap->GetTapResult(&error);
// Delete the tap and cache stream (which completes cache unlock)
delete tap;
if (SR_SUCCESS != result) {
LOG(LS_ERROR) << "Cache file error: " << error;
cache_->DeleteResource(GetCacheID(request()));
}
}
bool HttpClient::CheckCache() {
RTC_DCHECK(NULL != cache_);
RTC_DCHECK(CS_READY == cache_state_);
std::string id = GetCacheID(request());
if (!cache_->HasResource(id)) {
// No cache file available
return false;
}
HttpError error = ReadCacheHeaders(id, true);
if (HE_NONE == error) {
switch (HttpGetCacheState(*transaction_)) {
case HCS_FRESH:
// Cache content is good, read from cache
break;
case HCS_STALE:
// Cache content may be acceptable. Issue a validation request.
if (PrepareValidate()) {
return false;
}
// Couldn't validate, fall through.
FALLTHROUGH();
case HCS_NONE:
// Cache content is not useable. Issue a regular request.
response().clear(false);
return false;
}
}
if (HE_NONE == error) {
error = ReadCacheBody(id);
cache_state_ = CS_READY;
}
if (HE_CACHE == error) {
LOG_F(LS_WARNING) << "Cache failure, continuing with normal request";
response().clear(false);
return false;
}
SignalHttpClientComplete(this, error);
return true;
}
HttpError HttpClient::ReadCacheHeaders(const std::string& id, bool override) {
std::unique_ptr<StreamInterface> stream(
cache_->ReadResource(id, kCacheHeader));
if (!stream) {
return HE_CACHE;
}
HttpData::HeaderCombine combine =
override ? HttpData::HC_REPLACE : HttpData::HC_AUTO;
if (!HttpReadCacheHeaders(stream.get(), &transaction_->response, combine)) {
LOG_F(LS_ERROR) << "Error reading cache headers";
return HE_CACHE;
}
response().scode = HC_OK;
return HE_NONE;
}
HttpError HttpClient::ReadCacheBody(const std::string& id) {
cache_state_ = CS_READING;
HttpError error = HE_NONE;
size_t data_size;
std::unique_ptr<StreamInterface> stream(cache_->ReadResource(id, kCacheBody));
if (!stream || !stream->GetAvailable(&data_size)) {
LOG_F(LS_ERROR) << "Unavailable cache body";
error = HE_CACHE;
} else {
error = OnHeaderAvailable(false, false, data_size);
}
if ((HE_NONE == error)
&& (HV_HEAD != request().verb)
&& response().document) {
// Allocate on heap to not explode the stack.
const int array_size = 1024 * 64;
std::unique_ptr<char[]> buffer(new char[array_size]);
StreamResult result = Flow(stream.get(), buffer.get(), array_size,
response().document.get());
if (SR_SUCCESS != result) {
error = HE_STREAM;
}
}
return error;
}
bool HttpClient::PrepareValidate() {
RTC_DCHECK(CS_READY == cache_state_);
// At this point, request() contains the pending request, and response()
// contains the cached response headers. Reformat the request to validate
// the cached content.
HttpValidatorStrength vs_required = HttpRequestValidatorLevel(request());
HttpValidatorStrength vs_available = HttpResponseValidatorLevel(response());
if (vs_available < vs_required) {
return false;
}
std::string value;
if (response().hasHeader(HH_ETAG, &value)) {
request().addHeader(HH_IF_NONE_MATCH, value);
}
if (response().hasHeader(HH_LAST_MODIFIED, &value)) {
request().addHeader(HH_IF_MODIFIED_SINCE, value);
}
response().clear(false);
cache_state_ = CS_VALIDATING;
return true;
}
HttpError HttpClient::CompleteValidate() {
RTC_DCHECK(CS_VALIDATING == cache_state_);
std::string id = GetCacheID(request());
// Merge cached headers with new headers
HttpError error = ReadCacheHeaders(id, false);
if (HE_NONE != error) {
// Rewrite merged headers to cache
CacheLock lock(cache_, id);
error = WriteCacheHeaders(id);
}
if (HE_NONE != error) {
error = ReadCacheBody(id);
}
return error;
}
HttpError HttpClient::OnHeaderAvailable(bool ignore_data, bool chunked,
size_t data_size) {
// If we are ignoring the data, this is an intermediate header.
// TODO: don't signal intermediate headers. Instead, do all header-dependent
// processing now, and either set up the next request, or fail outright.
// TODO: by default, only write response documents with a success code.
SignalHeaderAvailable(this, !ignore_data, ignore_data ? 0 : data_size);
if (!ignore_data && !chunked && (data_size != SIZE_UNKNOWN)
&& response().document) {
// Attempt to pre-allocate space for the downloaded data.
if (!response().document->ReserveSize(data_size)) {
return HE_OVERFLOW;
}
}
return HE_NONE;
}
//
// HttpBase Implementation
//
HttpError HttpClient::onHttpHeaderComplete(bool chunked, size_t& data_size) {
if (CS_VALIDATING == cache_state_) {
if (HC_NOT_MODIFIED == response().scode) {
return CompleteValidate();
}
// Should we remove conditional headers from request?
cache_state_ = CS_READY;
cache_->DeleteResource(GetCacheID(request()));
// Continue processing response as normal
}
RTC_DCHECK(!IsCacheActive());
if ((request().verb == HV_HEAD) || !HttpCodeHasBody(response().scode)) {
// HEAD requests and certain response codes contain no body
data_size = 0;
}
if (ShouldRedirect(NULL)
|| ((HC_PROXY_AUTHENTICATION_REQUIRED == response().scode)
&& (PROXY_HTTPS == proxy_.type))) {
// We're going to issue another request, so ignore the incoming data.
base_.set_ignore_data(true);
}
HttpError error = OnHeaderAvailable(base_.ignore_data(), chunked, data_size);
if (HE_NONE != error) {
return error;
}
if ((NULL != cache_)
&& !base_.ignore_data()
&& HttpShouldCache(*transaction_)) {
if (BeginCacheFile()) {
cache_state_ = CS_WRITING;
}
}
return HE_NONE;
}
void HttpClient::onHttpComplete(HttpMode mode, HttpError err) {
if (((HE_DISCONNECTED == err) || (HE_CONNECT_FAILED == err)
|| (HE_SOCKET_ERROR == err))
&& (HC_INTERNAL_SERVER_ERROR == response().scode)
&& (attempt_ < retries_)) {
// If the response code has not changed from the default, then we haven't
// received anything meaningful from the server, so we are eligible for a
// retry.
++attempt_;
if (request().document && !request().document->Rewind()) {
// Unable to replay the request document.
err = HE_STREAM;
} else {
release();
connect();
return;
}
} else if (err != HE_NONE) {
// fall through
} else if (mode == HM_CONNECT) {
base_.send(&transaction_->request);
return;
} else if ((mode == HM_SEND) || HttpCodeIsInformational(response().scode)) {
// If you're interested in informational headers, catch
// SignalHeaderAvailable.
base_.recv(&transaction_->response);
return;
} else {
if (!HttpShouldKeepAlive(response())) {
LOG(LS_VERBOSE) << "HttpClient: closing socket";
base_.stream()->Close();
}
std::string location;
if (ShouldRedirect(&location)) {
Url<char> purl(location);
set_server(SocketAddress(purl.host(), purl.port()));
request().path = purl.full_path();
if (response().scode == HC_SEE_OTHER) {
request().verb = HV_GET;
request().clearHeader(HH_CONTENT_TYPE);
request().clearHeader(HH_CONTENT_LENGTH);
request().document.reset();
} else if (request().document && !request().document->Rewind()) {
// Unable to replay the request document.
RTC_DCHECK(REDIRECT_ALWAYS == redirect_action_);
err = HE_STREAM;
}
if (err == HE_NONE) {
++redirects_;
context_.reset();
response().clear(false);
release();
start();
return;
}
} else if ((HC_PROXY_AUTHENTICATION_REQUIRED == response().scode)
&& (PROXY_HTTPS == proxy_.type)) {
std::string authorization, auth_method;
HttpData::const_iterator begin = response().begin(HH_PROXY_AUTHENTICATE);
HttpData::const_iterator end = response().end(HH_PROXY_AUTHENTICATE);
for (HttpData::const_iterator it = begin; it != end; ++it) {
HttpAuthContext *context = context_.get();
HttpAuthResult res = HttpAuthenticate(
it->second.data(), it->second.size(),
proxy_.address,
ToString(request().verb), request().path,
proxy_.username, proxy_.password,
context, authorization, auth_method);
context_.reset(context);
if (res == HAR_RESPONSE) {
request().setHeader(HH_PROXY_AUTHORIZATION, authorization);
if (request().document && !request().document->Rewind()) {
err = HE_STREAM;
} else {
// Explicitly do not reset the HttpAuthContext
response().clear(false);
// TODO: Reuse socket when authenticating?
release();
start();
return;
}
} else if (res == HAR_IGNORE) {
LOG(INFO) << "Ignoring Proxy-Authenticate: " << auth_method;
continue;
} else {
break;
}
}
}
}
if (CS_WRITING == cache_state_) {
CompleteCacheFile();
cache_state_ = CS_READY;
} else if (CS_READING == cache_state_) {
cache_state_ = CS_READY;
}
release();
SignalHttpClientComplete(this, err);
}
void HttpClient::onHttpClosed(HttpError err) {
// This shouldn't occur, since we return the stream to the pool upon command
// completion.
RTC_NOTREACHED();
}
//////////////////////////////////////////////////////////////////////
// HttpClientDefault
//////////////////////////////////////////////////////////////////////
HttpClientDefault::HttpClientDefault(SocketFactory* factory,
const std::string& agent,
HttpTransaction* transaction)
: ReuseSocketPool(factory ? factory : Thread::Current()->socketserver()),
HttpClient(agent, NULL, transaction) {
set_pool(this);
}
//////////////////////////////////////////////////////////////////////
} // namespace rtc