blob: 5436df8f99870882e7f8d4d15ebf2cc0c80ac959 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/video_stream_encoder.h"
#include <algorithm>
#include <limits>
#include <memory>
#include <tuple>
#include <utility>
#include "absl/memory/memory.h"
#include "api/field_trials_view.h"
#include "api/rtp_parameters.h"
#include "api/task_queue/default_task_queue_factory.h"
#include "api/task_queue/task_queue_base.h"
#include "api/task_queue/task_queue_factory.h"
#include "api/test/mock_fec_controller_override.h"
#include "api/test/mock_video_encoder.h"
#include "api/test/mock_video_encoder_factory.h"
#include "api/units/data_rate.h"
#include "api/video/builtin_video_bitrate_allocator_factory.h"
#include "api/video/i420_buffer.h"
#include "api/video/nv12_buffer.h"
#include "api/video/video_adaptation_reason.h"
#include "api/video/video_bitrate_allocation.h"
#include "api/video_codecs/sdp_video_format.h"
#include "api/video_codecs/video_codec.h"
#include "api/video_codecs/video_encoder.h"
#include "api/video_codecs/vp8_temporal_layers.h"
#include "api/video_codecs/vp8_temporal_layers_factory.h"
#include "call/adaptation/test/fake_adaptation_constraint.h"
#include "call/adaptation/test/fake_resource.h"
#include "common_video/h264/h264_common.h"
#include "common_video/include/video_frame_buffer.h"
#include "media/base/video_adapter.h"
#include "media/engine/webrtc_video_engine.h"
#include "modules/video_coding/codecs/av1/libaom_av1_encoder.h"
#include "modules/video_coding/codecs/h264/include/h264.h"
#include "modules/video_coding/codecs/multiplex/include/multiplex_encoder_adapter.h"
#include "modules/video_coding/codecs/vp8/include/vp8.h"
#include "modules/video_coding/codecs/vp9/include/vp9.h"
#include "modules/video_coding/codecs/vp9/include/vp9_globals.h"
#include "modules/video_coding/codecs/vp9/svc_config.h"
#include "modules/video_coding/utility/quality_scaler.h"
#include "modules/video_coding/utility/simulcast_rate_allocator.h"
#include "rtc_base/event.h"
#include "rtc_base/experiments/encoder_info_settings.h"
#include "rtc_base/gunit.h"
#include "rtc_base/logging.h"
#include "rtc_base/ref_counted_object.h"
#include "rtc_base/synchronization/mutex.h"
#include "system_wrappers/include/metrics.h"
#include "test/encoder_settings.h"
#include "test/fake_encoder.h"
#include "test/frame_forwarder.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/mappable_native_buffer.h"
#include "test/scoped_key_value_config.h"
#include "test/time_controller/simulated_time_controller.h"
#include "test/video_encoder_nullable_proxy_factory.h"
#include "test/video_encoder_proxy_factory.h"
#include "video/frame_cadence_adapter.h"
#include "video/send_statistics_proxy.h"
namespace webrtc {
using ::testing::_;
using ::testing::AllOf;
using ::testing::Eq;
using ::testing::Field;
using ::testing::Ge;
using ::testing::Gt;
using ::testing::Invoke;
using ::testing::Le;
using ::testing::Lt;
using ::testing::Matcher;
using ::testing::Mock;
using ::testing::NiceMock;
using ::testing::Optional;
using ::testing::Return;
using ::testing::SizeIs;
using ::testing::StrictMock;
namespace {
const int kMinPixelsPerFrame = 320 * 180;
const int kQpLow = 1;
const int kQpHigh = 2;
const int kMinFramerateFps = 2;
const int kMinBalancedFramerateFps = 7;
const int64_t kFrameTimeoutMs = 100;
const size_t kMaxPayloadLength = 1440;
const DataRate kTargetBitrate = DataRate::KilobitsPerSec(1000);
const DataRate kLowTargetBitrate = DataRate::KilobitsPerSec(100);
const DataRate kStartBitrate = DataRate::KilobitsPerSec(600);
const DataRate kSimulcastTargetBitrate = DataRate::KilobitsPerSec(3150);
const int kMaxInitialFramedrop = 4;
const int kDefaultFramerate = 30;
const int64_t kFrameIntervalMs = rtc::kNumMillisecsPerSec / kDefaultFramerate;
const int64_t kProcessIntervalMs = 1000;
const VideoEncoder::ResolutionBitrateLimits
kEncoderBitrateLimits540p(960 * 540, 100 * 1000, 100 * 1000, 2000 * 1000);
const VideoEncoder::ResolutionBitrateLimits
kEncoderBitrateLimits720p(1280 * 720, 200 * 1000, 200 * 1000, 4000 * 1000);
uint8_t kOptimalSps[] = {0, 0, 0, 1, H264::NaluType::kSps,
0x00, 0x00, 0x03, 0x03, 0xF4,
0x05, 0x03, 0xC7, 0xE0, 0x1B,
0x41, 0x10, 0x8D, 0x00};
const uint8_t kCodedFrameVp8Qp25[] = {
0x10, 0x02, 0x00, 0x9d, 0x01, 0x2a, 0x10, 0x00, 0x10, 0x00,
0x02, 0x47, 0x08, 0x85, 0x85, 0x88, 0x85, 0x84, 0x88, 0x0c,
0x82, 0x00, 0x0c, 0x0d, 0x60, 0x00, 0xfe, 0xfc, 0x5c, 0xd0};
VideoFrame CreateSimpleNV12Frame() {
return VideoFrame::Builder()
.set_video_frame_buffer(rtc::make_ref_counted<NV12Buffer>(
/*width=*/16, /*height=*/16))
.build();
}
void PassAFrame(
TaskQueueBase* encoder_queue,
FrameCadenceAdapterInterface::Callback* video_stream_encoder_callback,
int64_t ntp_time_ms) {
encoder_queue->PostTask(
ToQueuedTask([video_stream_encoder_callback, ntp_time_ms] {
video_stream_encoder_callback->OnFrame(Timestamp::Millis(ntp_time_ms),
1, CreateSimpleNV12Frame());
}));
}
class TestBuffer : public webrtc::I420Buffer {
public:
TestBuffer(rtc::Event* event, int width, int height)
: I420Buffer(width, height), event_(event) {}
private:
friend class rtc::RefCountedObject<TestBuffer>;
~TestBuffer() override {
if (event_)
event_->Set();
}
rtc::Event* const event_;
};
// A fake native buffer that can't be converted to I420. Upon scaling, it
// produces another FakeNativeBuffer.
class FakeNativeBuffer : public webrtc::VideoFrameBuffer {
public:
FakeNativeBuffer(rtc::Event* event, int width, int height)
: event_(event), width_(width), height_(height) {}
webrtc::VideoFrameBuffer::Type type() const override { return Type::kNative; }
int width() const override { return width_; }
int height() const override { return height_; }
rtc::scoped_refptr<webrtc::I420BufferInterface> ToI420() override {
return nullptr;
}
rtc::scoped_refptr<VideoFrameBuffer> CropAndScale(
int offset_x,
int offset_y,
int crop_width,
int crop_height,
int scaled_width,
int scaled_height) override {
return rtc::make_ref_counted<FakeNativeBuffer>(nullptr, scaled_width,
scaled_height);
}
private:
friend class rtc::RefCountedObject<FakeNativeBuffer>;
~FakeNativeBuffer() override {
if (event_)
event_->Set();
}
rtc::Event* const event_;
const int width_;
const int height_;
};
// A fake native buffer that is backed by an NV12 buffer.
class FakeNV12NativeBuffer : public webrtc::VideoFrameBuffer {
public:
FakeNV12NativeBuffer(rtc::Event* event, int width, int height)
: nv12_buffer_(NV12Buffer::Create(width, height)), event_(event) {}
webrtc::VideoFrameBuffer::Type type() const override { return Type::kNative; }
int width() const override { return nv12_buffer_->width(); }
int height() const override { return nv12_buffer_->height(); }
rtc::scoped_refptr<webrtc::I420BufferInterface> ToI420() override {
return nv12_buffer_->ToI420();
}
rtc::scoped_refptr<VideoFrameBuffer> GetMappedFrameBuffer(
rtc::ArrayView<VideoFrameBuffer::Type> types) override {
if (absl::c_find(types, Type::kNV12) != types.end()) {
return nv12_buffer_;
}
return nullptr;
}
const NV12BufferInterface* GetNV12() const { return nv12_buffer_.get(); }
private:
friend class rtc::RefCountedObject<FakeNV12NativeBuffer>;
~FakeNV12NativeBuffer() override {
if (event_)
event_->Set();
}
rtc::scoped_refptr<NV12Buffer> nv12_buffer_;
rtc::Event* const event_;
};
class CpuOveruseDetectorProxy : public OveruseFrameDetector {
public:
CpuOveruseDetectorProxy(CpuOveruseMetricsObserver* metrics_observer,
const FieldTrialsView& field_trials)
: OveruseFrameDetector(metrics_observer, field_trials),
last_target_framerate_fps_(-1),
framerate_updated_event_(true /* manual_reset */,
false /* initially_signaled */) {}
virtual ~CpuOveruseDetectorProxy() {}
void OnTargetFramerateUpdated(int framerate_fps) override {
MutexLock lock(&lock_);
last_target_framerate_fps_ = framerate_fps;
OveruseFrameDetector::OnTargetFramerateUpdated(framerate_fps);
framerate_updated_event_.Set();
}
int GetLastTargetFramerate() {
MutexLock lock(&lock_);
return last_target_framerate_fps_;
}
CpuOveruseOptions GetOptions() { return options_; }
rtc::Event* framerate_updated_event() { return &framerate_updated_event_; }
private:
Mutex lock_;
int last_target_framerate_fps_ RTC_GUARDED_BY(lock_);
rtc::Event framerate_updated_event_;
};
class FakeVideoSourceRestrictionsListener
: public VideoSourceRestrictionsListener {
public:
FakeVideoSourceRestrictionsListener()
: was_restrictions_updated_(false), restrictions_updated_event_() {}
~FakeVideoSourceRestrictionsListener() override {
RTC_DCHECK(was_restrictions_updated_);
}
rtc::Event* restrictions_updated_event() {
return &restrictions_updated_event_;
}
// VideoSourceRestrictionsListener implementation.
void OnVideoSourceRestrictionsUpdated(
VideoSourceRestrictions restrictions,
const VideoAdaptationCounters& adaptation_counters,
rtc::scoped_refptr<Resource> reason,
const VideoSourceRestrictions& unfiltered_restrictions) override {
was_restrictions_updated_ = true;
restrictions_updated_event_.Set();
}
private:
bool was_restrictions_updated_;
rtc::Event restrictions_updated_event_;
};
auto WantsFps(Matcher<int> fps_matcher) {
return Field("max_framerate_fps", &rtc::VideoSinkWants::max_framerate_fps,
fps_matcher);
}
auto WantsMaxPixels(Matcher<int> max_pixel_matcher) {
return Field("max_pixel_count", &rtc::VideoSinkWants::max_pixel_count,
AllOf(max_pixel_matcher, Gt(0)));
}
auto ResolutionMax() {
return AllOf(
WantsMaxPixels(Eq(std::numeric_limits<int>::max())),
Field("target_pixel_count", &rtc::VideoSinkWants::target_pixel_count,
Eq(absl::nullopt)));
}
auto FpsMax() {
return WantsFps(Eq(kDefaultFramerate));
}
auto FpsUnlimited() {
return WantsFps(Eq(std::numeric_limits<int>::max()));
}
auto FpsMatchesResolutionMax(Matcher<int> fps_matcher) {
return AllOf(WantsFps(fps_matcher), ResolutionMax());
}
auto FpsMaxResolutionMatches(Matcher<int> pixel_matcher) {
return AllOf(FpsMax(), WantsMaxPixels(pixel_matcher));
}
auto FpsMaxResolutionMax() {
return AllOf(FpsMax(), ResolutionMax());
}
auto UnlimitedSinkWants() {
return AllOf(FpsUnlimited(), ResolutionMax());
}
auto FpsInRangeForPixelsInBalanced(int last_frame_pixels) {
Matcher<int> fps_range_matcher;
if (last_frame_pixels <= 320 * 240) {
fps_range_matcher = AllOf(Ge(7), Le(10));
} else if (last_frame_pixels <= 480 * 360) {
fps_range_matcher = AllOf(Ge(10), Le(15));
} else if (last_frame_pixels <= 640 * 480) {
fps_range_matcher = Ge(15);
} else {
fps_range_matcher = Eq(kDefaultFramerate);
}
return Field("max_framerate_fps", &rtc::VideoSinkWants::max_framerate_fps,
fps_range_matcher);
}
auto FpsEqResolutionEqTo(const rtc::VideoSinkWants& other_wants) {
return AllOf(WantsFps(Eq(other_wants.max_framerate_fps)),
WantsMaxPixels(Eq(other_wants.max_pixel_count)));
}
auto FpsMaxResolutionLt(const rtc::VideoSinkWants& other_wants) {
return AllOf(FpsMax(), WantsMaxPixels(Lt(other_wants.max_pixel_count)));
}
auto FpsMaxResolutionGt(const rtc::VideoSinkWants& other_wants) {
return AllOf(FpsMax(), WantsMaxPixels(Gt(other_wants.max_pixel_count)));
}
auto FpsLtResolutionEq(const rtc::VideoSinkWants& other_wants) {
return AllOf(WantsFps(Lt(other_wants.max_framerate_fps)),
WantsMaxPixels(Eq(other_wants.max_pixel_count)));
}
auto FpsGtResolutionEq(const rtc::VideoSinkWants& other_wants) {
return AllOf(WantsFps(Gt(other_wants.max_framerate_fps)),
WantsMaxPixels(Eq(other_wants.max_pixel_count)));
}
auto FpsEqResolutionLt(const rtc::VideoSinkWants& other_wants) {
return AllOf(WantsFps(Eq(other_wants.max_framerate_fps)),
WantsMaxPixels(Lt(other_wants.max_pixel_count)));
}
auto FpsEqResolutionGt(const rtc::VideoSinkWants& other_wants) {
return AllOf(WantsFps(Eq(other_wants.max_framerate_fps)),
WantsMaxPixels(Gt(other_wants.max_pixel_count)));
}
class VideoStreamEncoderUnderTest : public VideoStreamEncoder {
public:
VideoStreamEncoderUnderTest(
TimeController* time_controller,
std::unique_ptr<FrameCadenceAdapterInterface> cadence_adapter,
std::unique_ptr<webrtc::TaskQueueBase, webrtc::TaskQueueDeleter>
encoder_queue,
SendStatisticsProxy* stats_proxy,
const VideoStreamEncoderSettings& settings,
VideoStreamEncoder::BitrateAllocationCallbackType
allocation_callback_type,
const FieldTrialsView& field_trials,
int num_cores)
: VideoStreamEncoder(
time_controller->GetClock(),
num_cores,
stats_proxy,
settings,
std::unique_ptr<OveruseFrameDetector>(
overuse_detector_proxy_ =
new CpuOveruseDetectorProxy(stats_proxy, field_trials)),
std::move(cadence_adapter),
std::move(encoder_queue),
allocation_callback_type,
field_trials),
time_controller_(time_controller),
fake_cpu_resource_(FakeResource::Create("FakeResource[CPU]")),
fake_quality_resource_(FakeResource::Create("FakeResource[QP]")),
fake_adaptation_constraint_("FakeAdaptationConstraint") {
InjectAdaptationResource(fake_quality_resource_,
VideoAdaptationReason::kQuality);
InjectAdaptationResource(fake_cpu_resource_, VideoAdaptationReason::kCpu);
InjectAdaptationConstraint(&fake_adaptation_constraint_);
}
void SetSourceAndWaitForRestrictionsUpdated(
rtc::VideoSourceInterface<VideoFrame>* source,
const DegradationPreference& degradation_preference) {
FakeVideoSourceRestrictionsListener listener;
AddRestrictionsListenerForTesting(&listener);
SetSource(source, degradation_preference);
listener.restrictions_updated_event()->Wait(5000);
RemoveRestrictionsListenerForTesting(&listener);
}
void SetSourceAndWaitForFramerateUpdated(
rtc::VideoSourceInterface<VideoFrame>* source,
const DegradationPreference& degradation_preference) {
overuse_detector_proxy_->framerate_updated_event()->Reset();
SetSource(source, degradation_preference);
overuse_detector_proxy_->framerate_updated_event()->Wait(5000);
}
void OnBitrateUpdatedAndWaitForManagedResources(
DataRate target_bitrate,
DataRate stable_target_bitrate,
DataRate link_allocation,
uint8_t fraction_lost,
int64_t round_trip_time_ms,
double cwnd_reduce_ratio) {
OnBitrateUpdated(target_bitrate, stable_target_bitrate, link_allocation,
fraction_lost, round_trip_time_ms, cwnd_reduce_ratio);
// Bitrate is updated on the encoder queue.
WaitUntilTaskQueueIsIdle();
}
// This is used as a synchronisation mechanism, to make sure that the
// encoder queue is not blocked before we start sending it frames.
void WaitUntilTaskQueueIsIdle() {
time_controller_->AdvanceTime(TimeDelta::Zero());
}
// Triggers resource usage measurements on the fake CPU resource.
void TriggerCpuOveruse() {
rtc::Event event;
encoder_queue()->PostTask([this, &event] {
fake_cpu_resource_->SetUsageState(ResourceUsageState::kOveruse);
event.Set();
});
ASSERT_TRUE(event.Wait(5000));
time_controller_->AdvanceTime(TimeDelta::Zero());
}
void TriggerCpuUnderuse() {
rtc::Event event;
encoder_queue()->PostTask([this, &event] {
fake_cpu_resource_->SetUsageState(ResourceUsageState::kUnderuse);
event.Set();
});
ASSERT_TRUE(event.Wait(5000));
time_controller_->AdvanceTime(TimeDelta::Zero());
}
// Triggers resource usage measurements on the fake quality resource.
void TriggerQualityLow() {
rtc::Event event;
encoder_queue()->PostTask([this, &event] {
fake_quality_resource_->SetUsageState(ResourceUsageState::kOveruse);
event.Set();
});
ASSERT_TRUE(event.Wait(5000));
time_controller_->AdvanceTime(TimeDelta::Zero());
}
void TriggerQualityHigh() {
rtc::Event event;
encoder_queue()->PostTask([this, &event] {
fake_quality_resource_->SetUsageState(ResourceUsageState::kUnderuse);
event.Set();
});
ASSERT_TRUE(event.Wait(5000));
time_controller_->AdvanceTime(TimeDelta::Zero());
}
TimeController* const time_controller_;
CpuOveruseDetectorProxy* overuse_detector_proxy_;
rtc::scoped_refptr<FakeResource> fake_cpu_resource_;
rtc::scoped_refptr<FakeResource> fake_quality_resource_;
FakeAdaptationConstraint fake_adaptation_constraint_;
};
// Simulates simulcast behavior and makes highest stream resolutions divisible
// by 4.
class CroppingVideoStreamFactory
: public VideoEncoderConfig::VideoStreamFactoryInterface {
public:
CroppingVideoStreamFactory() {}
private:
std::vector<VideoStream> CreateEncoderStreams(
int width,
int height,
const VideoEncoderConfig& encoder_config) override {
std::vector<VideoStream> streams = test::CreateVideoStreams(
width - width % 4, height - height % 4, encoder_config);
return streams;
}
};
class AdaptingFrameForwarder : public test::FrameForwarder {
public:
explicit AdaptingFrameForwarder(TimeController* time_controller)
: time_controller_(time_controller), adaptation_enabled_(false) {}
~AdaptingFrameForwarder() override {}
void set_adaptation_enabled(bool enabled) {
MutexLock lock(&mutex_);
adaptation_enabled_ = enabled;
}
bool adaption_enabled() const {
MutexLock lock(&mutex_);
return adaptation_enabled_;
}
// The "last wants" is a snapshot of the previous rtc::VideoSinkWants where
// the resolution or frame rate was different than it is currently. If
// something else is modified, such as encoder resolutions, but the resolution
// and frame rate stays the same, last wants is not updated.
rtc::VideoSinkWants last_wants() const {
MutexLock lock(&mutex_);
return last_wants_;
}
absl::optional<int> last_sent_width() const { return last_width_; }
absl::optional<int> last_sent_height() const { return last_height_; }
void IncomingCapturedFrame(const VideoFrame& video_frame) override {
RTC_DCHECK(time_controller_->GetMainThread()->IsCurrent());
time_controller_->AdvanceTime(TimeDelta::Zero());
int cropped_width = 0;
int cropped_height = 0;
int out_width = 0;
int out_height = 0;
if (adaption_enabled()) {
RTC_DLOG(LS_INFO) << "IncomingCapturedFrame: AdaptFrameResolution()"
<< "w=" << video_frame.width()
<< "h=" << video_frame.height();
if (adapter_.AdaptFrameResolution(
video_frame.width(), video_frame.height(),
video_frame.timestamp_us() * 1000, &cropped_width,
&cropped_height, &out_width, &out_height)) {
VideoFrame adapted_frame =
VideoFrame::Builder()
.set_video_frame_buffer(rtc::make_ref_counted<TestBuffer>(
nullptr, out_width, out_height))
.set_ntp_time_ms(video_frame.ntp_time_ms())
.set_timestamp_ms(99)
.set_rotation(kVideoRotation_0)
.build();
if (video_frame.has_update_rect()) {
adapted_frame.set_update_rect(
video_frame.update_rect().ScaleWithFrame(
video_frame.width(), video_frame.height(), 0, 0,
video_frame.width(), video_frame.height(), out_width,
out_height));
}
test::FrameForwarder::IncomingCapturedFrame(adapted_frame);
last_width_.emplace(adapted_frame.width());
last_height_.emplace(adapted_frame.height());
} else {
last_width_ = absl::nullopt;
last_height_ = absl::nullopt;
}
} else {
RTC_DLOG(LS_INFO) << "IncomingCapturedFrame: adaptation not enabled";
test::FrameForwarder::IncomingCapturedFrame(video_frame);
last_width_.emplace(video_frame.width());
last_height_.emplace(video_frame.height());
}
}
void OnOutputFormatRequest(int width, int height) {
absl::optional<std::pair<int, int>> target_aspect_ratio =
std::make_pair(width, height);
absl::optional<int> max_pixel_count = width * height;
absl::optional<int> max_fps;
adapter_.OnOutputFormatRequest(target_aspect_ratio, max_pixel_count,
max_fps);
}
void AddOrUpdateSink(rtc::VideoSinkInterface<VideoFrame>* sink,
const rtc::VideoSinkWants& wants) override {
MutexLock lock(&mutex_);
rtc::VideoSinkWants prev_wants = sink_wants_locked();
bool did_adapt =
prev_wants.max_pixel_count != wants.max_pixel_count ||
prev_wants.target_pixel_count != wants.target_pixel_count ||
prev_wants.max_framerate_fps != wants.max_framerate_fps;
if (did_adapt) {
last_wants_ = prev_wants;
}
adapter_.OnSinkWants(wants);
test::FrameForwarder::AddOrUpdateSinkLocked(sink, wants);
}
TimeController* const time_controller_;
cricket::VideoAdapter adapter_;
bool adaptation_enabled_ RTC_GUARDED_BY(mutex_);
rtc::VideoSinkWants last_wants_ RTC_GUARDED_BY(mutex_);
absl::optional<int> last_width_;
absl::optional<int> last_height_;
};
// TODO(nisse): Mock only VideoStreamEncoderObserver.
class MockableSendStatisticsProxy : public SendStatisticsProxy {
public:
MockableSendStatisticsProxy(Clock* clock,
const VideoSendStream::Config& config,
VideoEncoderConfig::ContentType content_type,
const FieldTrialsView& field_trials)
: SendStatisticsProxy(clock, config, content_type, field_trials) {}
VideoSendStream::Stats GetStats() override {
MutexLock lock(&lock_);
if (mock_stats_)
return *mock_stats_;
return SendStatisticsProxy::GetStats();
}
int GetInputFrameRate() const override {
MutexLock lock(&lock_);
if (mock_stats_)
return mock_stats_->input_frame_rate;
return SendStatisticsProxy::GetInputFrameRate();
}
void SetMockStats(const VideoSendStream::Stats& stats) {
MutexLock lock(&lock_);
mock_stats_.emplace(stats);
}
void ResetMockStats() {
MutexLock lock(&lock_);
mock_stats_.reset();
}
void SetDroppedFrameCallback(std::function<void(DropReason)> callback) {
on_frame_dropped_ = std::move(callback);
}
private:
void OnFrameDropped(DropReason reason) override {
SendStatisticsProxy::OnFrameDropped(reason);
if (on_frame_dropped_)
on_frame_dropped_(reason);
}
mutable Mutex lock_;
absl::optional<VideoSendStream::Stats> mock_stats_ RTC_GUARDED_BY(lock_);
std::function<void(DropReason)> on_frame_dropped_;
};
class SimpleVideoStreamEncoderFactory {
public:
class AdaptedVideoStreamEncoder : public VideoStreamEncoder {
public:
using VideoStreamEncoder::VideoStreamEncoder;
~AdaptedVideoStreamEncoder() { Stop(); }
};
class MockFakeEncoder : public test::FakeEncoder {
public:
using FakeEncoder::FakeEncoder;
MOCK_METHOD(CodecSpecificInfo,
EncodeHook,
(EncodedImage & encoded_image,
rtc::scoped_refptr<EncodedImageBuffer> buffer),
(override));
};
SimpleVideoStreamEncoderFactory() {
encoder_settings_.encoder_factory = &encoder_factory_;
encoder_settings_.bitrate_allocator_factory =
bitrate_allocator_factory_.get();
}
std::unique_ptr<AdaptedVideoStreamEncoder> CreateWithEncoderQueue(
std::unique_ptr<FrameCadenceAdapterInterface> zero_hertz_adapter,
std::unique_ptr<TaskQueueBase, TaskQueueDeleter> encoder_queue,
const FieldTrialsView* field_trials = nullptr) {
auto result = std::make_unique<AdaptedVideoStreamEncoder>(
time_controller_.GetClock(),
/*number_of_cores=*/1,
/*stats_proxy=*/stats_proxy_.get(), encoder_settings_,
std::make_unique<CpuOveruseDetectorProxy>(
/*stats_proxy=*/nullptr,
field_trials ? *field_trials : field_trials_),
std::move(zero_hertz_adapter), std::move(encoder_queue),
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoBitrateAllocation,
field_trials ? *field_trials : field_trials_);
result->SetSink(&sink_, /*rotation_applied=*/false);
return result;
}
std::unique_ptr<AdaptedVideoStreamEncoder> Create(
std::unique_ptr<FrameCadenceAdapterInterface> zero_hertz_adapter,
TaskQueueBase** encoder_queue_ptr = nullptr) {
auto encoder_queue =
time_controller_.GetTaskQueueFactory()->CreateTaskQueue(
"EncoderQueue", TaskQueueFactory::Priority::NORMAL);
if (encoder_queue_ptr)
*encoder_queue_ptr = encoder_queue.get();
return CreateWithEncoderQueue(std::move(zero_hertz_adapter),
std::move(encoder_queue));
}
void DepleteTaskQueues() { time_controller_.AdvanceTime(TimeDelta::Zero()); }
MockFakeEncoder& GetMockFakeEncoder() { return mock_fake_encoder_; }
GlobalSimulatedTimeController* GetTimeController() {
return &time_controller_;
}
private:
class NullEncoderSink : public VideoStreamEncoderInterface::EncoderSink {
public:
~NullEncoderSink() override = default;
void OnEncoderConfigurationChanged(
std::vector<VideoStream> streams,
bool is_svc,
VideoEncoderConfig::ContentType content_type,
int min_transmit_bitrate_bps) override {}
void OnBitrateAllocationUpdated(
const VideoBitrateAllocation& allocation) override {}
void OnVideoLayersAllocationUpdated(
VideoLayersAllocation allocation) override {}
Result OnEncodedImage(
const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info) override {
return Result(EncodedImageCallback::Result::OK);
}
};
test::ScopedKeyValueConfig field_trials_;
GlobalSimulatedTimeController time_controller_{Timestamp::Millis(0)};
std::unique_ptr<TaskQueueFactory> task_queue_factory_{
time_controller_.CreateTaskQueueFactory()};
std::unique_ptr<MockableSendStatisticsProxy> stats_proxy_ =
std::make_unique<MockableSendStatisticsProxy>(
time_controller_.GetClock(),
VideoSendStream::Config(nullptr),
webrtc::VideoEncoderConfig::ContentType::kRealtimeVideo,
field_trials_);
std::unique_ptr<VideoBitrateAllocatorFactory> bitrate_allocator_factory_ =
CreateBuiltinVideoBitrateAllocatorFactory();
VideoStreamEncoderSettings encoder_settings_{
VideoEncoder::Capabilities(/*loss_notification=*/false)};
MockFakeEncoder mock_fake_encoder_{time_controller_.GetClock()};
test::VideoEncoderProxyFactory encoder_factory_{&mock_fake_encoder_};
NullEncoderSink sink_;
};
class MockFrameCadenceAdapter : public FrameCadenceAdapterInterface {
public:
MOCK_METHOD(void, Initialize, (Callback * callback), (override));
MOCK_METHOD(void,
SetZeroHertzModeEnabled,
(absl::optional<ZeroHertzModeParams>),
(override));
MOCK_METHOD(void, OnFrame, (const VideoFrame&), (override));
MOCK_METHOD(absl::optional<uint32_t>, GetInputFrameRateFps, (), (override));
MOCK_METHOD(void, UpdateFrameRate, (), (override));
MOCK_METHOD(void,
UpdateLayerQualityConvergence,
(int spatial_index, bool converged),
(override));
MOCK_METHOD(void,
UpdateLayerStatus,
(int spatial_index, bool enabled),
(override));
MOCK_METHOD(void, ProcessKeyFrameRequest, (), (override));
};
class MockEncoderSelector
: public VideoEncoderFactory::EncoderSelectorInterface {
public:
MOCK_METHOD(void,
OnCurrentEncoder,
(const SdpVideoFormat& format),
(override));
MOCK_METHOD(absl::optional<SdpVideoFormat>,
OnAvailableBitrate,
(const DataRate& rate),
(override));
MOCK_METHOD(absl::optional<SdpVideoFormat>,
OnResolutionChange,
(const RenderResolution& resolution),
(override));
MOCK_METHOD(absl::optional<SdpVideoFormat>, OnEncoderBroken, (), (override));
};
class MockVideoSourceInterface : public rtc::VideoSourceInterface<VideoFrame> {
public:
MOCK_METHOD(void,
AddOrUpdateSink,
(rtc::VideoSinkInterface<VideoFrame>*,
const rtc::VideoSinkWants&),
(override));
MOCK_METHOD(void,
RemoveSink,
(rtc::VideoSinkInterface<VideoFrame>*),
(override));
MOCK_METHOD(void, RequestRefreshFrame, (), (override));
};
} // namespace
class VideoStreamEncoderTest : public ::testing::Test {
public:
static const int kDefaultTimeoutMs = 1000;
VideoStreamEncoderTest()
: video_send_config_(VideoSendStream::Config(nullptr)),
codec_width_(320),
codec_height_(240),
max_framerate_(kDefaultFramerate),
fake_encoder_(&time_controller_),
encoder_factory_(&fake_encoder_),
stats_proxy_(new MockableSendStatisticsProxy(
time_controller_.GetClock(),
video_send_config_,
webrtc::VideoEncoderConfig::ContentType::kRealtimeVideo,
field_trials_)),
sink_(&time_controller_, &fake_encoder_) {}
void SetUp() override {
metrics::Reset();
video_send_config_ = VideoSendStream::Config(nullptr);
video_send_config_.encoder_settings.encoder_factory = &encoder_factory_;
video_send_config_.encoder_settings.bitrate_allocator_factory =
&bitrate_allocator_factory_;
video_send_config_.rtp.payload_name = "FAKE";
video_send_config_.rtp.payload_type = 125;
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
EXPECT_EQ(1u, video_encoder_config.simulcast_layers.size());
video_encoder_config.simulcast_layers[0].num_temporal_layers = 1;
video_encoder_config.simulcast_layers[0].max_framerate = max_framerate_;
video_encoder_config_ = video_encoder_config.Copy();
ConfigureEncoder(std::move(video_encoder_config));
}
void ConfigureEncoder(
VideoEncoderConfig video_encoder_config,
VideoStreamEncoder::BitrateAllocationCallbackType
allocation_callback_type =
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoBitrateAllocationWhenScreenSharing,
int num_cores = 1) {
if (video_stream_encoder_)
video_stream_encoder_->Stop();
auto encoder_queue = GetTaskQueueFactory()->CreateTaskQueue(
"EncoderQueue", TaskQueueFactory::Priority::NORMAL);
TaskQueueBase* encoder_queue_ptr = encoder_queue.get();
std::unique_ptr<FrameCadenceAdapterInterface> cadence_adapter =
FrameCadenceAdapterInterface::Create(time_controller_.GetClock(),
encoder_queue_ptr, field_trials_);
video_stream_encoder_ = std::make_unique<VideoStreamEncoderUnderTest>(
&time_controller_, std::move(cadence_adapter), std::move(encoder_queue),
stats_proxy_.get(), video_send_config_.encoder_settings,
allocation_callback_type, field_trials_, num_cores);
video_stream_encoder_->SetSink(&sink_, /*rotation_applied=*/false);
video_stream_encoder_->SetSource(
&video_source_, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
video_stream_encoder_->SetStartBitrate(kTargetBitrate.bps());
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
}
void ResetEncoder(const std::string& payload_name,
size_t num_streams,
size_t num_temporal_layers,
unsigned char num_spatial_layers,
bool screenshare,
VideoStreamEncoder::BitrateAllocationCallbackType
allocation_callback_type =
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoBitrateAllocationWhenScreenSharing,
int num_cores = 1) {
video_send_config_.rtp.payload_name = payload_name;
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(PayloadStringToCodecType(payload_name),
num_streams, &video_encoder_config);
for (auto& layer : video_encoder_config.simulcast_layers) {
layer.num_temporal_layers = num_temporal_layers;
layer.max_framerate = kDefaultFramerate;
}
video_encoder_config.max_bitrate_bps =
num_streams == 1 ? kTargetBitrate.bps() : kSimulcastTargetBitrate.bps();
video_encoder_config.content_type =
screenshare ? VideoEncoderConfig::ContentType::kScreen
: VideoEncoderConfig::ContentType::kRealtimeVideo;
if (payload_name == "VP9") {
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = num_spatial_layers;
vp9_settings.automaticResizeOn = num_spatial_layers <= 1;
video_encoder_config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp9EncoderSpecificSettings>(
vp9_settings);
}
ConfigureEncoder(std::move(video_encoder_config), allocation_callback_type,
num_cores);
}
VideoFrame CreateFrame(int64_t ntp_time_ms,
rtc::Event* destruction_event) const {
return VideoFrame::Builder()
.set_video_frame_buffer(rtc::make_ref_counted<TestBuffer>(
destruction_event, codec_width_, codec_height_))
.set_ntp_time_ms(ntp_time_ms)
.set_timestamp_ms(99)
.set_rotation(kVideoRotation_0)
.build();
}
VideoFrame CreateFrameWithUpdatedPixel(int64_t ntp_time_ms,
rtc::Event* destruction_event,
int offset_x) const {
return VideoFrame::Builder()
.set_video_frame_buffer(rtc::make_ref_counted<TestBuffer>(
destruction_event, codec_width_, codec_height_))
.set_ntp_time_ms(ntp_time_ms)
.set_timestamp_ms(99)
.set_rotation(kVideoRotation_0)
.set_update_rect(VideoFrame::UpdateRect{offset_x, 0, 1, 1})
.build();
}
VideoFrame CreateFrame(int64_t ntp_time_ms, int width, int height) const {
auto buffer = rtc::make_ref_counted<TestBuffer>(nullptr, width, height);
I420Buffer::SetBlack(buffer.get());
return VideoFrame::Builder()
.set_video_frame_buffer(std::move(buffer))
.set_ntp_time_ms(ntp_time_ms)
.set_timestamp_ms(ntp_time_ms)
.set_rotation(kVideoRotation_0)
.build();
}
VideoFrame CreateNV12Frame(int64_t ntp_time_ms, int width, int height) const {
return VideoFrame::Builder()
.set_video_frame_buffer(NV12Buffer::Create(width, height))
.set_ntp_time_ms(ntp_time_ms)
.set_timestamp_ms(ntp_time_ms)
.set_rotation(kVideoRotation_0)
.build();
}
VideoFrame CreateFakeNativeFrame(int64_t ntp_time_ms,
rtc::Event* destruction_event,
int width,
int height) const {
return VideoFrame::Builder()
.set_video_frame_buffer(rtc::make_ref_counted<FakeNativeBuffer>(
destruction_event, width, height))
.set_ntp_time_ms(ntp_time_ms)
.set_timestamp_ms(99)
.set_rotation(kVideoRotation_0)
.build();
}
VideoFrame CreateFakeNV12NativeFrame(int64_t ntp_time_ms,
rtc::Event* destruction_event,
int width,
int height) const {
return VideoFrame::Builder()
.set_video_frame_buffer(rtc::make_ref_counted<FakeNV12NativeBuffer>(
destruction_event, width, height))
.set_ntp_time_ms(ntp_time_ms)
.set_timestamp_ms(99)
.set_rotation(kVideoRotation_0)
.build();
}
VideoFrame CreateFakeNativeFrame(int64_t ntp_time_ms,
rtc::Event* destruction_event) const {
return CreateFakeNativeFrame(ntp_time_ms, destruction_event, codec_width_,
codec_height_);
}
void VerifyAllocatedBitrate(const VideoBitrateAllocation& expected_bitrate) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(1, codec_width_, codec_height_));
WaitForEncodedFrame(1);
EXPECT_EQ(expected_bitrate, sink_.GetLastVideoBitrateAllocation());
}
void WaitForEncodedFrame(int64_t expected_ntp_time) {
sink_.WaitForEncodedFrame(expected_ntp_time);
AdvanceTime(TimeDelta::Seconds(1) / max_framerate_);
}
bool TimedWaitForEncodedFrame(int64_t expected_ntp_time, int64_t timeout_ms) {
bool ok = sink_.TimedWaitForEncodedFrame(expected_ntp_time, timeout_ms);
AdvanceTime(TimeDelta::Seconds(1) / max_framerate_);
return ok;
}
void WaitForEncodedFrame(uint32_t expected_width, uint32_t expected_height) {
sink_.WaitForEncodedFrame(expected_width, expected_height);
AdvanceTime(TimeDelta::Seconds(1) / max_framerate_);
}
void ExpectDroppedFrame() {
sink_.ExpectDroppedFrame();
AdvanceTime(TimeDelta::Seconds(1) / max_framerate_);
}
bool WaitForFrame(int64_t timeout_ms) {
bool ok = sink_.WaitForFrame(timeout_ms);
AdvanceTime(TimeDelta::Seconds(1) / max_framerate_);
return ok;
}
class TestEncoder : public test::FakeEncoder {
public:
explicit TestEncoder(TimeController* time_controller)
: FakeEncoder(time_controller->GetClock()),
time_controller_(time_controller) {
RTC_DCHECK(time_controller_);
}
VideoEncoder::EncoderInfo GetEncoderInfo() const override {
MutexLock lock(&local_mutex_);
EncoderInfo info = FakeEncoder::GetEncoderInfo();
if (initialized_ == EncoderState::kInitialized) {
if (quality_scaling_) {
info.scaling_settings = VideoEncoder::ScalingSettings(
kQpLow, kQpHigh, kMinPixelsPerFrame);
}
info.is_hardware_accelerated = is_hardware_accelerated_;
for (int i = 0; i < kMaxSpatialLayers; ++i) {
if (temporal_layers_supported_[i]) {
info.fps_allocation[i].clear();
int num_layers = temporal_layers_supported_[i].value() ? 2 : 1;
for (int tid = 0; tid < num_layers; ++tid)
info.fps_allocation[i].push_back(255 / (num_layers - tid));
}
}
}
info.resolution_bitrate_limits = resolution_bitrate_limits_;
info.requested_resolution_alignment = requested_resolution_alignment_;
info.apply_alignment_to_all_simulcast_layers =
apply_alignment_to_all_simulcast_layers_;
info.preferred_pixel_formats = preferred_pixel_formats_;
if (is_qp_trusted_.has_value()) {
info.is_qp_trusted = is_qp_trusted_;
}
return info;
}
int32_t RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) override {
MutexLock lock(&local_mutex_);
encoded_image_callback_ = callback;
return FakeEncoder::RegisterEncodeCompleteCallback(callback);
}
void ContinueEncode() { continue_encode_event_.Set(); }
void CheckLastTimeStampsMatch(int64_t ntp_time_ms,
uint32_t timestamp) const {
MutexLock lock(&local_mutex_);
EXPECT_EQ(timestamp_, timestamp);
EXPECT_EQ(ntp_time_ms_, ntp_time_ms);
}
void SetQualityScaling(bool b) {
MutexLock lock(&local_mutex_);
quality_scaling_ = b;
}
void SetRequestedResolutionAlignment(int requested_resolution_alignment) {
MutexLock lock(&local_mutex_);
requested_resolution_alignment_ = requested_resolution_alignment;
}
void SetApplyAlignmentToAllSimulcastLayers(bool b) {
MutexLock lock(&local_mutex_);
apply_alignment_to_all_simulcast_layers_ = b;
}
void SetIsHardwareAccelerated(bool is_hardware_accelerated) {
MutexLock lock(&local_mutex_);
is_hardware_accelerated_ = is_hardware_accelerated;
}
void SetTemporalLayersSupported(size_t spatial_idx, bool supported) {
RTC_DCHECK_LT(spatial_idx, kMaxSpatialLayers);
MutexLock lock(&local_mutex_);
temporal_layers_supported_[spatial_idx] = supported;
}
void SetResolutionBitrateLimits(
std::vector<ResolutionBitrateLimits> thresholds) {
MutexLock lock(&local_mutex_);
resolution_bitrate_limits_ = thresholds;
}
void ForceInitEncodeFailure(bool force_failure) {
MutexLock lock(&local_mutex_);
force_init_encode_failed_ = force_failure;
}
void SimulateOvershoot(double rate_factor) {
MutexLock lock(&local_mutex_);
rate_factor_ = rate_factor;
}
uint32_t GetLastFramerate() const {
MutexLock lock(&local_mutex_);
return last_framerate_;
}
VideoFrame::UpdateRect GetLastUpdateRect() const {
MutexLock lock(&local_mutex_);
return last_update_rect_;
}
const std::vector<VideoFrameType>& LastFrameTypes() const {
MutexLock lock(&local_mutex_);
return last_frame_types_;
}
void InjectFrame(const VideoFrame& input_image, bool keyframe) {
const std::vector<VideoFrameType> frame_type = {
keyframe ? VideoFrameType::kVideoFrameKey
: VideoFrameType::kVideoFrameDelta};
{
MutexLock lock(&local_mutex_);
last_frame_types_ = frame_type;
}
FakeEncoder::Encode(input_image, &frame_type);
}
void InjectEncodedImage(const EncodedImage& image,
const CodecSpecificInfo* codec_specific_info) {
MutexLock lock(&local_mutex_);
encoded_image_callback_->OnEncodedImage(image, codec_specific_info);
}
void SetEncodedImageData(
rtc::scoped_refptr<EncodedImageBufferInterface> encoded_image_data) {
MutexLock lock(&local_mutex_);
encoded_image_data_ = encoded_image_data;
}
void ExpectNullFrame() {
MutexLock lock(&local_mutex_);
expect_null_frame_ = true;
}
absl::optional<VideoEncoder::RateControlParameters>
GetAndResetLastRateControlSettings() {
auto settings = last_rate_control_settings_;
last_rate_control_settings_.reset();
return settings;
}
int GetLastInputWidth() const {
MutexLock lock(&local_mutex_);
return last_input_width_;
}
int GetLastInputHeight() const {
MutexLock lock(&local_mutex_);
return last_input_height_;
}
absl::optional<VideoFrameBuffer::Type> GetLastInputPixelFormat() {
MutexLock lock(&local_mutex_);
return last_input_pixel_format_;
}
int GetNumSetRates() const {
MutexLock lock(&local_mutex_);
return num_set_rates_;
}
void SetPreferredPixelFormats(
absl::InlinedVector<VideoFrameBuffer::Type, kMaxPreferredPixelFormats>
pixel_formats) {
MutexLock lock(&local_mutex_);
preferred_pixel_formats_ = std::move(pixel_formats);
}
void SetIsQpTrusted(absl::optional<bool> trusted) {
MutexLock lock(&local_mutex_);
is_qp_trusted_ = trusted;
}
VideoCodecComplexity LastEncoderComplexity() {
MutexLock lock(&local_mutex_);
return last_encoder_complexity_;
}
private:
int32_t Encode(const VideoFrame& input_image,
const std::vector<VideoFrameType>* frame_types) override {
{
MutexLock lock(&local_mutex_);
if (expect_null_frame_) {
EXPECT_EQ(input_image.timestamp(), 0u);
EXPECT_EQ(input_image.width(), 1);
last_frame_types_ = *frame_types;
expect_null_frame_ = false;
} else {
EXPECT_GT(input_image.timestamp(), timestamp_);
EXPECT_GT(input_image.ntp_time_ms(), ntp_time_ms_);
EXPECT_EQ(input_image.timestamp(), input_image.ntp_time_ms() * 90);
}
timestamp_ = input_image.timestamp();
ntp_time_ms_ = input_image.ntp_time_ms();
last_input_width_ = input_image.width();
last_input_height_ = input_image.height();
last_update_rect_ = input_image.update_rect();
last_frame_types_ = *frame_types;
last_input_pixel_format_ = input_image.video_frame_buffer()->type();
}
int32_t result = FakeEncoder::Encode(input_image, frame_types);
return result;
}
CodecSpecificInfo EncodeHook(
EncodedImage& encoded_image,
rtc::scoped_refptr<EncodedImageBuffer> buffer) override {
CodecSpecificInfo codec_specific;
{
MutexLock lock(&mutex_);
codec_specific.codecType = config_.codecType;
}
MutexLock lock(&local_mutex_);
if (encoded_image_data_) {
encoded_image.SetEncodedData(encoded_image_data_);
}
return codec_specific;
}
int32_t InitEncode(const VideoCodec* config,
const Settings& settings) override {
int res = FakeEncoder::InitEncode(config, settings);
MutexLock lock(&local_mutex_);
EXPECT_EQ(initialized_, EncoderState::kUninitialized);
if (config->codecType == kVideoCodecVP8) {
// Simulate setting up temporal layers, in order to validate the life
// cycle of these objects.
Vp8TemporalLayersFactory factory;
frame_buffer_controller_ =
factory.Create(*config, settings, &fec_controller_override_);
}
last_encoder_complexity_ = config->GetVideoEncoderComplexity();
if (force_init_encode_failed_) {
initialized_ = EncoderState::kInitializationFailed;
return -1;
}
initialized_ = EncoderState::kInitialized;
return res;
}
int32_t Release() override {
MutexLock lock(&local_mutex_);
EXPECT_NE(initialized_, EncoderState::kUninitialized);
initialized_ = EncoderState::kUninitialized;
return FakeEncoder::Release();
}
void SetRates(const RateControlParameters& parameters) {
MutexLock lock(&local_mutex_);
num_set_rates_++;
VideoBitrateAllocation adjusted_rate_allocation;
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
if (parameters.bitrate.HasBitrate(si, ti)) {
adjusted_rate_allocation.SetBitrate(
si, ti,
static_cast<uint32_t>(parameters.bitrate.GetBitrate(si, ti) *
rate_factor_));
}
}
}
last_framerate_ = static_cast<uint32_t>(parameters.framerate_fps + 0.5);
last_rate_control_settings_ = parameters;
RateControlParameters adjusted_paramters = parameters;
adjusted_paramters.bitrate = adjusted_rate_allocation;
FakeEncoder::SetRates(adjusted_paramters);
}
TimeController* const time_controller_;
mutable Mutex local_mutex_;
enum class EncoderState {
kUninitialized,
kInitializationFailed,
kInitialized
} initialized_ RTC_GUARDED_BY(local_mutex_) = EncoderState::kUninitialized;
rtc::Event continue_encode_event_;
uint32_t timestamp_ RTC_GUARDED_BY(local_mutex_) = 0;
int64_t ntp_time_ms_ RTC_GUARDED_BY(local_mutex_) = 0;
int last_input_width_ RTC_GUARDED_BY(local_mutex_) = 0;
int last_input_height_ RTC_GUARDED_BY(local_mutex_) = 0;
bool quality_scaling_ RTC_GUARDED_BY(local_mutex_) = true;
int requested_resolution_alignment_ RTC_GUARDED_BY(local_mutex_) = 1;
bool apply_alignment_to_all_simulcast_layers_ RTC_GUARDED_BY(local_mutex_) =
false;
bool is_hardware_accelerated_ RTC_GUARDED_BY(local_mutex_) = false;
rtc::scoped_refptr<EncodedImageBufferInterface> encoded_image_data_
RTC_GUARDED_BY(local_mutex_);
std::unique_ptr<Vp8FrameBufferController> frame_buffer_controller_
RTC_GUARDED_BY(local_mutex_);
absl::optional<bool>
temporal_layers_supported_[kMaxSpatialLayers] RTC_GUARDED_BY(
local_mutex_);
bool force_init_encode_failed_ RTC_GUARDED_BY(local_mutex_) = false;
double rate_factor_ RTC_GUARDED_BY(local_mutex_) = 1.0;
uint32_t last_framerate_ RTC_GUARDED_BY(local_mutex_) = 0;
absl::optional<VideoEncoder::RateControlParameters>
last_rate_control_settings_;
VideoFrame::UpdateRect last_update_rect_ RTC_GUARDED_BY(local_mutex_) = {
0, 0, 0, 0};
std::vector<VideoFrameType> last_frame_types_;
bool expect_null_frame_ = false;
EncodedImageCallback* encoded_image_callback_ RTC_GUARDED_BY(local_mutex_) =
nullptr;
NiceMock<MockFecControllerOverride> fec_controller_override_;
std::vector<ResolutionBitrateLimits> resolution_bitrate_limits_
RTC_GUARDED_BY(local_mutex_);
int num_set_rates_ RTC_GUARDED_BY(local_mutex_) = 0;
absl::optional<VideoFrameBuffer::Type> last_input_pixel_format_
RTC_GUARDED_BY(local_mutex_);
absl::InlinedVector<VideoFrameBuffer::Type, kMaxPreferredPixelFormats>
preferred_pixel_formats_ RTC_GUARDED_BY(local_mutex_);
absl::optional<bool> is_qp_trusted_ RTC_GUARDED_BY(local_mutex_);
VideoCodecComplexity last_encoder_complexity_ RTC_GUARDED_BY(local_mutex_){
VideoCodecComplexity::kComplexityNormal};
};
class TestSink : public VideoStreamEncoder::EncoderSink {
public:
TestSink(TimeController* time_controller, TestEncoder* test_encoder)
: time_controller_(time_controller), test_encoder_(test_encoder) {
RTC_DCHECK(time_controller_);
}
void WaitForEncodedFrame(int64_t expected_ntp_time) {
EXPECT_TRUE(
TimedWaitForEncodedFrame(expected_ntp_time, kDefaultTimeoutMs));
}
bool TimedWaitForEncodedFrame(int64_t expected_ntp_time,
int64_t timeout_ms) {
uint32_t timestamp = 0;
if (!WaitForFrame(timeout_ms))
return false;
{
MutexLock lock(&mutex_);
timestamp = last_timestamp_;
}
test_encoder_->CheckLastTimeStampsMatch(expected_ntp_time, timestamp);
return true;
}
void WaitForEncodedFrame(uint32_t expected_width,
uint32_t expected_height) {
EXPECT_TRUE(WaitForFrame(kDefaultTimeoutMs));
CheckLastFrameSizeMatches(expected_width, expected_height);
}
void CheckLastFrameSizeMatches(uint32_t expected_width,
uint32_t expected_height) {
uint32_t width = 0;
uint32_t height = 0;
{
MutexLock lock(&mutex_);
width = last_width_;
height = last_height_;
}
EXPECT_EQ(expected_height, height);
EXPECT_EQ(expected_width, width);
}
void CheckLastFrameRotationMatches(VideoRotation expected_rotation) {
VideoRotation rotation;
{
MutexLock lock(&mutex_);
rotation = last_rotation_;
}
EXPECT_EQ(expected_rotation, rotation);
}
void ExpectDroppedFrame() { EXPECT_FALSE(WaitForFrame(100)); }
bool WaitForFrame(int64_t timeout_ms) {
RTC_DCHECK(time_controller_->GetMainThread()->IsCurrent());
time_controller_->AdvanceTime(TimeDelta::Zero());
bool ret = encoded_frame_event_.Wait(timeout_ms);
time_controller_->AdvanceTime(TimeDelta::Zero());
return ret;
}
void SetExpectNoFrames() {
MutexLock lock(&mutex_);
expect_frames_ = false;
}
int number_of_reconfigurations() const {
MutexLock lock(&mutex_);
return number_of_reconfigurations_;
}
int last_min_transmit_bitrate() const {
MutexLock lock(&mutex_);
return min_transmit_bitrate_bps_;
}
void SetNumExpectedLayers(size_t num_layers) {
MutexLock lock(&mutex_);
num_expected_layers_ = num_layers;
}
int64_t GetLastCaptureTimeMs() const {
MutexLock lock(&mutex_);
return last_capture_time_ms_;
}
const EncodedImage& GetLastEncodedImage() {
MutexLock lock(&mutex_);
return last_encoded_image_;
}
std::vector<uint8_t> GetLastEncodedImageData() {
MutexLock lock(&mutex_);
return std::move(last_encoded_image_data_);
}
VideoBitrateAllocation GetLastVideoBitrateAllocation() {
MutexLock lock(&mutex_);
return last_bitrate_allocation_;
}
int number_of_bitrate_allocations() const {
MutexLock lock(&mutex_);
return number_of_bitrate_allocations_;
}
VideoLayersAllocation GetLastVideoLayersAllocation() {
MutexLock lock(&mutex_);
return last_layers_allocation_;
}
int number_of_layers_allocations() const {
MutexLock lock(&mutex_);
return number_of_layers_allocations_;
}
private:
Result OnEncodedImage(
const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info) override {
MutexLock lock(&mutex_);
EXPECT_TRUE(expect_frames_);
last_encoded_image_ = EncodedImage(encoded_image);
last_encoded_image_data_ = std::vector<uint8_t>(
encoded_image.data(), encoded_image.data() + encoded_image.size());
uint32_t timestamp = encoded_image.Timestamp();
if (last_timestamp_ != timestamp) {
num_received_layers_ = 1;
last_width_ = encoded_image._encodedWidth;
last_height_ = encoded_image._encodedHeight;
} else {
++num_received_layers_;
last_width_ = std::max(encoded_image._encodedWidth, last_width_);
last_height_ = std::max(encoded_image._encodedHeight, last_height_);
}
last_timestamp_ = timestamp;
last_capture_time_ms_ = encoded_image.capture_time_ms_;
last_rotation_ = encoded_image.rotation_;
if (num_received_layers_ == num_expected_layers_) {
encoded_frame_event_.Set();
}
return Result(Result::OK, last_timestamp_);
}
void OnEncoderConfigurationChanged(
std::vector<VideoStream> streams,
bool is_svc,
VideoEncoderConfig::ContentType content_type,
int min_transmit_bitrate_bps) override {
MutexLock lock(&mutex_);
++number_of_reconfigurations_;
min_transmit_bitrate_bps_ = min_transmit_bitrate_bps;
}
void OnBitrateAllocationUpdated(
const VideoBitrateAllocation& allocation) override {
MutexLock lock(&mutex_);
++number_of_bitrate_allocations_;
last_bitrate_allocation_ = allocation;
}
void OnVideoLayersAllocationUpdated(
VideoLayersAllocation allocation) override {
MutexLock lock(&mutex_);
++number_of_layers_allocations_;
last_layers_allocation_ = allocation;
rtc::StringBuilder log;
for (const auto& layer : allocation.active_spatial_layers) {
log << layer.width << "x" << layer.height << "@" << layer.frame_rate_fps
<< "[";
for (const auto target_bitrate :
layer.target_bitrate_per_temporal_layer) {
log << target_bitrate.kbps() << ",";
}
log << "]";
}
RTC_DLOG(LS_INFO) << "OnVideoLayersAllocationUpdated " << log.str();
}
TimeController* const time_controller_;
mutable Mutex mutex_;
TestEncoder* test_encoder_;
rtc::Event encoded_frame_event_;
EncodedImage last_encoded_image_;
std::vector<uint8_t> last_encoded_image_data_;
uint32_t last_timestamp_ = 0;
int64_t last_capture_time_ms_ = 0;
uint32_t last_height_ = 0;
uint32_t last_width_ = 0;
VideoRotation last_rotation_ = kVideoRotation_0;
size_t num_expected_layers_ = 1;
size_t num_received_layers_ = 0;
bool expect_frames_ = true;
int number_of_reconfigurations_ = 0;
int min_transmit_bitrate_bps_ = 0;
VideoBitrateAllocation last_bitrate_allocation_ RTC_GUARDED_BY(&mutex_);
int number_of_bitrate_allocations_ RTC_GUARDED_BY(&mutex_) = 0;
VideoLayersAllocation last_layers_allocation_ RTC_GUARDED_BY(&mutex_);
int number_of_layers_allocations_ RTC_GUARDED_BY(&mutex_) = 0;
};
class VideoBitrateAllocatorProxyFactory
: public VideoBitrateAllocatorFactory {
public:
VideoBitrateAllocatorProxyFactory()
: bitrate_allocator_factory_(
CreateBuiltinVideoBitrateAllocatorFactory()) {}
std::unique_ptr<VideoBitrateAllocator> CreateVideoBitrateAllocator(
const VideoCodec& codec) override {
MutexLock lock(&mutex_);
codec_config_ = codec;
return bitrate_allocator_factory_->CreateVideoBitrateAllocator(codec);
}
VideoCodec codec_config() const {
MutexLock lock(&mutex_);
return codec_config_;
}
private:
std::unique_ptr<VideoBitrateAllocatorFactory> bitrate_allocator_factory_;
mutable Mutex mutex_;
VideoCodec codec_config_ RTC_GUARDED_BY(mutex_);
};
Clock* clock() { return time_controller_.GetClock(); }
void AdvanceTime(TimeDelta duration) {
time_controller_.AdvanceTime(duration);
}
int64_t CurrentTimeMs() { return clock()->CurrentTime().ms(); }
protected:
virtual TaskQueueFactory* GetTaskQueueFactory() {
return time_controller_.GetTaskQueueFactory();
}
test::ScopedKeyValueConfig field_trials_;
GlobalSimulatedTimeController time_controller_{Timestamp::Micros(1234)};
VideoSendStream::Config video_send_config_;
VideoEncoderConfig video_encoder_config_;
int codec_width_;
int codec_height_;
int max_framerate_;
TestEncoder fake_encoder_;
test::VideoEncoderProxyFactory encoder_factory_;
VideoBitrateAllocatorProxyFactory bitrate_allocator_factory_;
std::unique_ptr<MockableSendStatisticsProxy> stats_proxy_;
TestSink sink_;
AdaptingFrameForwarder video_source_{&time_controller_};
std::unique_ptr<VideoStreamEncoderUnderTest> video_stream_encoder_;
};
TEST_F(VideoStreamEncoderTest, EncodeOneFrame) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
rtc::Event frame_destroyed_event;
video_source_.IncomingCapturedFrame(CreateFrame(1, &frame_destroyed_event));
WaitForEncodedFrame(1);
EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropsFramesBeforeFirstOnBitrateUpdated) {
// Dropped since no target bitrate has been set.
rtc::Event frame_destroyed_event;
// The encoder will cache up to one frame for a short duration. Adding two
// frames means that the first frame will be dropped and the second frame will
// be sent when the encoder is enabled.
video_source_.IncomingCapturedFrame(CreateFrame(1, &frame_destroyed_event));
AdvanceTime(TimeDelta::Millis(10));
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
AdvanceTime(TimeDelta::Zero());
EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// The pending frame should be received.
WaitForEncodedFrame(2);
video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr));
WaitForEncodedFrame(3);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropsFramesWhenRateSetToZero) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::Zero(), DataRate::Zero(), DataRate::Zero(), 0, 0, 0);
// The encoder will cache up to one frame for a short duration. Adding two
// frames means that the first frame will be dropped and the second frame will
// be sent when the encoder is resumed.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
WaitForEncodedFrame(3);
video_source_.IncomingCapturedFrame(CreateFrame(4, nullptr));
WaitForEncodedFrame(4);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropsFramesWithSameOrOldNtpTimestamp) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
// This frame will be dropped since it has the same ntp timestamp.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
WaitForEncodedFrame(2);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropsFrameAfterStop) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
video_stream_encoder_->Stop();
sink_.SetExpectNoFrames();
rtc::Event frame_destroyed_event;
video_source_.IncomingCapturedFrame(CreateFrame(2, &frame_destroyed_event));
EXPECT_TRUE(frame_destroyed_event.Wait(kDefaultTimeoutMs));
}
TEST_F(VideoStreamEncoderTest, DropsPendingFramesOnSlowEncode) {
test::FrameForwarder source;
video_stream_encoder_->SetSource(&source,
DegradationPreference::MAINTAIN_FRAMERATE);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
int dropped_count = 0;
stats_proxy_->SetDroppedFrameCallback(
[&dropped_count](VideoStreamEncoderObserver::DropReason) {
++dropped_count;
});
source.IncomingCapturedFrame(CreateFrame(1, nullptr));
source.IncomingCapturedFrame(CreateFrame(2, nullptr));
WaitForEncodedFrame(2);
video_stream_encoder_->Stop();
EXPECT_EQ(1, dropped_count);
}
TEST_F(VideoStreamEncoderTest, NativeFrameWithoutI420SupportGetsDelivered) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
rtc::Event frame_destroyed_event;
video_source_.IncomingCapturedFrame(
CreateFakeNativeFrame(1, &frame_destroyed_event));
WaitForEncodedFrame(1);
EXPECT_EQ(VideoFrameBuffer::Type::kNative,
fake_encoder_.GetLastInputPixelFormat());
EXPECT_EQ(fake_encoder_.config().width, fake_encoder_.GetLastInputWidth());
EXPECT_EQ(fake_encoder_.config().height, fake_encoder_.GetLastInputHeight());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
NativeFrameWithoutI420SupportGetsCroppedIfNecessary) {
// Use the cropping factory.
video_encoder_config_.video_stream_factory =
rtc::make_ref_counted<CroppingVideoStreamFactory>();
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config_),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Capture a frame at codec_width_/codec_height_.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
// The encoder will have been configured once.
EXPECT_EQ(1, sink_.number_of_reconfigurations());
EXPECT_EQ(codec_width_, fake_encoder_.config().width);
EXPECT_EQ(codec_height_, fake_encoder_.config().height);
// Now send in a fake frame that needs to be cropped as the width/height
// aren't divisible by 4 (see CreateEncoderStreams above).
rtc::Event frame_destroyed_event;
video_source_.IncomingCapturedFrame(CreateFakeNativeFrame(
2, &frame_destroyed_event, codec_width_ + 1, codec_height_ + 1));
WaitForEncodedFrame(2);
EXPECT_EQ(VideoFrameBuffer::Type::kNative,
fake_encoder_.GetLastInputPixelFormat());
EXPECT_EQ(fake_encoder_.config().width, fake_encoder_.GetLastInputWidth());
EXPECT_EQ(fake_encoder_.config().height, fake_encoder_.GetLastInputHeight());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, NonI420FramesShouldNotBeConvertedToI420) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(
CreateNV12Frame(1, codec_width_, codec_height_));
WaitForEncodedFrame(1);
EXPECT_EQ(VideoFrameBuffer::Type::kNV12,
fake_encoder_.GetLastInputPixelFormat());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, NativeFrameGetsDelivered_NoFrameTypePreference) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
fake_encoder_.SetPreferredPixelFormats({});
rtc::Event frame_destroyed_event;
video_source_.IncomingCapturedFrame(CreateFakeNV12NativeFrame(
1, &frame_destroyed_event, codec_width_, codec_height_));
WaitForEncodedFrame(1);
EXPECT_EQ(VideoFrameBuffer::Type::kNative,
fake_encoder_.GetLastInputPixelFormat());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
NativeFrameGetsDelivered_PixelFormatPreferenceMatches) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
fake_encoder_.SetPreferredPixelFormats({VideoFrameBuffer::Type::kNV12});
rtc::Event frame_destroyed_event;
video_source_.IncomingCapturedFrame(CreateFakeNV12NativeFrame(
1, &frame_destroyed_event, codec_width_, codec_height_));
WaitForEncodedFrame(1);
EXPECT_EQ(VideoFrameBuffer::Type::kNative,
fake_encoder_.GetLastInputPixelFormat());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, NativeFrameGetsDelivered_MappingIsNotFeasible) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Fake NV12 native frame does not allow mapping to I444.
fake_encoder_.SetPreferredPixelFormats({VideoFrameBuffer::Type::kI444});
rtc::Event frame_destroyed_event;
video_source_.IncomingCapturedFrame(CreateFakeNV12NativeFrame(
1, &frame_destroyed_event, codec_width_, codec_height_));
WaitForEncodedFrame(1);
EXPECT_EQ(VideoFrameBuffer::Type::kNative,
fake_encoder_.GetLastInputPixelFormat());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, NativeFrameGetsDelivered_BackedByNV12) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
rtc::Event frame_destroyed_event;
video_source_.IncomingCapturedFrame(CreateFakeNV12NativeFrame(
1, &frame_destroyed_event, codec_width_, codec_height_));
WaitForEncodedFrame(1);
EXPECT_EQ(VideoFrameBuffer::Type::kNative,
fake_encoder_.GetLastInputPixelFormat());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropsFramesWhenCongestionWindowPushbackSet) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0.5);
// The congestion window pushback is set to 0.5, which will drop 1/2 of
// frames. Adding two frames means that the first frame will be dropped and
// the second frame will be sent to the encoder.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr));
WaitForEncodedFrame(3);
video_source_.IncomingCapturedFrame(CreateFrame(4, nullptr));
video_source_.IncomingCapturedFrame(CreateFrame(5, nullptr));
WaitForEncodedFrame(5);
EXPECT_EQ(2u, stats_proxy_->GetStats().frames_dropped_by_congestion_window);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ConfigureEncoderTriggersOnEncoderConfigurationChanged) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
EXPECT_EQ(0, sink_.number_of_reconfigurations());
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
// The encoder will have been configured once when the first frame is
// received.
EXPECT_EQ(1, sink_.number_of_reconfigurations());
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
video_encoder_config.min_transmit_bitrate_bps = 9999;
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
WaitForEncodedFrame(2);
EXPECT_EQ(2, sink_.number_of_reconfigurations());
EXPECT_EQ(9999, sink_.last_min_transmit_bitrate());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, FrameResolutionChangeReconfigureEncoder) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
// The encoder will have been configured once.
EXPECT_EQ(1, sink_.number_of_reconfigurations());
EXPECT_EQ(codec_width_, fake_encoder_.config().width);
EXPECT_EQ(codec_height_, fake_encoder_.config().height);
codec_width_ *= 2;
codec_height_ *= 2;
// Capture a frame with a higher resolution and wait for it to synchronize
// with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
WaitForEncodedFrame(2);
EXPECT_EQ(codec_width_, fake_encoder_.config().width);
EXPECT_EQ(codec_height_, fake_encoder_.config().height);
EXPECT_EQ(2, sink_.number_of_reconfigurations());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
EncoderInstanceDestroyedBeforeAnotherInstanceCreated) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
// Changing the max payload data length recreates encoder.
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength / 2);
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
WaitForEncodedFrame(2);
EXPECT_EQ(1, encoder_factory_.GetMaxNumberOfSimultaneousEncoderInstances());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, BitrateLimitsChangeReconfigureRateAllocator) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
video_encoder_config.max_bitrate_bps = kTargetBitrate.bps();
video_stream_encoder_->SetStartBitrate(kStartBitrate.bps());
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
// The encoder will have been configured once when the first frame is
// received.
EXPECT_EQ(1, sink_.number_of_reconfigurations());
EXPECT_EQ(kTargetBitrate.bps(),
bitrate_allocator_factory_.codec_config().maxBitrate * 1000);
EXPECT_EQ(kStartBitrate.bps(),
bitrate_allocator_factory_.codec_config().startBitrate * 1000);
test::FillEncoderConfiguration(kVideoCodecVP8, 1,
&video_encoder_config); //???
video_encoder_config.max_bitrate_bps = kTargetBitrate.bps() * 2;
video_stream_encoder_->SetStartBitrate(kStartBitrate.bps() * 2);
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
// Capture a frame and wait for it to synchronize with the encoder thread.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
WaitForEncodedFrame(2);
EXPECT_EQ(2, sink_.number_of_reconfigurations());
// Bitrate limits have changed - rate allocator should be reconfigured,
// encoder should not be reconfigured.
EXPECT_EQ(kTargetBitrate.bps() * 2,
bitrate_allocator_factory_.codec_config().maxBitrate * 1000);
EXPECT_EQ(kStartBitrate.bps() * 2,
bitrate_allocator_factory_.codec_config().startBitrate * 1000);
EXPECT_EQ(1, fake_encoder_.GetNumInitializations());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
IntersectionOfEncoderAndAppBitrateLimitsUsedWhenBothProvided) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
const uint32_t kMinEncBitrateKbps = 100;
const uint32_t kMaxEncBitrateKbps = 1000;
const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits(
/*frame_size_pixels=*/codec_width_ * codec_height_,
/*min_start_bitrate_bps=*/0,
/*min_bitrate_bps=*/kMinEncBitrateKbps * 1000,
/*max_bitrate_bps=*/kMaxEncBitrateKbps * 1000);
fake_encoder_.SetResolutionBitrateLimits({encoder_bitrate_limits});
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
video_encoder_config.max_bitrate_bps = (kMaxEncBitrateKbps + 1) * 1000;
video_encoder_config.simulcast_layers[0].min_bitrate_bps =
(kMinEncBitrateKbps + 1) * 1000;
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
// When both encoder and app provide bitrate limits, the intersection of
// provided sets should be used.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
EXPECT_EQ(kMaxEncBitrateKbps,
bitrate_allocator_factory_.codec_config().maxBitrate);
EXPECT_EQ(kMinEncBitrateKbps + 1,
bitrate_allocator_factory_.codec_config().minBitrate);
video_encoder_config.max_bitrate_bps = (kMaxEncBitrateKbps - 1) * 1000;
video_encoder_config.simulcast_layers[0].min_bitrate_bps =
(kMinEncBitrateKbps - 1) * 1000;
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
WaitForEncodedFrame(2);
EXPECT_EQ(kMaxEncBitrateKbps - 1,
bitrate_allocator_factory_.codec_config().maxBitrate);
EXPECT_EQ(kMinEncBitrateKbps,
bitrate_allocator_factory_.codec_config().minBitrate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
EncoderAndAppLimitsDontIntersectEncoderLimitsIgnored) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
const uint32_t kMinAppBitrateKbps = 100;
const uint32_t kMaxAppBitrateKbps = 200;
const uint32_t kMinEncBitrateKbps = kMaxAppBitrateKbps + 1;
const uint32_t kMaxEncBitrateKbps = kMaxAppBitrateKbps * 2;
const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits(
/*frame_size_pixels=*/codec_width_ * codec_height_,
/*min_start_bitrate_bps=*/0,
/*min_bitrate_bps=*/kMinEncBitrateKbps * 1000,
/*max_bitrate_bps=*/kMaxEncBitrateKbps * 1000);
fake_encoder_.SetResolutionBitrateLimits({encoder_bitrate_limits});
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
video_encoder_config.max_bitrate_bps = kMaxAppBitrateKbps * 1000;
video_encoder_config.simulcast_layers[0].min_bitrate_bps =
kMinAppBitrateKbps * 1000;
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
EXPECT_EQ(kMaxAppBitrateKbps,
bitrate_allocator_factory_.codec_config().maxBitrate);
EXPECT_EQ(kMinAppBitrateKbps,
bitrate_allocator_factory_.codec_config().minBitrate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
EncoderRecommendedMaxAndMinBitratesUsedForGivenResolution) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits_270p(
480 * 270, 34 * 1000, 12 * 1000, 1234 * 1000);
const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits_360p(
640 * 360, 43 * 1000, 21 * 1000, 2345 * 1000);
fake_encoder_.SetResolutionBitrateLimits(
{encoder_bitrate_limits_270p, encoder_bitrate_limits_360p});
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
video_encoder_config.max_bitrate_bps = 0;
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
// 270p. The bitrate limits recommended by encoder for 270p should be used.
video_source_.IncomingCapturedFrame(CreateFrame(1, 480, 270));
WaitForEncodedFrame(1);
EXPECT_EQ(static_cast<uint32_t>(encoder_bitrate_limits_270p.min_bitrate_bps),
bitrate_allocator_factory_.codec_config().minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(encoder_bitrate_limits_270p.max_bitrate_bps),
bitrate_allocator_factory_.codec_config().maxBitrate * 1000);
// 360p. The bitrate limits recommended by encoder for 360p should be used.
video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360));
WaitForEncodedFrame(2);
EXPECT_EQ(static_cast<uint32_t>(encoder_bitrate_limits_360p.min_bitrate_bps),
bitrate_allocator_factory_.codec_config().minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(encoder_bitrate_limits_360p.max_bitrate_bps),
bitrate_allocator_factory_.codec_config().maxBitrate * 1000);
// Resolution between 270p and 360p. The bitrate limits recommended by
// encoder for 360p should be used.
video_source_.IncomingCapturedFrame(
CreateFrame(3, (640 + 480) / 2, (360 + 270) / 2));
WaitForEncodedFrame(3);
EXPECT_EQ(static_cast<uint32_t>(encoder_bitrate_limits_360p.min_bitrate_bps),
bitrate_allocator_factory_.codec_config().minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(encoder_bitrate_limits_360p.max_bitrate_bps),
bitrate_allocator_factory_.codec_config().maxBitrate * 1000);
// Resolution higher than 360p. The caps recommended by encoder should be
// ignored.
video_source_.IncomingCapturedFrame(CreateFrame(4, 960, 540));
WaitForEncodedFrame(4);
EXPECT_NE(static_cast<uint32_t>(encoder_bitrate_limits_270p.min_bitrate_bps),
bitrate_allocator_factory_.codec_config().minBitrate * 1000);
EXPECT_NE(static_cast<uint32_t>(encoder_bitrate_limits_270p.max_bitrate_bps),
bitrate_allocator_factory_.codec_config().maxBitrate * 1000);
EXPECT_NE(static_cast<uint32_t>(encoder_bitrate_limits_360p.min_bitrate_bps),
bitrate_allocator_factory_.codec_config().minBitrate * 1000);
EXPECT_NE(static_cast<uint32_t>(encoder_bitrate_limits_360p.max_bitrate_bps),
bitrate_allocator_factory_.codec_config().maxBitrate * 1000);
// Resolution lower than 270p. The max bitrate limit recommended by encoder
// for 270p should be used.
video_source_.IncomingCapturedFrame(CreateFrame(5, 320, 180));
WaitForEncodedFrame(5);
EXPECT_EQ(static_cast<uint32_t>(encoder_bitrate_limits_270p.min_bitrate_bps),
bitrate_allocator_factory_.codec_config().minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(encoder_bitrate_limits_270p.max_bitrate_bps),
bitrate_allocator_factory_.codec_config().maxBitrate * 1000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, EncoderRecommendedMaxBitrateCapsTargetBitrate) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
video_encoder_config.max_bitrate_bps = 0;
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
// Encode 720p frame to get the default encoder target bitrate.
video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
WaitForEncodedFrame(1);
const uint32_t kDefaultTargetBitrateFor720pKbps =
bitrate_allocator_factory_.codec_config()
.simulcastStream[0]
.targetBitrate;
// Set the max recommended encoder bitrate to something lower than the default
// target bitrate.
const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits(
1280 * 720, 10 * 1000, 10 * 1000,
kDefaultTargetBitrateFor720pKbps / 2 * 1000);
fake_encoder_.SetResolutionBitrateLimits({encoder_bitrate_limits});
// Change resolution to trigger encoder reinitialization.
video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360));
WaitForEncodedFrame(2);
video_source_.IncomingCapturedFrame(CreateFrame(3, 1280, 720));
WaitForEncodedFrame(3);
// Ensure the target bitrate is capped by the max bitrate.
EXPECT_EQ(bitrate_allocator_factory_.codec_config().maxBitrate * 1000,
static_cast<uint32_t>(encoder_bitrate_limits.max_bitrate_bps));
EXPECT_EQ(bitrate_allocator_factory_.codec_config()
.simulcastStream[0]
.targetBitrate *
1000,
static_cast<uint32_t>(encoder_bitrate_limits.max_bitrate_bps));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
EncoderMaxAndMinBitratesUsedForTwoStreamsHighestActive) {
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits270p(
480 * 270, 34 * 1000, 12 * 1000, 1234 * 1000);
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits360p(
640 * 360, 43 * 1000, 21 * 1000, 2345 * 1000);
fake_encoder_.SetResolutionBitrateLimits(
{kEncoderLimits270p, kEncoderLimits360p});
// Two streams, highest stream active.
VideoEncoderConfig config;
const int kNumStreams = 2;
test::FillEncoderConfiguration(kVideoCodecVP8, kNumStreams, &config);
config.max_bitrate_bps = 0;
config.simulcast_layers[0].active = false;
config.simulcast_layers[1].active = true;
config.video_stream_factory =
rtc::make_ref_counted<cricket::EncoderStreamFactory>(
"VP8", /*max qp*/ 56, /*screencast*/ false,
/*screenshare enabled*/ false);
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
// The encoder bitrate limits for 270p should be used.
video_source_.IncomingCapturedFrame(CreateFrame(1, 480, 270));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, kNumStreams);
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits270p.min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits270p.max_bitrate_bps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
// The encoder bitrate limits for 360p should be used.
video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits360p.min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits360p.max_bitrate_bps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
// Resolution b/w 270p and 360p. The encoder limits for 360p should be used.
video_source_.IncomingCapturedFrame(
CreateFrame(3, (640 + 480) / 2, (360 + 270) / 2));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits360p.min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits360p.max_bitrate_bps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
// Resolution higher than 360p. Encoder limits should be ignored.
video_source_.IncomingCapturedFrame(CreateFrame(4, 960, 540));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_NE(static_cast<uint32_t>(kEncoderLimits270p.min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_NE(static_cast<uint32_t>(kEncoderLimits270p.max_bitrate_bps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
EXPECT_NE(static_cast<uint32_t>(kEncoderLimits360p.min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_NE(static_cast<uint32_t>(kEncoderLimits360p.max_bitrate_bps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
// Resolution lower than 270p. The encoder limits for 270p should be used.
video_source_.IncomingCapturedFrame(CreateFrame(5, 320, 180));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits270p.min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits270p.max_bitrate_bps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
DefaultEncoderMaxAndMinBitratesUsedForTwoStreamsHighestActive) {
// Two streams, highest stream active.
VideoEncoderConfig config;
const int kNumStreams = 2;
test::FillEncoderConfiguration(kVideoCodecVP8, kNumStreams, &config);
config.max_bitrate_bps = 0;
config.simulcast_layers[0].active = false;
config.simulcast_layers[1].active = true;
config.video_stream_factory =
rtc::make_ref_counted<cricket::EncoderStreamFactory>(
"VP8", /*max qp*/ 56, /*screencast*/ false,
/*screenshare enabled*/ false);
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
// Default bitrate limits for 270p should be used.
const absl::optional<VideoEncoder::ResolutionBitrateLimits>
kDefaultLimits270p =
EncoderInfoSettings::GetDefaultSinglecastBitrateLimitsForResolution(
kVideoCodecVP8, 480 * 270);
video_source_.IncomingCapturedFrame(CreateFrame(1, 480, 270));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, kNumStreams);
EXPECT_EQ(static_cast<uint32_t>(kDefaultLimits270p->min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kDefaultLimits270p->max_bitrate_bps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
// Default bitrate limits for 360p should be used.
const absl::optional<VideoEncoder::ResolutionBitrateLimits>
kDefaultLimits360p =
EncoderInfoSettings::GetDefaultSinglecastBitrateLimitsForResolution(
kVideoCodecVP8, 640 * 360);
video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(static_cast<uint32_t>(kDefaultLimits360p->min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kDefaultLimits360p->max_bitrate_bps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
// Resolution b/w 270p and 360p. The default limits for 360p should be used.
video_source_.IncomingCapturedFrame(
CreateFrame(3, (640 + 480) / 2, (360 + 270) / 2));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(static_cast<uint32_t>(kDefaultLimits360p->min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kDefaultLimits360p->max_bitrate_bps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
// Default bitrate limits for 540p should be used.
const absl::optional<VideoEncoder::ResolutionBitrateLimits>
kDefaultLimits540p =
EncoderInfoSettings::GetDefaultSinglecastBitrateLimitsForResolution(
kVideoCodecVP8, 960 * 540);
video_source_.IncomingCapturedFrame(CreateFrame(4, 960, 540));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(static_cast<uint32_t>(kDefaultLimits540p->min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kDefaultLimits540p->max_bitrate_bps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
EncoderMaxAndMinBitratesUsedForThreeStreamsMiddleActive) {
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits270p(
480 * 270, 34 * 1000, 12 * 1000, 1234 * 1000);
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits360p(
640 * 360, 43 * 1000, 21 * 1000, 2345 * 1000);
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits720p(
1280 * 720, 54 * 1000, 31 * 1000, 3456 * 1000);
fake_encoder_.SetResolutionBitrateLimits(
{kEncoderLimits270p, kEncoderLimits360p, kEncoderLimits720p});
// Three streams, middle stream active.
VideoEncoderConfig config;
const int kNumStreams = 3;
test::FillEncoderConfiguration(kVideoCodecVP8, kNumStreams, &config);
config.simulcast_layers[0].active = false;
config.simulcast_layers[1].active = true;
config.simulcast_layers[2].active = false;
config.video_stream_factory =
rtc::make_ref_counted<cricket::EncoderStreamFactory>(
"VP8", /*max qp*/ 56, /*screencast*/ false,
/*screenshare enabled*/ false);
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
// The encoder bitrate limits for 360p should be used.
video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, kNumStreams);
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits360p.min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits360p.max_bitrate_bps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
// The encoder bitrate limits for 270p should be used.
video_source_.IncomingCapturedFrame(CreateFrame(2, 960, 540));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits270p.min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits270p.max_bitrate_bps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
EncoderMaxAndMinBitratesNotUsedForThreeStreamsLowestActive) {
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits270p(
480 * 270, 34 * 1000, 12 * 1000, 1234 * 1000);
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits360p(
640 * 360, 43 * 1000, 21 * 1000, 2345 * 1000);
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits720p(
1280 * 720, 54 * 1000, 31 * 1000, 3456 * 1000);
fake_encoder_.SetResolutionBitrateLimits(
{kEncoderLimits270p, kEncoderLimits360p, kEncoderLimits720p});
// Three streams, lowest stream active.
VideoEncoderConfig config;
const int kNumStreams = 3;
test::FillEncoderConfiguration(kVideoCodecVP8, kNumStreams, &config);
config.simulcast_layers[0].active = true;
config.simulcast_layers[1].active = false;
config.simulcast_layers[2].active = false;
config.video_stream_factory =
rtc::make_ref_counted<cricket::EncoderStreamFactory>(
"VP8", /*max qp*/ 56, /*screencast*/ false,
/*screenshare enabled*/ false);
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
// Resolution on lowest stream lower than 270p. The encoder limits not applied
// on lowest stream, limits for 270p should not be used
video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, kNumStreams);
EXPECT_NE(static_cast<uint32_t>(kEncoderLimits270p.min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_NE(static_cast<uint32_t>(kEncoderLimits270p.max_bitrate_bps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
EncoderMaxBitrateCappedByConfigForTwoStreamsHighestActive) {
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits270p(
480 * 270, 34 * 1000, 12 * 1000, 1234 * 1000);
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits360p(
640 * 360, 43 * 1000, 21 * 1000, 2345 * 1000);
fake_encoder_.SetResolutionBitrateLimits(
{kEncoderLimits270p, kEncoderLimits360p});
const int kMaxBitrateBps = kEncoderLimits360p.max_bitrate_bps - 100 * 1000;
// Two streams, highest stream active.
VideoEncoderConfig config;
const int kNumStreams = 2;
test::FillEncoderConfiguration(kVideoCodecVP8, kNumStreams, &config);
config.simulcast_layers[0].active = false;
config.simulcast_layers[1].active = true;
config.simulcast_layers[1].max_bitrate_bps = kMaxBitrateBps;
config.video_stream_factory =
rtc::make_ref_counted<cricket::EncoderStreamFactory>(
"VP8", /*max qp*/ 56, /*screencast*/ false,
/*screenshare enabled*/ false);
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
// The encoder bitrate limits for 270p should be used.
video_source_.IncomingCapturedFrame(CreateFrame(1, 480, 270));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, kNumStreams);
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits270p.min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits270p.max_bitrate_bps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
// The max configured bitrate is less than the encoder limit for 360p.
video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits360p.min_bitrate_bps),
fake_encoder_.config().simulcastStream[1].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kMaxBitrateBps),
fake_encoder_.config().simulcastStream[1].maxBitrate * 1000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SwitchSourceDeregisterEncoderAsSink) {
EXPECT_TRUE(video_source_.has_sinks());
test::FrameForwarder new_video_source;
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_FALSE(video_source_.has_sinks());
EXPECT_TRUE(new_video_source.has_sinks());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SinkWantsRotationApplied) {
EXPECT_FALSE(video_source_.sink_wants().rotation_applied);
video_stream_encoder_->SetSink(&sink_, true /*rotation_applied*/);
EXPECT_TRUE(video_source_.sink_wants().rotation_applied);
video_stream_encoder_->Stop();
}
class ResolutionAlignmentTest
: public VideoStreamEncoderTest,
public ::testing::WithParamInterface<
::testing::tuple<int, std::vector<double>>> {
public:
ResolutionAlignmentTest()
: requested_alignment_(::testing::get<0>(GetParam())),
scale_factors_(::testing::get<1>(GetParam())) {}
protected:
const int requested_alignment_;
const std::vector<double> scale_factors_;
};
INSTANTIATE_TEST_SUITE_P(
AlignmentAndScaleFactors,
ResolutionAlignmentTest,
::testing::Combine(
::testing::Values(1, 2, 3, 4, 5, 6, 16, 22), // requested_alignment_
::testing::Values(std::vector<double>{-1.0}, // scale_factors_
std::vector<double>{-1.0, -1.0},
std::vector<double>{-1.0, -1.0, -1.0},
std::vector<double>{4.0, 2.0, 1.0},
std::vector<double>{9999.0, -1.0, 1.0},
std::vector<double>{3.99, 2.01, 1.0},
std::vector<double>{4.9, 1.7, 1.25},
std::vector<double>{10.0, 4.0, 3.0},
std::vector<double>{1.75, 3.5},
std::vector<double>{1.5, 2.5},
std::vector<double>{1.3, 1.0})));
TEST_P(ResolutionAlignmentTest, SinkWantsAlignmentApplied) {
// Set requested resolution alignment.
video_source_.set_adaptation_enabled(true);
fake_encoder_.SetRequestedResolutionAlignment(requested_alignment_);
fake_encoder_.SetApplyAlignmentToAllSimulcastLayers(true);
// Fill config with the scaling factor by which to reduce encoding size.
const int num_streams = scale_factors_.size();
VideoEncoderConfig config;
test::FillEncoderConfiguration(kVideoCodecVP8, num_streams, &config);
for (int i = 0; i < num_streams; ++i) {
config.simulcast_layers[i].scale_resolution_down_by = scale_factors_[i];
}
config.video_stream_factory =
rtc::make_ref_counted<cricket::EncoderStreamFactory>(
"VP8", /*max qp*/ 56, /*screencast*/ false,
/*screenshare enabled*/ false);
video_stream_encoder_->ConfigureEncoder(std::move(config), kMaxPayloadLength);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kSimulcastTargetBitrate, kSimulcastTargetBitrate, kSimulcastTargetBitrate,
0, 0, 0);
// Wait for all layers before triggering event.
sink_.SetNumExpectedLayers(num_streams);
// On the 1st frame, we should have initialized the encoder and
// asked for its resolution requirements.
int64_t timestamp_ms = kFrameIntervalMs;
video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720));
WaitForEncodedFrame(timestamp_ms);
EXPECT_EQ(1, fake_encoder_.GetNumInitializations());
// On the 2nd frame, we should be receiving a correctly aligned resolution.
// (It's up the to the encoder to potentially drop the previous frame,
// to avoid coding back-to-back keyframes.)
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720));
WaitForEncodedFrame(timestamp_ms);
EXPECT_GE(fake_encoder_.GetNumInitializations(), 1);
VideoCodec codec = fake_encoder_.config();
EXPECT_EQ(codec.numberOfSimulcastStreams, num_streams);
// Frame size should be a multiple of the requested alignment.
for (int i = 0; i < codec.numberOfSimulcastStreams; ++i) {
EXPECT_EQ(codec.simulcastStream[i].width % requested_alignment_, 0);
EXPECT_EQ(codec.simulcastStream[i].height % requested_alignment_, 0);
// Aspect ratio should match.
EXPECT_EQ(codec.width * codec.simulcastStream[i].height,
codec.height * codec.simulcastStream[i].width);
}
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, TestCpuDowngrades_BalancedMode) {
const int kFramerateFps = 30;
const int kWidth = 1280;
const int kHeight = 720;
// We rely on the automatic resolution adaptation, but we handle framerate
// adaptation manually by mocking the stats proxy.
video_source_.set_adaptation_enabled(true);
// Enable BALANCED preference, no initial limitation.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_stream_encoder_->SetSource(&video_source_,
webrtc::DegradationPreference::BALANCED);
EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Adapt down as far as possible.
rtc::VideoSinkWants last_wants;
int64_t t = 1;
int loop_count = 0;
do {
++loop_count;
last_wants = video_source_.sink_wants();
// Simulate the framerate we've been asked to adapt to.
const int fps = std::min(kFramerateFps, last_wants.max_framerate_fps);
const int frame_interval_ms = rtc::kNumMillisecsPerSec / fps;
VideoSendStream::Stats mock_stats = stats_proxy_->GetStats();
mock_stats.input_frame_rate = fps;
stats_proxy_->SetMockStats(mock_stats);
video_source_.IncomingCapturedFrame(CreateFrame(t, kWidth, kHeight));
sink_.WaitForEncodedFrame(t);
t += frame_interval_ms;
video_stream_encoder_->TriggerCpuOveruse();
EXPECT_THAT(
video_source_.sink_wants(),
FpsInRangeForPixelsInBalanced(*video_source_.last_sent_width() *
*video_source_.last_sent_height()));
} while (video_source_.sink_wants().max_pixel_count <
last_wants.max_pixel_count ||
video_source_.sink_wants().max_framerate_fps <
last_wants.max_framerate_fps);
// Verify that we've adapted all the way down.
stats_proxy_->ResetMockStats();
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(loop_count - 1,
stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(kMinPixelsPerFrame, *video_source_.last_sent_width() *
*video_source_.last_sent_height());
EXPECT_EQ(kMinBalancedFramerateFps,
video_source_.sink_wants().max_framerate_fps);
// Adapt back up the same number of times we adapted down.
for (int i = 0; i < loop_count - 1; ++i) {
last_wants = video_source_.sink_wants();
// Simulate the framerate we've been asked to adapt to.
const int fps = std::min(kFramerateFps, last_wants.max_framerate_fps);
const int frame_interval_ms = rtc::kNumMillisecsPerSec / fps;
VideoSendStream::Stats mock_stats = stats_proxy_->GetStats();
mock_stats.input_frame_rate = fps;
stats_proxy_->SetMockStats(mock_stats);
video_source_.IncomingCapturedFrame(CreateFrame(t, kWidth, kHeight));
sink_.WaitForEncodedFrame(t);
t += frame_interval_ms;
video_stream_encoder_->TriggerCpuUnderuse();
EXPECT_THAT(
video_source_.sink_wants(),
FpsInRangeForPixelsInBalanced(*video_source_.last_sent_width() *
*video_source_.last_sent_height()));
EXPECT_TRUE(video_source_.sink_wants().max_pixel_count >
last_wants.max_pixel_count ||
video_source_.sink_wants().max_framerate_fps >
last_wants.max_framerate_fps);
}
EXPECT_THAT(video_source_.sink_wants(), FpsMaxResolutionMax());
stats_proxy_->ResetMockStats();
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ((loop_count - 1) * 2,
stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
SinkWantsNotChangedByResourceLimitedBeforeDegradationPreferenceChange) {
video_stream_encoder_->OnBitrateUpdated(kTargetBitrate, kTargetBitrate,
kTargetBitrate, 0, 0, 0);
EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants());
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
int64_t ntp_time = kFrameIntervalMs;
// Force an input frame rate to be available, or the adaptation call won't
// know what framerate to adapt form.
const int kInputFps = 30;
VideoSendStream::Stats stats = stats_proxy_->GetStats();
stats.input_frame_rate = kInputFps;
stats_proxy_->SetMockStats(stats);
video_source_.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(
&video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants());
video_source_.IncomingCapturedFrame(
CreateFrame(ntp_time, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(ntp_time);
ntp_time += kFrameIntervalMs;
// Trigger CPU overuse.
video_stream_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(
CreateFrame(ntp_time, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(ntp_time);
ntp_time += kFrameIntervalMs;
EXPECT_FALSE(video_source_.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
video_source_.sink_wants().max_pixel_count);
// Some framerate constraint should be set.
int restricted_fps = video_source_.sink_wants().max_framerate_fps;
EXPECT_LT(restricted_fps, kInputFps);
video_source_.IncomingCapturedFrame(
CreateFrame(ntp_time, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(ntp_time);
ntp_time += 100;
video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated(
&video_source_, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
// Give the encoder queue time to process the change in degradation preference
// by waiting for an encoded frame.
video_source_.IncomingCapturedFrame(
CreateFrame(ntp_time, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(ntp_time);
ntp_time += kFrameIntervalMs;
video_stream_encoder_->TriggerQualityLow();
video_source_.IncomingCapturedFrame(
CreateFrame(ntp_time, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(ntp_time);
ntp_time += kFrameIntervalMs;
// Some resolution constraint should be set.
EXPECT_FALSE(video_source_.sink_wants().target_pixel_count);
EXPECT_LT(video_source_.sink_wants().max_pixel_count,
kFrameWidth * kFrameHeight);
EXPECT_EQ(video_source_.sink_wants().max_framerate_fps, kInputFps);
int pixel_count = video_source_.sink_wants().max_pixel_count;
// Triggering a CPU underuse should not change the sink wants since it has
// not been overused for resolution since we changed degradation preference.
video_stream_encoder_->TriggerCpuUnderuse();
video_source_.IncomingCapturedFrame(
CreateFrame(ntp_time, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(ntp_time);
ntp_time += kFrameIntervalMs;
EXPECT_EQ(video_source_.sink_wants().max_pixel_count, pixel_count);
EXPECT_EQ(video_source_.sink_wants().max_framerate_fps, kInputFps);
// Change the degradation preference back. CPU underuse should not adapt since
// QP is most limited.
video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated(
&video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
video_source_.IncomingCapturedFrame(
CreateFrame(ntp_time, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(ntp_time);
ntp_time += 100;
// Resolution adaptations is gone after changing degradation preference.
EXPECT_FALSE(video_source_.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
video_source_.sink_wants().max_pixel_count);
// The fps adaptation from above is now back.
EXPECT_EQ(video_source_.sink_wants().max_framerate_fps, restricted_fps);
// Trigger CPU underuse.
video_stream_encoder_->TriggerCpuUnderuse();
video_source_.IncomingCapturedFrame(
CreateFrame(ntp_time, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(ntp_time);
ntp_time += kFrameIntervalMs;
EXPECT_EQ(video_source_.sink_wants().max_framerate_fps, restricted_fps);
// Trigger QP underuse, fps should return to normal.
video_stream_encoder_->TriggerQualityHigh();
video_source_.IncomingCapturedFrame(
CreateFrame(ntp_time, kFrameWidth, kFrameHeight));
sink_.WaitForEncodedFrame(ntp_time);
ntp_time += kFrameIntervalMs;
EXPECT_THAT(video_source_.sink_wants(), FpsMax());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SinkWantsStoredByDegradationPreference) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants());
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
int64_t frame_timestamp = 1;
video_source_.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
// Trigger CPU overuse.
video_stream_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
// Default degradation preference is maintain-framerate, so will lower max
// wanted resolution.
EXPECT_FALSE(video_source_.sink_wants().target_pixel_count);
EXPECT_LT(video_source_.sink_wants().max_pixel_count,
kFrameWidth * kFrameHeight);
EXPECT_EQ(kDefaultFramerate, video_source_.sink_wants().max_framerate_fps);
// Set new source, switch to maintain-resolution.
test::FrameForwarder new_video_source;
video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
// Give the encoder queue time to process the change in degradation preference
// by waiting for an encoded frame.
new_video_source.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameWidth));
sink_.WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
// Initially no degradation registered.
EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax());
// Force an input frame rate to be available, or the adaptation call won't
// know what framerate to adapt form.
const int kInputFps = 30;
VideoSendStream::Stats stats = stats_proxy_->GetStats();
stats.input_frame_rate = kInputFps;
stats_proxy_->SetMockStats(stats);
video_stream_encoder_->TriggerCpuOveruse();
new_video_source.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
// Some framerate constraint should be set.
EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
EXPECT_LT(new_video_source.sink_wants().max_framerate_fps, kInputFps);
// Turn off degradation completely.
video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated(
&new_video_source, webrtc::DegradationPreference::DISABLED);
// Give the encoder queue time to process the change in degradation preference
// by waiting for an encoded frame.
new_video_source.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameWidth));
sink_.WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax());
video_stream_encoder_->TriggerCpuOveruse();
new_video_source.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
// Still no degradation.
EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax());
// Calling SetSource with resolution scaling enabled apply the old SinkWants.
video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
// Give the encoder queue time to process the change in degradation preference
// by waiting for an encoded frame.
new_video_source.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameWidth));
sink_.WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
EXPECT_LT(new_video_source.sink_wants().max_pixel_count,
kFrameWidth * kFrameHeight);
EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count);
EXPECT_EQ(kDefaultFramerate, new_video_source.sink_wants().max_framerate_fps);
// Calling SetSource with framerate scaling enabled apply the old SinkWants.
video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
// Give the encoder queue time to process the change in degradation preference
// by waiting for an encoded frame.
new_video_source.IncomingCapturedFrame(
CreateFrame(frame_timestamp, kFrameWidth, kFrameWidth));
sink_.WaitForEncodedFrame(frame_timestamp);
frame_timestamp += kFrameIntervalMs;
EXPECT_FALSE(new_video_source.sink_wants().target_pixel_count);
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
EXPECT_LT(new_video_source.sink_wants().max_framerate_fps, kInputFps);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, StatsTracksQualityAdaptationStats) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
const int kWidth = 1280;
const int kHeight = 720;
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(1);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_EQ(0, stats.number_of_quality_adapt_changes);
// Trigger adapt down.
video_stream_encoder_->TriggerQualityLow();
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
WaitForEncodedFrame(2);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.bw_limited_resolution);
EXPECT_EQ(1, stats.number_of_quality_adapt_changes);
// Trigger adapt up.
video_stream_encoder_->TriggerQualityHigh();
video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
WaitForEncodedFrame(3);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_EQ(2, stats.number_of_quality_adapt_changes);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, StatsTracksCpuAdaptationStats) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
const int kWidth = 1280;
const int kHeight = 720;
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(1);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
// Trigger CPU overuse.
video_stream_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
WaitForEncodedFrame(2);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Trigger CPU normal use.
video_stream_encoder_->TriggerCpuUnderuse();
video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
WaitForEncodedFrame(3);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats.number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SwitchingSourceKeepsCpuAdaptation) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
const int kWidth = 1280;
const int kHeight = 720;
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(1);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
// Trigger CPU overuse.
video_stream_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
WaitForEncodedFrame(2);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set new source with adaptation still enabled.
test::FrameForwarder new_video_source;
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
WaitForEncodedFrame(3);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set adaptation disabled.
video_stream_encoder_->SetSource(&new_video_source,
webrtc::DegradationPreference::DISABLED);
new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight));
WaitForEncodedFrame(4);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set adaptation back to enabled.
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
new_video_source.IncomingCapturedFrame(CreateFrame(5, kWidth, kHeight));
WaitForEncodedFrame(5);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Trigger CPU normal use.
video_stream_encoder_->TriggerCpuUnderuse();
new_video_source.IncomingCapturedFrame(CreateFrame(6, kWidth, kHeight));
WaitForEncodedFrame(6);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats.number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SwitchingSourceKeepsQualityAdaptation) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
const int kWidth = 1280;
const int kHeight = 720;
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(1);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.bw_limited_framerate);
EXPECT_EQ(0, stats.number_of_quality_adapt_changes);
// Set new source with adaptation still enabled.
test::FrameForwarder new_video_source;
video_stream_encoder_->SetSource(&new_video_source,
webrtc::DegradationPreference::BALANCED);
new_video_source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
WaitForEncodedFrame(2);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.bw_limited_framerate);
EXPECT_EQ(0, stats.number_of_quality_adapt_changes);
// Trigger adapt down.
video_stream_encoder_->TriggerQualityLow();
new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
WaitForEncodedFrame(3);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.bw_limited_framerate);
EXPECT_EQ(1, stats.number_of_quality_adapt_changes);
// Set new source with adaptation still enabled.
video_stream_encoder_->SetSource(&new_video_source,
webrtc::DegradationPreference::BALANCED);
new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight));
WaitForEncodedFrame(4);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.bw_limited_framerate);
EXPECT_EQ(1, stats.number_of_quality_adapt_changes);
// Disable resolution scaling.
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
new_video_source.IncomingCapturedFrame(CreateFrame(5, kWidth, kHeight));
WaitForEncodedFrame(5);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.bw_limited_resolution);
EXPECT_FALSE(stats.bw_limited_framerate);
EXPECT_EQ(1, stats.number_of_quality_adapt_changes);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
QualityAdaptationStatsAreResetWhenScalerIsDisabled) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
const int kWidth = 1280;
const int kHeight = 720;
int64_t timestamp_ms = kFrameIntervalMs;
video_source_.set_adaptation_enabled(true);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt down.
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger overuse.
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Leave source unchanged, but disable quality scaler.
fake_encoder_.SetQualityScaling(false);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
// Make format different, to force recreation of encoder.
video_encoder_config.video_format.parameters["foo"] = "foo";
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
StatsTracksCpuAdaptationStatsWhenSwitchingSource_Balanced) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
const int kWidth = 1280;
const int kHeight = 720;
int sequence = 1;
// Enable BALANCED preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
// Trigger CPU overuse, should now adapt down.
video_stream_encoder_->TriggerCpuOveruse();
source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set new degradation preference should clear restrictions since we changed
// from BALANCED.
video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Force an input frame rate to be available, or the adaptation call won't
// know what framerate to adapt from.
VideoSendStream::Stats mock_stats = stats_proxy_->GetStats();
mock_stats.input_frame_rate = 30;
stats_proxy_->SetMockStats(mock_stats);
video_stream_encoder_->TriggerCpuOveruse();
stats_proxy_->ResetMockStats();
source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
// We have now adapted once.
stats = stats_proxy_->GetStats();
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
// Back to BALANCED, should clear the restrictions again.
video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated(
&source, webrtc::DegradationPreference::BALANCED);
source.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
StatsTracksCpuAdaptationStatsWhenSwitchingSource) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
const int kWidth = 1280;
const int kHeight = 720;
int sequence = 1;
video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(0, stats.number_of_cpu_adapt_changes);
// Trigger CPU overuse, should now adapt down.
video_stream_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set new source with adaptation still enabled.
test::FrameForwarder new_video_source;
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Set cpu adaptation by frame dropping.
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
// Not adapted at first.
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(1, stats.number_of_cpu_adapt_changes);
// Force an input frame rate to be available, or the adaptation call won't
// know what framerate to adapt from.
VideoSendStream::Stats mock_stats = stats_proxy_->GetStats();
mock_stats.input_frame_rate = 30;
stats_proxy_->SetMockStats(mock_stats);
video_stream_encoder_->TriggerCpuOveruse();
stats_proxy_->ResetMockStats();
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
// Framerate now adapted.
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_TRUE(stats.cpu_limited_framerate);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
// Disable CPU adaptation.
video_stream_encoder_->SetSource(&new_video_source,
webrtc::DegradationPreference::DISABLED);
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
// Try to trigger overuse. Should not succeed.
stats_proxy_->SetMockStats(mock_stats);
video_stream_encoder_->TriggerCpuOveruse();
stats_proxy_->ResetMockStats();
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
// Switch back the source with resolution adaptation enabled.
video_stream_encoder_->SetSource(
&video_source_, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_TRUE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(2, stats.number_of_cpu_adapt_changes);
// Trigger CPU normal usage.
video_stream_encoder_->TriggerCpuUnderuse();
video_source_.IncomingCapturedFrame(CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(3, stats.number_of_cpu_adapt_changes);
// Back to the source with adaptation off, set it back to maintain-resolution.
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
// Disabled, since we previously switched the source to disabled.
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_TRUE(stats.cpu_limited_framerate);
EXPECT_EQ(3, stats.number_of_cpu_adapt_changes);
// Trigger CPU normal usage.
video_stream_encoder_->TriggerCpuUnderuse();
new_video_source.IncomingCapturedFrame(
CreateFrame(sequence, kWidth, kHeight));
WaitForEncodedFrame(sequence++);
stats = stats_proxy_->GetStats();
EXPECT_FALSE(stats.cpu_limited_resolution);
EXPECT_FALSE(stats.cpu_limited_framerate);
EXPECT_EQ(4, stats.number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats.number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ScalingUpAndDownDoesNothingWithMaintainResolution) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Expect no scaling to begin with.
EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants());
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(1);
// Trigger scale down.
video_stream_encoder_->TriggerQualityLow();
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
WaitForEncodedFrame(2);
// Expect a scale down.
EXPECT_TRUE(video_source_.sink_wants().max_pixel_count);
EXPECT_LT(video_source_.sink_wants().max_pixel_count, kWidth * kHeight);
// Set resolution scaling disabled.
test::FrameForwarder new_video_source;
video_stream_encoder_->SetSource(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
// Trigger scale down.
video_stream_encoder_->TriggerQualityLow();
new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
WaitForEncodedFrame(3);
// Expect no scaling.
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
// Trigger scale up.
video_stream_encoder_->TriggerQualityHigh();
new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight));
WaitForEncodedFrame(4);
// Expect nothing to change, still no scaling.
EXPECT_EQ(std::numeric_limits<int>::max(),
new_video_source.sink_wants().max_pixel_count);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
SkipsSameAdaptDownRequest_MaintainFramerateMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable MAINTAIN_FRAMERATE preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(1);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerCpuOveruse();
EXPECT_THAT(source.sink_wants(),
FpsMaxResolutionMatches(Lt(kWidth * kHeight)));
const int kLastMaxPixelCount = source.sink_wants().max_pixel_count;
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt down for same input resolution, expect no change.
video_stream_encoder_->TriggerCpuOveruse();
EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SkipsSameOrLargerAdaptDownRequest_BalancedMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable BALANCED preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
sink_.WaitForEncodedFrame(1);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerQualityLow();
EXPECT_THAT(source.sink_wants(),
FpsMaxResolutionMatches(Lt(kWidth * kHeight)));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
const int kLastMaxPixelCount = source.sink_wants().max_pixel_count;
// Trigger adapt down for same input resolution, expect no change.
source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
sink_.WaitForEncodedFrame(2);
video_stream_encoder_->TriggerQualityLow();
EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down for larger input resolution, expect no change.
source.IncomingCapturedFrame(CreateFrame(3, kWidth + 1, kHeight + 1));
sink_.WaitForEncodedFrame(3);
video_stream_encoder_->TriggerQualityLow();
EXPECT_EQ(kLastMaxPixelCount, source.sink_wants().max_pixel_count);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
FpsCountReturnsToZeroForFewerAdaptationsUpThanDown) {
const int kWidth = 640;
const int kHeight = 360;
const int64_t kFrameIntervalMs = 150;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable BALANCED preference, no initial limitation.
AdaptingFrameForwarder source(&time_controller_);
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
int64_t timestamp_ms = kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect reduced fps (640x360@15fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(),
FpsMatchesResolutionMax(Lt(kDefaultFramerate)));
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Source requests 270p, expect reduced resolution (480x270@15fps).
source.OnOutputFormatRequest(480, 270);
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(480, 270);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect reduced fps (480x270@10fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants()));
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Source requests QVGA, expect reduced resolution (320x180@10fps).
source.OnOutputFormatRequest(320, 180);
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(320, 180);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect reduced fps (320x180@7fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants()));
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Source requests VGA, expect increased resolution (640x360@7fps).
source.OnOutputFormatRequest(640, 360);
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect increased fps (640x360@(max-2)fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants()));
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect increased fps (640x360@(max-1)fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants()));
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect increased fps (640x360@maxfps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants()));
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(6, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
FpsCountReturnsToZeroForFewerAdaptationsUpThanDownWithTwoResources) {
const int kWidth = 1280;
const int kHeight = 720;
const int64_t kFrameIntervalMs = 150;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable BALANCED preference, no initial limitation.
AdaptingFrameForwarder source(&time_controller_);
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
int64_t timestamp_ms = kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution (960x540@maxfps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(),
FpsMaxResolutionMatches(Lt(kWidth * kHeight)));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution (640x360@maxfps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect reduced fps (640x360@15fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Source requests QVGA, expect reduced resolution (320x180@15fps).
source.OnOutputFormatRequest(320, 180);
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(320, 180);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt down, expect reduced fps (320x180@7fps).
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Source requests HD, expect increased resolution (640x360@7fps).
source.OnOutputFormatRequest(1280, 720);
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt up, expect increased fps (640x360@(max-1)fps).
video_stream_encoder_->TriggerCpuUnderuse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt up, expect increased fps (640x360@maxfps).
video_stream_encoder_->TriggerQualityHigh();
video_stream_encoder_->TriggerCpuUnderuse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt up, expect increased resolution (960x570@maxfps).
video_stream_encoder_->TriggerQualityHigh();
video_stream_encoder_->TriggerCpuUnderuse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsEqResolutionGt(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt up, expect increased resolution (1280x720@maxfps).
video_stream_encoder_->TriggerQualityHigh();
video_stream_encoder_->TriggerCpuUnderuse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsEqResolutionGt(source.last_wants()));
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(6, stats_proxy_->GetStats().number_of_quality_adapt_changes);
EXPECT_EQ(5, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
NoChangeForInitialNormalUsage_MaintainFramerateMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable MAINTAIN_FRAMERATE preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt up, expect no change.
video_stream_encoder_->TriggerCpuUnderuse();
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
NoChangeForInitialNormalUsage_MaintainResolutionMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable MAINTAIN_RESOLUTION preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt up, expect no change.
video_stream_encoder_->TriggerCpuUnderuse();
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_BalancedMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable BALANCED preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
sink_.WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no change.
video_stream_encoder_->TriggerQualityHigh();
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, NoChangeForInitialNormalUsage_DisabledMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable DISABLED preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::DISABLED);
source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
sink_.WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no change.
video_stream_encoder_->TriggerQualityHigh();
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptsResolutionForLowQuality_MaintainFramerateMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable MAINTAIN_FRAMERATE preference, no initial limitation.
AdaptingFrameForwarder source(&time_controller_);
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
source.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
WaitForEncodedFrame(1);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerQualityLow();
source.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
WaitForEncodedFrame(2);
EXPECT_THAT(source.sink_wants(),
FpsMaxResolutionMatches(Lt(kWidth * kHeight)));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no restriction.
video_stream_encoder_->TriggerQualityHigh();
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptsFramerateForLowQuality_MaintainResolutionMode) {
const int kWidth = 1280;
const int kHeight = 720;
const int kInputFps = 30;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
VideoSendStream::Stats stats = stats_proxy_->GetStats();
stats.input_frame_rate = kInputFps;
stats_proxy_->SetMockStats(stats);
// Expect no scaling to begin with (preference: MAINTAIN_FRAMERATE).
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
sink_.WaitForEncodedFrame(1);
EXPECT_THAT(video_source_.sink_wants(), FpsMaxResolutionMax());
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerQualityLow();
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
sink_.WaitForEncodedFrame(2);
EXPECT_THAT(video_source_.sink_wants(),
FpsMaxResolutionMatches(Lt(kWidth * kHeight)));
// Enable MAINTAIN_RESOLUTION preference.
test::FrameForwarder new_video_source;
video_stream_encoder_->SetSourceAndWaitForRestrictionsUpdated(
&new_video_source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
// Give the encoder queue time to process the change in degradation preference
// by waiting for an encoded frame.
new_video_source.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
sink_.WaitForEncodedFrame(3);
EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax());
// Trigger adapt down, expect reduced framerate.
video_stream_encoder_->TriggerQualityLow();
new_video_source.IncomingCapturedFrame(CreateFrame(4, kWidth, kHeight));
sink_.WaitForEncodedFrame(4);
EXPECT_THAT(new_video_source.sink_wants(),
FpsMatchesResolutionMax(Lt(kInputFps)));
// Trigger adapt up, expect no restriction.
video_stream_encoder_->TriggerQualityHigh();
EXPECT_THAT(new_video_source.sink_wants(), FpsMaxResolutionMax());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DoesNotScaleBelowSetResolutionLimit) {
const int kWidth = 1280;
const int kHeight = 720;
const size_t kNumFrames = 10;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable adapter, expected input resolutions when downscaling:
// 1280x720 -> 960x540 -> 640x360 -> 480x270 -> 320x180 (kMinPixelsPerFrame)
video_source_.set_adaptation_enabled(true);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
int downscales = 0;
for (size_t i = 1; i <= kNumFrames; i++) {
video_source_.IncomingCapturedFrame(
CreateFrame(i * kFrameIntervalMs, kWidth, kHeight));
WaitForEncodedFrame(i * kFrameIntervalMs);
// Trigger scale down.
rtc::VideoSinkWants last_wants = video_source_.sink_wants();
video_stream_encoder_->TriggerQualityLow();
EXPECT_GE(video_source_.sink_wants().max_pixel_count, kMinPixelsPerFrame);
if (video_source_.sink_wants().max_pixel_count < last_wants.max_pixel_count)
++downscales;
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(downscales,
stats_proxy_->GetStats().number_of_quality_adapt_changes);
EXPECT_GT(downscales, 0);
}
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptsResolutionUpAndDownTwiceOnOveruse_MaintainFramerateMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable MAINTAIN_FRAMERATE preference, no initial limitation.
AdaptingFrameForwarder source(&time_controller_);
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
int64_t timestamp_ms = kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(),
FpsMaxResolutionMatches(Lt(kWidth * kHeight)));
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt up, expect no restriction.
video_stream_encoder_->TriggerCpuUnderuse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(),
FpsMaxResolutionMatches(Lt(kWidth * kHeight)));
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
// Trigger adapt up, expect no restriction.
video_stream_encoder_->TriggerCpuUnderuse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptsResolutionUpAndDownTwiceForLowQuality_BalancedMode_NoFpsLimit) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable BALANCED preference, no initial limitation.
AdaptingFrameForwarder source(&time_controller_);
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
int64_t timestamp_ms = kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(),
FpsMaxResolutionMatches(Lt(kWidth * kHeight)));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no restriction.
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution.
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(),
FpsMaxResolutionMatches(Lt(kWidth * kHeight)));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no restriction.
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
sink_.WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, AdaptUpIfBwEstimateIsHigherThanMinBitrate) {
fake_encoder_.SetResolutionBitrateLimits(
{kEncoderBitrateLimits540p, kEncoderBitrateLimits720p});
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps),
DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps),
DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps), 0,
0, 0);
// Enable MAINTAIN_FRAMERATE preference, no initial limitation.
AdaptingFrameForwarder source(&time_controller_);
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
// Insert 720p frame.
int64_t timestamp_ms = kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720));
WaitForEncodedFrame(1280, 720);
// Reduce bitrate and trigger adapt down.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps),
DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps),
DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps), 0,
0, 0);
video_stream_encoder_->TriggerQualityLow();
// Insert 720p frame. It should be downscaled and encoded.
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720));
WaitForEncodedFrame(960, 540);
// Trigger adapt up. Higher resolution should not be requested duo to lack
// of bitrate.
video_stream_encoder_->TriggerQualityHigh();
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMatches(Lt(1280 * 720)));
// Increase bitrate.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps),
DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps),
DataRate::BitsPerSec(kEncoderBitrateLimits720p.min_start_bitrate_bps), 0,
0, 0);
// Trigger adapt up. Higher resolution should be requested.
video_stream_encoder_->TriggerQualityHigh();
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropFirstFramesIfBwEstimateIsTooLow) {
fake_encoder_.SetResolutionBitrateLimits(
{kEncoderBitrateLimits540p, kEncoderBitrateLimits720p});
// Set bitrate equal to min bitrate of 540p.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps),
DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps),
DataRate::BitsPerSec(kEncoderBitrateLimits540p.min_start_bitrate_bps), 0,
0, 0);
// Enable MAINTAIN_FRAMERATE preference, no initial limitation.
AdaptingFrameForwarder source(&time_controller_);
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
// Insert 720p frame. It should be dropped and lower resolution should be
// requested.
int64_t timestamp_ms = kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720));
ExpectDroppedFrame();
EXPECT_TRUE_WAIT(source.sink_wants().max_pixel_count < 1280 * 720, 5000);
// Insert 720p frame. It should be downscaled and encoded.
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720));
WaitForEncodedFrame(960, 540);
video_stream_encoder_->Stop();
}
class BalancedDegradationTest : public VideoStreamEncoderTest {
protected:
void SetupTest() {
// Reset encoder for field trials to take effect.
ConfigureEncoder(video_encoder_config_.Copy());
OnBitrateUpdated(kTargetBitrate);
// Enable BALANCED preference.
source_.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(&source_, DegradationPreference::BALANCED);
}
void OnBitrateUpdated(DataRate bitrate) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
bitrate, bitrate, bitrate, 0, 0, 0);
}
void InsertFrame() {
timestamp_ms_ += kFrameIntervalMs;
source_.IncomingCapturedFrame(CreateFrame(timestamp_ms_, kWidth, kHeight));
}
void InsertFrameAndWaitForEncoded() {
InsertFrame();
sink_.WaitForEncodedFrame(timestamp_ms_);
}
const int kWidth = 640; // pixels:640x360=230400
const int kHeight = 360;
const int64_t kFrameIntervalMs = 150; // Use low fps to not drop any frame.
int64_t timestamp_ms_ = 0;
AdaptingFrameForwarder source_{&time_controller_};
};
TEST_F(BalancedDegradationTest, AdaptDownTwiceIfMinFpsDiffLtThreshold) {
test::ScopedKeyValueConfig field_trials(
field_trials_,
"WebRTC-Video-BalancedDegradationSettings/"
"pixels:57600|129600|230400,fps:7|10|24,fps_diff:1|1|1/");
SetupTest();
// Force input frame rate.
const int kInputFps = 24;
VideoSendStream::Stats stats = stats_proxy_->GetStats();
stats.input_frame_rate = kInputFps;
stats_proxy_->SetMockStats(stats);
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax());
// Trigger adapt down, expect scaled down framerate and resolution,
// since Fps diff (input-requested:0) < threshold.
video_stream_encoder_->TriggerQualityLow();
EXPECT_THAT(source_.sink_wants(),
AllOf(WantsFps(Eq(24)), WantsMaxPixels(Le(230400))));
video_stream_encoder_->Stop();
}
TEST_F(BalancedDegradationTest, AdaptDownOnceIfFpsDiffGeThreshold) {
test::ScopedKeyValueConfig field_trials(
field_trials_,
"WebRTC-Video-BalancedDegradationSettings/"
"pixels:57600|129600|230400,fps:7|10|24,fps_diff:1|1|1/");
SetupTest();
// Force input frame rate.
const int kInputFps = 25;
VideoSendStream::Stats stats = stats_proxy_->GetStats();
stats.input_frame_rate = kInputFps;
stats_proxy_->SetMockStats(stats);
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax());
// Trigger adapt down, expect scaled down framerate only (640x360@24fps).
// Fps diff (input-requested:1) == threshold.
video_stream_encoder_->TriggerQualityLow();
EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(24)));
video_stream_encoder_->Stop();
}
TEST_F(BalancedDegradationTest, AdaptDownUsesCodecSpecificFps) {
test::ScopedKeyValueConfig field_trials(
field_trials_,
"WebRTC-Video-BalancedDegradationSettings/"
"pixels:57600|129600|230400,fps:7|10|24,vp8_fps:8|11|22/");
SetupTest();
EXPECT_EQ(kVideoCodecVP8, video_encoder_config_.codec_type);
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax());
// Trigger adapt down, expect scaled down framerate (640x360@22fps).
video_stream_encoder_->TriggerQualityLow();
EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(22)));
video_stream_encoder_->Stop();
}
TEST_F(BalancedDegradationTest, NoAdaptUpIfBwEstimateIsLessThanMinBitrate) {
test::ScopedKeyValueConfig field_trials(
field_trials_,
"WebRTC-Video-BalancedDegradationSettings/"
"pixels:57600|129600|230400,fps:7|10|14,kbps:0|0|425/");
SetupTest();
const DataRate kMinBitrate = DataRate::KilobitsPerSec(425);
const DataRate kTooLowMinBitrate = DataRate::KilobitsPerSec(424);
OnBitrateUpdated(kTooLowMinBitrate);
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax());
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down framerate (640x360@14fps).
video_stream_encoder_->TriggerQualityLow();
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(14)));
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution (480x270@14fps).
video_stream_encoder_->TriggerQualityLow();
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsEqResolutionLt(source_.last_wants()));
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down framerate (480x270@10fps).
video_stream_encoder_->TriggerQualityLow();
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsLtResolutionEq(source_.last_wants()));
EXPECT_EQ(source_.sink_wants().max_framerate_fps, 10);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no upscale in fps (target bitrate < min bitrate).
video_stream_encoder_->TriggerQualityHigh();
InsertFrameAndWaitForEncoded();
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect upscaled fps (target bitrate == min bitrate).
OnBitrateUpdated(kMinBitrate);
video_stream_encoder_->TriggerQualityHigh();
InsertFrameAndWaitForEncoded();
EXPECT_EQ(source_.sink_wants().max_framerate_fps, 14);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(BalancedDegradationTest,
InitialFrameDropAdaptsFpsAndResolutionInOneStep) {
test::ScopedKeyValueConfig field_trials(
field_trials_,
"WebRTC-Video-BalancedDegradationSettings/"
"pixels:57600|129600|230400,fps:7|24|24/");
SetupTest();
OnBitrateUpdated(kLowTargetBitrate);
EXPECT_THAT(source_.sink_wants(), UnlimitedSinkWants());
// Insert frame, expect scaled down:
// framerate (640x360@24fps) -> resolution (480x270@24fps).
InsertFrame();
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_LT(source_.sink_wants().max_pixel_count, kWidth * kHeight);
EXPECT_EQ(source_.sink_wants().max_framerate_fps, 24);
// Insert frame, expect scaled down:
// resolution (320x180@24fps).
InsertFrame();
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_LT(source_.sink_wants().max_pixel_count,
source_.last_wants().max_pixel_count);
EXPECT_EQ(source_.sink_wants().max_framerate_fps, 24);
// Frame should not be dropped (min pixels per frame reached).
InsertFrameAndWaitForEncoded();
video_stream_encoder_->Stop();
}
TEST_F(BalancedDegradationTest,
NoAdaptUpInResolutionIfBwEstimateIsLessThanMinBitrate) {
test::ScopedKeyValueConfig field_trials(
field_trials_,
"WebRTC-Video-BalancedDegradationSettings/"
"pixels:57600|129600|230400,fps:7|10|14,kbps_res:0|0|435/");
SetupTest();
const DataRate kResolutionMinBitrate = DataRate::KilobitsPerSec(435);
const DataRate kTooLowMinResolutionBitrate = DataRate::KilobitsPerSec(434);
OnBitrateUpdated(kTooLowMinResolutionBitrate);
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax());
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down framerate (640x360@14fps).
video_stream_encoder_->TriggerQualityLow();
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(14)));
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution (480x270@14fps).
video_stream_encoder_->TriggerQualityLow();
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsEqResolutionLt(source_.last_wants()));
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down framerate (480x270@10fps).
video_stream_encoder_->TriggerQualityLow();
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsLtResolutionEq(source_.last_wants()));
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect upscaled fps (no bitrate limit) (480x270@14fps).
video_stream_encoder_->TriggerQualityHigh();
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsGtResolutionEq(source_.last_wants()));
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no upscale in res (target bitrate < min bitrate).
video_stream_encoder_->TriggerQualityHigh();
InsertFrameAndWaitForEncoded();
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect upscaled res (target bitrate == min bitrate).
OnBitrateUpdated(kResolutionMinBitrate);
video_stream_encoder_->TriggerQualityHigh();
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsEqResolutionGt(source_.last_wants()));
EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(BalancedDegradationTest,
NoAdaptUpInFpsAndResolutionIfBwEstimateIsLessThanMinBitrate) {
test::ScopedKeyValueConfig field_trials(
field_trials_,
"WebRTC-Video-BalancedDegradationSettings/"
"pixels:57600|129600|230400,fps:7|10|14,kbps:0|0|425,kbps_res:0|0|435/");
SetupTest();
const DataRate kMinBitrate = DataRate::KilobitsPerSec(425);
const DataRate kTooLowMinBitrate = DataRate::KilobitsPerSec(424);
const DataRate kResolutionMinBitrate = DataRate::KilobitsPerSec(435);
const DataRate kTooLowMinResolutionBitrate = DataRate::KilobitsPerSec(434);
OnBitrateUpdated(kTooLowMinBitrate);
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsMaxResolutionMax());
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down framerate (640x360@14fps).
video_stream_encoder_->TriggerQualityLow();
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsMatchesResolutionMax(Eq(14)));
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution (480x270@14fps).
video_stream_encoder_->TriggerQualityLow();
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsEqResolutionLt(source_.last_wants()));
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down framerate (480x270@10fps).
video_stream_encoder_->TriggerQualityLow();
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsLtResolutionEq(source_.last_wants()));
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no upscale (target bitrate < min bitrate).
video_stream_encoder_->TriggerQualityHigh();
InsertFrameAndWaitForEncoded();
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect upscaled fps (target bitrate == min bitrate).
OnBitrateUpdated(kMinBitrate);
video_stream_encoder_->TriggerQualityHigh();
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsGtResolutionEq(source_.last_wants()));
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no upscale in res (target bitrate < min bitrate).
OnBitrateUpdated(kTooLowMinResolutionBitrate);
video_stream_encoder_->TriggerQualityHigh();
InsertFrameAndWaitForEncoded();
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect upscaled res (target bitrate == min bitrate).
OnBitrateUpdated(kResolutionMinBitrate);
video_stream_encoder_->TriggerQualityHigh();
InsertFrameAndWaitForEncoded();
EXPECT_THAT(source_.sink_wants(), FpsEqResolutionGt(source_.last_wants()));
EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptsResolutionOnOveruseAndLowQuality_MaintainFramerateMode) {
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable MAINTAIN_FRAMERATE preference, no initial limitation.
AdaptingFrameForwarder source(&time_controller_);
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
int64_t timestamp_ms = kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt down, expect scaled down resolution (960x540).
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(),
FpsMaxResolutionMatches(Lt(kWidth * kHeight)));
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt down, expect scaled down resolution (640x360).
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt down, expect scaled down resolution (480x270).
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt down, expect scaled down resolution (320x180).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants()));
rtc::VideoSinkWants last_wants = source.sink_wants();
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt down, expect no change (min resolution reached).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMax());
EXPECT_EQ(source.sink_wants().max_pixel_count, last_wants.max_pixel_count);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt up, expect upscaled resolution (480x270).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality and cpu adapt up since both are most limited, expect
// upscaled resolution (640x360).
video_stream_encoder_->TriggerCpuUnderuse();
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality and cpu adapt up since both are most limited, expect
// upscaled resolution (960x540).
video_stream_encoder_->TriggerCpuUnderuse();
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants()));
last_wants = source.sink_wants();
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(5, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt up, expect no change since not most limited (960x540).
// However the stats will change since the CPU resource is no longer limited.
video_stream_encoder_->TriggerCpuUnderuse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsEqResolutionEqTo(last_wants));
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(6, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt up, expect no restriction (1280x720).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants()));
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_EQ(6, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, CpuLimitedHistogramIsReported) {
const int kWidth = 640;
const int kHeight = 360;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) {
video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight));
WaitForEncodedFrame(i);
}
video_stream_encoder_->TriggerCpuOveruse();
for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) {
video_source_.IncomingCapturedFrame(CreateFrame(
SendStatisticsProxy::kMinRequiredMetricsSamples + i, kWidth, kHeight));
WaitForEncodedFrame(SendStatisticsProxy::kMinRequiredMetricsSamples + i);
}
video_stream_encoder_->Stop();
video_stream_encoder_.reset();
stats_proxy_.reset();
EXPECT_METRIC_EQ(
1, metrics::NumSamples("WebRTC.Video.CpuLimitedResolutionInPercent"));
EXPECT_METRIC_EQ(
1, metrics::NumEvents("WebRTC.Video.CpuLimitedResolutionInPercent", 50));
}
TEST_F(VideoStreamEncoderTest,
CpuLimitedHistogramIsNotReportedForDisabledDegradation) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
const int kWidth = 640;
const int kHeight = 360;
video_stream_encoder_->SetSource(&video_source_,
webrtc::DegradationPreference::DISABLED);
for (int i = 1; i <= SendStatisticsProxy::kMinRequiredMetricsSamples; ++i) {
video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight));
WaitForEncodedFrame(i);
}
video_stream_encoder_->Stop();
video_stream_encoder_.reset();
stats_proxy_.reset();
EXPECT_EQ(0,
metrics::NumSamples("WebRTC.Video.CpuLimitedResolutionInPercent"));
}
TEST_F(VideoStreamEncoderTest, ReportsVideoBitrateAllocation) {
ResetEncoder("FAKE", 1, 1, 1, /*screenshare*/ false,
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoBitrateAllocation);
const int kDefaultFps = 30;
const VideoBitrateAllocation expected_bitrate =
SimulcastRateAllocator(fake_encoder_.config())
.Allocate(VideoBitrateAllocationParameters(kLowTargetBitrate.bps(),
kDefaultFps));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(CurrentTimeMs(), codec_width_, codec_height_));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.GetLastVideoBitrateAllocation(), expected_bitrate);
EXPECT_EQ(sink_.number_of_bitrate_allocations(), 1);
// Check that encoder has been updated too, not just allocation observer.
EXPECT_TRUE(fake_encoder_.GetAndResetLastRateControlSettings().has_value());
AdvanceTime(TimeDelta::Seconds(1) / kDefaultFps);
// VideoBitrateAllocation not updated on second frame.
video_source_.IncomingCapturedFrame(
CreateFrame(CurrentTimeMs(), codec_width_, codec_height_));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_bitrate_allocations(), 1);
AdvanceTime(TimeDelta::Millis(1) / kDefaultFps);
// VideoBitrateAllocation updated after a process interval.
const int64_t start_time_ms = CurrentTimeMs();
while (CurrentTimeMs() - start_time_ms < 5 * kProcessIntervalMs) {
video_source_.IncomingCapturedFrame(
CreateFrame(CurrentTimeMs(), codec_width_, codec_height_));
WaitForEncodedFrame(CurrentTimeMs());
AdvanceTime(TimeDelta::Millis(1) / kDefaultFps);
}
EXPECT_GT(sink_.number_of_bitrate_allocations(), 3);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, ReportsVideoLayersAllocationForVP8Simulcast) {
ResetEncoder("VP8", /*num_streams*/ 2, 1, 1, /*screenshare*/ false,
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoLayersAllocation);
const int kDefaultFps = 30;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(CurrentTimeMs(), codec_width_, codec_height_));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_layers_allocations(), 1);
VideoLayersAllocation last_layer_allocation =
sink_.GetLastVideoLayersAllocation();
// kLowTargetBitrate is only enough for one spatial layer.
ASSERT_EQ(last_layer_allocation.active_spatial_layers.size(), 1u);
VideoBitrateAllocation bitrate_allocation =
fake_encoder_.GetAndResetLastRateControlSettings()->target_bitrate;
// Check that encoder has been updated too, not just allocation observer.
EXPECT_EQ(bitrate_allocation.get_sum_bps(), kLowTargetBitrate.bps());
AdvanceTime(TimeDelta::Seconds(1) / kDefaultFps);
// VideoLayersAllocation might be updated if frame rate changes.
int number_of_layers_allocation = 1;
const int64_t start_time_ms = CurrentTimeMs();
while (CurrentTimeMs() - start_time_ms < 10 * kProcessIntervalMs) {
video_source_.IncomingCapturedFrame(
CreateFrame(CurrentTimeMs(), codec_width_, codec_height_));
WaitForEncodedFrame(CurrentTimeMs());
if (number_of_layers_allocation != sink_.number_of_layers_allocations()) {
number_of_layers_allocation = sink_.number_of_layers_allocations();
VideoLayersAllocation new_allocation =
sink_.GetLastVideoLayersAllocation();
ASSERT_EQ(new_allocation.active_spatial_layers.size(), 1u);
EXPECT_NE(new_allocation.active_spatial_layers[0].frame_rate_fps,
last_layer_allocation.active_spatial_layers[0].frame_rate_fps);
EXPECT_EQ(new_allocation.active_spatial_layers[0]
.target_bitrate_per_temporal_layer,
last_layer_allocation.active_spatial_layers[0]
.target_bitrate_per_temporal_layer);
last_layer_allocation = new_allocation;
}
}
EXPECT_LE(sink_.number_of_layers_allocations(), 3);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ReportsVideoLayersAllocationForVP8WithMiddleLayerDisabled) {
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, true);
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, true);
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 2, true);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP8,
/* num_streams*/ 3, &video_encoder_config);
video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps();
video_encoder_config.content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
video_encoder_config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp8EncoderSpecificSettings>(
VideoEncoder::GetDefaultVp8Settings());
for (auto& layer : video_encoder_config.simulcast_layers) {
layer.num_temporal_layers = 2;
}
// Simulcast layers are used for enabling/disabling streams.
video_encoder_config.simulcast_layers[0].active = true;
video_encoder_config.simulcast_layers[1].active = false;
video_encoder_config.simulcast_layers[2].active = true;
ConfigureEncoder(std::move(video_encoder_config),
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoLayersAllocation);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_layers_allocations(), 1);
VideoLayersAllocation last_layer_allocation =
sink_.GetLastVideoLayersAllocation();
ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(2));
EXPECT_THAT(last_layer_allocation.active_spatial_layers[0]
.target_bitrate_per_temporal_layer,
SizeIs(2));
EXPECT_LT(last_layer_allocation.active_spatial_layers[0].width, 1280);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].width, 1280);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ReportsVideoLayersAllocationForVP8WithMiddleAndHighestLayerDisabled) {
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, true);
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, true);
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 2, true);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP8,
/* num_streams*/ 3, &video_encoder_config);
video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps();
video_encoder_config.content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
video_encoder_config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp8EncoderSpecificSettings>(
VideoEncoder::GetDefaultVp8Settings());
for (auto& layer : video_encoder_config.simulcast_layers) {
layer.num_temporal_layers = 2;
}
// Simulcast layers are used for enabling/disabling streams.
video_encoder_config.simulcast_layers[0].active = true;
video_encoder_config.simulcast_layers[1].active = false;
video_encoder_config.simulcast_layers[2].active = false;
ConfigureEncoder(std::move(video_encoder_config),
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoLayersAllocation);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_layers_allocations(), 1);
VideoLayersAllocation last_layer_allocation =
sink_.GetLastVideoLayersAllocation();
ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(1));
EXPECT_THAT(last_layer_allocation.active_spatial_layers[0]
.target_bitrate_per_temporal_layer,
SizeIs(2));
EXPECT_LT(last_layer_allocation.active_spatial_layers[0].width, 1280);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ReportsVideoLayersAllocationForV9SvcWithTemporalLayerSupport) {
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, true);
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, true);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP9,
/* num_streams*/ 1, &video_encoder_config);
video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps();
video_encoder_config.content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = 2;
vp9_settings.numberOfTemporalLayers = 2;
vp9_settings.interLayerPred = InterLayerPredMode::kOn;
vp9_settings.automaticResizeOn = false;
video_encoder_config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp9EncoderSpecificSettings>(
vp9_settings);
ConfigureEncoder(std::move(video_encoder_config),
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoLayersAllocation);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_layers_allocations(), 1);
VideoLayersAllocation last_layer_allocation =
sink_.GetLastVideoLayersAllocation();
ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(2));
EXPECT_THAT(last_layer_allocation.active_spatial_layers[0]
.target_bitrate_per_temporal_layer,
SizeIs(2));
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].width, 640);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].height, 360);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].frame_rate_fps, 30);
EXPECT_THAT(last_layer_allocation.active_spatial_layers[1]
.target_bitrate_per_temporal_layer,
SizeIs(2));
EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].width, 1280);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].height, 720);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].frame_rate_fps, 30);
// Since full SVC is used, expect the top layer to utilize the full target
// rate.
EXPECT_EQ(last_layer_allocation.active_spatial_layers[1]
.target_bitrate_per_temporal_layer[1],
kTargetBitrate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ReportsVideoLayersAllocationForV9SvcWithoutTemporalLayerSupport) {
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, false);
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, false);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP9,
/* num_streams*/ 1, &video_encoder_config);
video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps();
video_encoder_config.content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = 2;
vp9_settings.numberOfTemporalLayers = 2;
vp9_settings.interLayerPred = InterLayerPredMode::kOn;
vp9_settings.automaticResizeOn = false;
video_encoder_config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp9EncoderSpecificSettings>(
vp9_settings);
ConfigureEncoder(std::move(video_encoder_config),
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoLayersAllocation);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_layers_allocations(), 1);
VideoLayersAllocation last_layer_allocation =
sink_.GetLastVideoLayersAllocation();
ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(2));
EXPECT_THAT(last_layer_allocation.active_spatial_layers[0]
.target_bitrate_per_temporal_layer,
SizeIs(1));
EXPECT_THAT(last_layer_allocation.active_spatial_layers[1]
.target_bitrate_per_temporal_layer,
SizeIs(1));
// Since full SVC is used, expect the top layer to utilize the full target
// rate.
EXPECT_EQ(last_layer_allocation.active_spatial_layers[1]
.target_bitrate_per_temporal_layer[0],
kTargetBitrate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ReportsVideoLayersAllocationForVP9KSvcWithTemporalLayerSupport) {
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, true);
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, true);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP9,
/* num_streams*/ 1, &video_encoder_config);
video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps();
video_encoder_config.content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = 2;
vp9_settings.numberOfTemporalLayers = 2;
vp9_settings.interLayerPred = InterLayerPredMode::kOnKeyPic;
vp9_settings.automaticResizeOn = false;
video_encoder_config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp9EncoderSpecificSettings>(
vp9_settings);
ConfigureEncoder(std::move(video_encoder_config),
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoLayersAllocation);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_layers_allocations(), 1);
VideoLayersAllocation last_layer_allocation =
sink_.GetLastVideoLayersAllocation();
ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(2));
EXPECT_THAT(last_layer_allocation.active_spatial_layers[0]
.target_bitrate_per_temporal_layer,
SizeIs(2));
EXPECT_THAT(last_layer_allocation.active_spatial_layers[1]
.target_bitrate_per_temporal_layer,
SizeIs(2));
// Since KSVC is, spatial layers are independend except on key frames.
EXPECT_LT(last_layer_allocation.active_spatial_layers[1]
.target_bitrate_per_temporal_layer[1],
kTargetBitrate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ReportsVideoLayersAllocationForV9SvcWithLowestLayerDisabled) {
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, true);
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, true);
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 2, true);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP9,
/* num_streams*/ 1, &video_encoder_config);
video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps();
video_encoder_config.content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = 3;
vp9_settings.numberOfTemporalLayers = 2;
vp9_settings.interLayerPred = InterLayerPredMode::kOn;
vp9_settings.automaticResizeOn = false;
video_encoder_config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp9EncoderSpecificSettings>(
vp9_settings);
// Simulcast layers are used for enabling/disabling streams.
video_encoder_config.simulcast_layers.resize(3);
video_encoder_config.simulcast_layers[0].active = false;
video_encoder_config.simulcast_layers[1].active = true;
video_encoder_config.simulcast_layers[2].active = true;
ConfigureEncoder(std::move(video_encoder_config),
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoLayersAllocation);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_layers_allocations(), 1);
VideoLayersAllocation last_layer_allocation =
sink_.GetLastVideoLayersAllocation();
ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(2));
EXPECT_THAT(last_layer_allocation.active_spatial_layers[0]
.target_bitrate_per_temporal_layer,
SizeIs(2));
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].width, 640);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].spatial_id, 0);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].width, 1280);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].spatial_id, 1);
EXPECT_THAT(last_layer_allocation.active_spatial_layers[1]
.target_bitrate_per_temporal_layer,
SizeIs(2));
// Since full SVC is used, expect the top layer to utilize the full target
// rate.
EXPECT_EQ(last_layer_allocation.active_spatial_layers[1]
.target_bitrate_per_temporal_layer[1],
kTargetBitrate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ReportsVideoLayersAllocationForV9SvcWithHighestLayerDisabled) {
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, true);
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, true);
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 2, true);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP9,
/* num_streams*/ 1, &video_encoder_config);
video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps();
video_encoder_config.content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = 3;
vp9_settings.numberOfTemporalLayers = 2;
vp9_settings.interLayerPred = InterLayerPredMode::kOn;
vp9_settings.automaticResizeOn = false;
video_encoder_config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp9EncoderSpecificSettings>(
vp9_settings);
// Simulcast layers are used for enabling/disabling streams.
video_encoder_config.simulcast_layers.resize(3);
video_encoder_config.simulcast_layers[2].active = false;
ConfigureEncoder(std::move(video_encoder_config),
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoLayersAllocation);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_layers_allocations(), 1);
VideoLayersAllocation last_layer_allocation =
sink_.GetLastVideoLayersAllocation();
ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(2));
EXPECT_THAT(last_layer_allocation.active_spatial_layers[0]
.target_bitrate_per_temporal_layer,
SizeIs(2));
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].width, 320);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].spatial_id, 0);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].width, 640);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[1].spatial_id, 1);
EXPECT_THAT(last_layer_allocation.active_spatial_layers[1]
.target_bitrate_per_temporal_layer,
SizeIs(2));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ReportsVideoLayersAllocationForV9SvcWithAllButHighestLayerDisabled) {
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx=*/0, true);
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 1, true);
fake_encoder_.SetTemporalLayersSupported(/*spatial_idx*/ 2, true);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(VideoCodecType::kVideoCodecVP9,
/* num_streams*/ 1, &video_encoder_config);
video_encoder_config.max_bitrate_bps = 2 * kTargetBitrate.bps();
video_encoder_config.content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = 3;
vp9_settings.numberOfTemporalLayers = 2;
vp9_settings.interLayerPred = InterLayerPredMode::kOn;
vp9_settings.automaticResizeOn = false;
video_encoder_config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp9EncoderSpecificSettings>(
vp9_settings);
// Simulcast layers are used for enabling/disabling streams.
video_encoder_config.simulcast_layers.resize(3);
video_encoder_config.simulcast_layers[0].active = false;
video_encoder_config.simulcast_layers[1].active = false;
video_encoder_config.simulcast_layers[2].active = true;
ConfigureEncoder(std::move(video_encoder_config),
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoLayersAllocation);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_layers_allocations(), 1);
VideoLayersAllocation last_layer_allocation =
sink_.GetLastVideoLayersAllocation();
ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(1));
EXPECT_THAT(last_layer_allocation.active_spatial_layers[0]
.target_bitrate_per_temporal_layer,
SizeIs(2));
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].width, 1280);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].spatial_id, 0);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0]
.target_bitrate_per_temporal_layer[1],
kTargetBitrate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, ReportsVideoLayersAllocationForH264) {
ResetEncoder("H264", 1, 1, 1, false,
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoLayersAllocation);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(CurrentTimeMs(), 1280, 720));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_layers_allocations(), 1);
VideoLayersAllocation last_layer_allocation =
sink_.GetLastVideoLayersAllocation();
ASSERT_THAT(last_layer_allocation.active_spatial_layers, SizeIs(1));
ASSERT_THAT(last_layer_allocation.active_spatial_layers[0]
.target_bitrate_per_temporal_layer,
SizeIs(1));
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0]
.target_bitrate_per_temporal_layer[0],
kTargetBitrate);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].width, 1280);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].height, 720);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0].frame_rate_fps, 30);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ReportsUpdatedVideoLayersAllocationWhenBweChanges) {
ResetEncoder("VP8", /*num_streams*/ 2, 1, 1, /*screenshare*/ false,
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoLayersAllocation);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(CurrentTimeMs(), codec_width_, codec_height_));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_layers_allocations(), 1);
VideoLayersAllocation last_layer_allocation =
sink_.GetLastVideoLayersAllocation();
// kLowTargetBitrate is only enough for one spatial layer.
ASSERT_EQ(last_layer_allocation.active_spatial_layers.size(), 1u);
EXPECT_EQ(last_layer_allocation.active_spatial_layers[0]
.target_bitrate_per_temporal_layer[0],
kLowTargetBitrate);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kSimulcastTargetBitrate, kSimulcastTargetBitrate, kSimulcastTargetBitrate,
0, 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(CurrentTimeMs(), codec_width_, codec_height_));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_layers_allocations(), 2);
last_layer_allocation = sink_.GetLastVideoLayersAllocation();
ASSERT_EQ(last_layer_allocation.active_spatial_layers.size(), 2u);
EXPECT_GT(last_layer_allocation.active_spatial_layers[1]
.target_bitrate_per_temporal_layer[0],
DataRate::Zero());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ReportsUpdatedVideoLayersAllocationWhenResolutionChanges) {
ResetEncoder("VP8", /*num_streams*/ 2, 1, 1, /*screenshare*/ false,
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoLayersAllocation);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kSimulcastTargetBitrate, kSimulcastTargetBitrate, kSimulcastTargetBitrate,
0, 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(CurrentTimeMs(), codec_width_, codec_height_));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_layers_allocations(), 1);
ASSERT_THAT(sink_.GetLastVideoLayersAllocation().active_spatial_layers,
SizeIs(2));
EXPECT_EQ(sink_.GetLastVideoLayersAllocation().active_spatial_layers[1].width,
codec_width_);
EXPECT_EQ(
sink_.GetLastVideoLayersAllocation().active_spatial_layers[1].height,
codec_height_);
video_source_.IncomingCapturedFrame(
CreateFrame(CurrentTimeMs(), codec_width_ / 2, codec_height_ / 2));
WaitForEncodedFrame(CurrentTimeMs());
EXPECT_EQ(sink_.number_of_layers_allocations(), 2);
ASSERT_THAT(sink_.GetLastVideoLayersAllocation().active_spatial_layers,
SizeIs(2));
EXPECT_EQ(sink_.GetLastVideoLayersAllocation().active_spatial_layers[1].width,
codec_width_ / 2);
EXPECT_EQ(
sink_.GetLastVideoLayersAllocation().active_spatial_layers[1].height,
codec_height_ / 2);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, TemporalLayersNotDisabledIfSupported) {
// 2 TLs configured, temporal layers supported by encoder.
const int kNumTemporalLayers = 2;
ResetEncoder("VP8", 1, kNumTemporalLayers, 1, /*screenshare*/ false,
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoBitrateAllocation);
fake_encoder_.SetTemporalLayersSupported(0, true);
// Bitrate allocated across temporal layers.
const int kTl0Bps = kTargetBitrate.bps() *
webrtc::SimulcastRateAllocator::GetTemporalRateAllocation(
kNumTemporalLayers, /*temporal_id*/ 0,
/*base_heavy_tl3_alloc*/ false);
const int kTl1Bps = kTargetBitrate.bps() *
webrtc::SimulcastRateAllocator::GetTemporalRateAllocation(
kNumTemporalLayers, /*temporal_id*/ 1,
/*base_heavy_tl3_alloc*/ false);
VideoBitrateAllocation expected_bitrate;
expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 0, kTl0Bps);
expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 1, kTl1Bps - kTl0Bps);
VerifyAllocatedBitrate(expected_bitrate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, TemporalLayersDisabledIfNotSupported) {
// 2 TLs configured, temporal layers not supported by encoder.
ResetEncoder("VP8", 1, /*num_temporal_layers*/ 2, 1, /*screenshare*/ false,
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoBitrateAllocation);
fake_encoder_.SetTemporalLayersSupported(0, false);
// Temporal layers not supported by the encoder.
// Total bitrate should be at ti:0.
VideoBitrateAllocation expected_bitrate;
expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 0, kTargetBitrate.bps());
VerifyAllocatedBitrate(expected_bitrate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, VerifyBitrateAllocationForTwoStreams) {
webrtc::test::ScopedKeyValueConfig field_trials(
field_trials_,
"WebRTC-Video-QualityScalerSettings/"
"initial_bitrate_interval_ms:1000,initial_bitrate_factor:0.2/");
// Reset encoder for field trials to take effect.
ConfigureEncoder(video_encoder_config_.Copy());
// 2 TLs configured, temporal layers only supported for first stream.
ResetEncoder("VP8", 2, /*num_temporal_layers*/ 2, 1, /*screenshare*/ false,
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoBitrateAllocation);
fake_encoder_.SetTemporalLayersSupported(0, true);
fake_encoder_.SetTemporalLayersSupported(1, false);
const int kS0Bps = 150000;
const int kS0Tl0Bps =
kS0Bps *
webrtc::SimulcastRateAllocator::GetTemporalRateAllocation(
/*num_layers*/ 2, /*temporal_id*/ 0, /*base_heavy_tl3_alloc*/ false);
const int kS0Tl1Bps =
kS0Bps *
webrtc::SimulcastRateAllocator::GetTemporalRateAllocation(
/*num_layers*/ 2, /*temporal_id*/ 1, /*base_heavy_tl3_alloc*/ false);
const int kS1Bps = kTargetBitrate.bps() - kS0Tl1Bps;
// Temporal layers not supported by si:1.
VideoBitrateAllocation expected_bitrate;
expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 0, kS0Tl0Bps);
expected_bitrate.SetBitrate(/*si*/ 0, /*ti*/ 1, kS0Tl1Bps - kS0Tl0Bps);
expected_bitrate.SetBitrate(/*si*/ 1, /*ti*/ 0, kS1Bps);
VerifyAllocatedBitrate(expected_bitrate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, OveruseDetectorUpdatedOnReconfigureAndAdaption) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const int kFramerate = 24;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
// Insert a single frame, triggering initial configuration.
source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight));
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
kDefaultFramerate);
// Trigger reconfigure encoder (without resetting the entire instance).
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
video_encoder_config.simulcast_layers[0].max_framerate = kFramerate;
video_encoder_config.max_bitrate_bps = kTargetBitrate.bps();
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Detector should be updated with fps limit from codec config.
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
kFramerate);
// Trigger overuse, max framerate should be reduced.
VideoSendStream::Stats stats = stats_proxy_->GetStats();
stats.input_frame_rate = kFramerate;
stats_proxy_->SetMockStats(stats);
video_stream_encoder_->TriggerCpuOveruse();
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
int adapted_framerate =
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate();
EXPECT_LT(adapted_framerate, kFramerate);
// Trigger underuse, max framerate should go back to codec configured fps.
// Set extra low fps, to make sure it's actually reset, not just incremented.
stats = stats_proxy_->GetStats();
stats.input_frame_rate = adapted_framerate / 2;
stats_proxy_->SetMockStats(stats);
video_stream_encoder_->TriggerCpuUnderuse();
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
kFramerate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
OveruseDetectorUpdatedRespectsFramerateAfterUnderuse) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const int kLowFramerate = 15;
const int kHighFramerate = 25;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
// Trigger initial configuration.
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
video_encoder_config.simulcast_layers[0].max_framerate = kLowFramerate;
video_encoder_config.max_bitrate_bps = kTargetBitrate.bps();
source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight));
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
kLowFramerate);
// Trigger overuse, max framerate should be reduced.
VideoSendStream::Stats stats = stats_proxy_->GetStats();
stats.input_frame_rate = kLowFramerate;
stats_proxy_->SetMockStats(stats);
video_stream_encoder_->TriggerCpuOveruse();
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
int adapted_framerate =
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate();
EXPECT_LT(adapted_framerate, kLowFramerate);
// Reconfigure the encoder with a new (higher max framerate), max fps should
// still respect the adaptation.
video_encoder_config.simulcast_layers[0].max_framerate = kHighFramerate;
source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight));
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
adapted_framerate);
// Trigger underuse, max framerate should go back to codec configured fps.
stats = stats_proxy_->GetStats();
stats.input_frame_rate = adapted_framerate;
stats_proxy_->SetMockStats(stats);
video_stream_encoder_->TriggerCpuUnderuse();
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
kHighFramerate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
OveruseDetectorUpdatedOnDegradationPreferenceChange) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const int kFramerate = 24;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
// Trigger initial configuration.
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
video_encoder_config.simulcast_layers[0].max_framerate = kFramerate;
video_encoder_config.max_bitrate_bps = kTargetBitrate.bps();
source.IncomingCapturedFrame(CreateFrame(1, kFrameWidth, kFrameHeight));
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
kFramerate);
// Trigger overuse, max framerate should be reduced.
VideoSendStream::Stats stats = stats_proxy_->GetStats();
stats.input_frame_rate = kFramerate;
stats_proxy_->SetMockStats(stats);
video_stream_encoder_->TriggerCpuOveruse();
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
int adapted_framerate =
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate();
EXPECT_LT(adapted_framerate, kFramerate);
// Change degradation preference to not enable framerate scaling. Target
// framerate should be changed to codec defined limit.
video_stream_encoder_->SetSourceAndWaitForFramerateUpdated(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_EQ(
video_stream_encoder_->overuse_detector_proxy_->GetLastTargetFramerate(),
kFramerate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropsFramesAndScalesWhenBitrateIsTooLow) {
const int kTooLowBitrateForFrameSizeBps = 10000;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps),
DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps),
DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), 0, 0, 0);
const int kWidth = 640;
const int kHeight = 360;
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
// Expect to drop this frame, the wait should time out.
ExpectDroppedFrame();
// Expect the sink_wants to specify a scaled frame.
EXPECT_TRUE_WAIT(
video_source_.sink_wants().max_pixel_count < kWidth * kHeight, 5000);
int last_pixel_count = video_source_.sink_wants().max_pixel_count;
// Next frame is scaled.
video_source_.IncomingCapturedFrame(
CreateFrame(2, kWidth * 3 / 4, kHeight * 3 / 4));
// Expect to drop this frame, the wait should time out.
ExpectDroppedFrame();
EXPECT_TRUE_WAIT(
video_source_.sink_wants().max_pixel_count < last_pixel_count, 5000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
NumberOfDroppedFramesLimitedWhenBitrateIsTooLow) {
const int kTooLowBitrateForFrameSizeBps = 10000;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps),
DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps),
DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), 0, 0, 0);
const int kWidth = 640;
const int kHeight = 360;
// We expect the n initial frames to get dropped.
int i;
for (i = 1; i <= kMaxInitialFramedrop; ++i) {
video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight));
ExpectDroppedFrame();
}
// The n+1th frame should not be dropped, even though it's size is too large.
video_source_.IncomingCapturedFrame(CreateFrame(i, kWidth, kHeight));
WaitForEncodedFrame(i);
// Expect the sink_wants to specify a scaled frame.
EXPECT_LT(video_source_.sink_wants().max_pixel_count, kWidth * kHeight);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
InitialFrameDropOffWithMaintainResolutionPreference) {
const int kWidth = 640;
const int kHeight = 360;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0);
// Set degradation preference.
video_stream_encoder_->SetSource(
&video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
// Frame should not be dropped, even if it's too large.
WaitForEncodedFrame(1);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, InitialFrameDropOffWhenEncoderDisabledScaling) {
const int kWidth = 640;
const int kHeight = 360;
fake_encoder_.SetQualityScaling(false);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
// Make format different, to force recreation of encoder.
video_encoder_config.video_format.parameters["foo"] = "foo";
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0);
// Force quality scaler reconfiguration by resetting the source.
video_stream_encoder_->SetSource(&video_source_,
webrtc::DegradationPreference::BALANCED);
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
// Frame should not be dropped, even if it's too large.
WaitForEncodedFrame(1);
video_stream_encoder_->Stop();
fake_encoder_.SetQualityScaling(true);
}
TEST_F(VideoStreamEncoderTest, InitialFrameDropActivatesWhenBweDrops) {
webrtc::test::ScopedKeyValueConfig field_trials(
field_trials_,
"WebRTC-Video-QualityScalerSettings/"
"initial_bitrate_interval_ms:1000,initial_bitrate_factor:0.2/");
// Reset encoder for field trials to take effect.
ConfigureEncoder(video_encoder_config_.Copy());
const int kNotTooLowBitrateForFrameSizeBps = kTargetBitrate.bps() * 0.2;
const int kTooLowBitrateForFrameSizeBps = kTargetBitrate.bps() * 0.19;
const int kWidth = 640;
const int kHeight = 360;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
// Frame should not be dropped.
WaitForEncodedFrame(1);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps),
DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps),
DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps), 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
// Frame should not be dropped.
WaitForEncodedFrame(2);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps),
DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps),
DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
// Expect to drop this frame, the wait should time out.
ExpectDroppedFrame();
// Expect the sink_wants to specify a scaled frame.
EXPECT_TRUE_WAIT(
video_source_.sink_wants().max_pixel_count < kWidth * kHeight, 5000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
InitialFrameDropNotReactivatedWhenBweDropsWhenScalingDisabled) {
webrtc::test::ScopedKeyValueConfig field_trials(
field_trials_,
"WebRTC-Video-QualityScalerSettings/"
"initial_bitrate_interval_ms:1000,initial_bitrate_factor:0.2/");
fake_encoder_.SetQualityScaling(false);
ConfigureEncoder(video_encoder_config_.Copy());
const int kNotTooLowBitrateForFrameSizeBps = kTargetBitrate.bps() * 0.2;
const int kTooLowBitrateForFrameSizeBps = kTargetBitrate.bps() * 0.19;
const int kWidth = 640;
const int kHeight = 360;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
// Frame should not be dropped.
WaitForEncodedFrame(1);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps),
DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps),
DataRate::BitsPerSec(kNotTooLowBitrateForFrameSizeBps), 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
// Frame should not be dropped.
WaitForEncodedFrame(2);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps),
DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps),
DataRate::BitsPerSec(kTooLowBitrateForFrameSizeBps), 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
// Not dropped since quality scaling is disabled.
WaitForEncodedFrame(3);
// Expect the sink_wants to specify a scaled frame.
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_THAT(video_source_.sink_wants(), ResolutionMax());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, InitialFrameDropActivatesWhenLayersChange) {
const DataRate kLowTargetBitrate = DataRate::KilobitsPerSec(400);
// Set simulcast.
ResetEncoder("VP8", 3, 1, 1, false);
fake_encoder_.SetQualityScaling(true);
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
// Frame should not be dropped.
WaitForEncodedFrame(1);
// Trigger QVGA "singlecast"
// Update the config.
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(PayloadStringToCodecType("VP8"), 3,
&video_encoder_config);
video_encoder_config.video_stream_factory =
rtc::make_ref_counted<cricket::EncoderStreamFactory>(
"VP8", /*max qp*/ 56, /*screencast*/ false,
/*screenshare enabled*/ false);
for (auto& layer : video_encoder_config.simulcast_layers) {
layer.num_temporal_layers = 1;
layer.max_framerate = kDefaultFramerate;
}
video_encoder_config.max_bitrate_bps = kSimulcastTargetBitrate.bps();
video_encoder_config.content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
video_encoder_config.simulcast_layers[0].active = true;
video_encoder_config.simulcast_layers[1].active = false;
video_encoder_config.simulcast_layers[2].active = false;
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
// Frame should not be dropped.
WaitForEncodedFrame(2);
// Trigger HD "singlecast"
video_encoder_config.simulcast_layers[0].active = false;
video_encoder_config.simulcast_layers[1].active = false;
video_encoder_config.simulcast_layers[2].active = true;
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
// Frame should be dropped because of initial frame drop.
ExpectDroppedFrame();
// Expect the sink_wants to specify a scaled frame.
EXPECT_TRUE_WAIT(
video_source_.sink_wants().max_pixel_count < kWidth * kHeight, 5000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, InitialFrameDropActivatesWhenSVCLayersChange) {
const DataRate kLowTargetBitrate = DataRate::KilobitsPerSec(400);
// Set simulcast.
ResetEncoder("VP9", 1, 1, 3, false);
fake_encoder_.SetQualityScaling(true);
const int kWidth = 1280;
const int kHeight = 720;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth, kHeight));
// Frame should not be dropped.
WaitForEncodedFrame(1);
// Trigger QVGA "singlecast"
// Update the config.
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(PayloadStringToCodecType("VP9"), 1,
&video_encoder_config);
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = 3;
// Since only one layer is active - automatic resize should be enabled.
vp9_settings.automaticResizeOn = true;
video_encoder_config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp9EncoderSpecificSettings>(
vp9_settings);
video_encoder_config.max_bitrate_bps = kSimulcastTargetBitrate.bps();
video_encoder_config.content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
// Currently simulcast layers `active` flags are used to inidicate
// which SVC layers are active.
video_encoder_config.simulcast_layers.resize(3);
video_encoder_config.simulcast_layers[0].active = true;
video_encoder_config.simulcast_layers[1].active = false;
video_encoder_config.simulcast_layers[2].active = false;
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth, kHeight));
// Frame should not be dropped.
WaitForEncodedFrame(2);
// Trigger HD "singlecast"
video_encoder_config.simulcast_layers[0].active = false;
video_encoder_config.simulcast_layers[1].active = false;
video_encoder_config.simulcast_layers[2].active = true;
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
// Frame should be dropped because of initial frame drop.
ExpectDroppedFrame();
// Expect the sink_wants to specify a scaled frame.
EXPECT_TRUE_WAIT(
video_source_.sink_wants().max_pixel_count < kWidth * kHeight, 5000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
EncoderMaxAndMinBitratesUsedIfMiddleStreamActive) {
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits270p(
480 * 270, 34 * 1000, 12 * 1000, 1234 * 1000);
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits360p(
640 * 360, 43 * 1000, 21 * 1000, 2345 * 1000);
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits720p(
1280 * 720, 54 * 1000, 31 * 1000, 2500 * 1000);
fake_encoder_.SetResolutionBitrateLimits(
{kEncoderLimits270p, kEncoderLimits360p, kEncoderLimits720p});
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(PayloadStringToCodecType("VP9"), 1,
&video_encoder_config);
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = 3;
// Since only one layer is active - automatic resize should be enabled.
vp9_settings.automaticResizeOn = true;
video_encoder_config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp9EncoderSpecificSettings>(
vp9_settings);
video_encoder_config.max_bitrate_bps = kSimulcastTargetBitrate.bps();
video_encoder_config.content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
// Simulcast layers are used to indicate which spatial layers are active.
video_encoder_config.simulcast_layers.resize(3);
video_encoder_config.simulcast_layers[0].active = false;
video_encoder_config.simulcast_layers[1].active = true;
video_encoder_config.simulcast_layers[2].active = false;
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// The encoder bitrate limits for 360p should be used.
video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, 1);
EXPECT_EQ(fake_encoder_.config().codecType, VideoCodecType::kVideoCodecVP9);
EXPECT_EQ(fake_encoder_.config().VP9().numberOfSpatialLayers, 2);
EXPECT_TRUE(fake_encoder_.config().spatialLayers[0].active);
EXPECT_EQ(640, fake_encoder_.config().spatialLayers[0].width);
EXPECT_EQ(360, fake_encoder_.config().spatialLayers[0].height);
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits360p.min_bitrate_bps),
fake_encoder_.config().spatialLayers[0].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits360p.max_bitrate_bps),
fake_encoder_.config().spatialLayers[0].maxBitrate * 1000);
// The encoder bitrate limits for 270p should be used.
video_source_.IncomingCapturedFrame(CreateFrame(2, 960, 540));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, 1);
EXPECT_EQ(fake_encoder_.config().codecType, VideoCodecType::kVideoCodecVP9);
EXPECT_EQ(fake_encoder_.config().VP9().numberOfSpatialLayers, 2);
EXPECT_TRUE(fake_encoder_.config().spatialLayers[0].active);
EXPECT_EQ(480, fake_encoder_.config().spatialLayers[0].width);
EXPECT_EQ(270, fake_encoder_.config().spatialLayers[0].height);
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits270p.min_bitrate_bps),
fake_encoder_.config().spatialLayers[0].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kEncoderLimits270p.max_bitrate_bps),
fake_encoder_.config().spatialLayers[0].maxBitrate * 1000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
DefaultMaxAndMinBitratesUsedIfMiddleStreamActive) {
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(PayloadStringToCodecType("VP9"), 1,
&video_encoder_config);
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = 3;
// Since only one layer is active - automatic resize should be enabled.
vp9_settings.automaticResizeOn = true;
video_encoder_config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp9EncoderSpecificSettings>(
vp9_settings);
video_encoder_config.max_bitrate_bps = kSimulcastTargetBitrate.bps();
video_encoder_config.content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
// Simulcast layers are used to indicate which spatial layers are active.
video_encoder_config.simulcast_layers.resize(3);
video_encoder_config.simulcast_layers[0].active = false;
video_encoder_config.simulcast_layers[1].active = true;
video_encoder_config.simulcast_layers[2].active = false;
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// The default bitrate limits for 360p should be used.
const absl::optional<VideoEncoder::ResolutionBitrateLimits> kLimits360p =
EncoderInfoSettings::GetDefaultSinglecastBitrateLimitsForResolution(
kVideoCodecVP9, 640 * 360);
video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, 1);
EXPECT_EQ(fake_encoder_.config().codecType, VideoCodecType::kVideoCodecVP9);
EXPECT_EQ(fake_encoder_.config().VP9().numberOfSpatialLayers, 2);
EXPECT_TRUE(fake_encoder_.config().spatialLayers[0].active);
EXPECT_EQ(640, fake_encoder_.config().spatialLayers[0].width);
EXPECT_EQ(360, fake_encoder_.config().spatialLayers[0].height);
EXPECT_EQ(static_cast<uint32_t>(kLimits360p->min_bitrate_bps),
fake_encoder_.config().spatialLayers[0].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kLimits360p->max_bitrate_bps),
fake_encoder_.config().spatialLayers[0].maxBitrate * 1000);
// The default bitrate limits for 270p should be used.
const absl::optional<VideoEncoder::ResolutionBitrateLimits> kLimits270p =
EncoderInfoSettings::GetDefaultSinglecastBitrateLimitsForResolution(
kVideoCodecVP9, 480 * 270);
video_source_.IncomingCapturedFrame(CreateFrame(2, 960, 540));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, 1);
EXPECT_EQ(fake_encoder_.config().codecType, VideoCodecType::kVideoCodecVP9);
EXPECT_EQ(fake_encoder_.config().VP9().numberOfSpatialLayers, 2);
EXPECT_TRUE(fake_encoder_.config().spatialLayers[0].active);
EXPECT_EQ(480, fake_encoder_.config().spatialLayers[0].width);
EXPECT_EQ(270, fake_encoder_.config().spatialLayers[0].height);
EXPECT_EQ(static_cast<uint32_t>(kLimits270p->min_bitrate_bps),
fake_encoder_.config().spatialLayers[0].minBitrate * 1000);
EXPECT_EQ(static_cast<uint32_t>(kLimits270p->max_bitrate_bps),
fake_encoder_.config().spatialLayers[0].maxBitrate * 1000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DefaultMaxAndMinBitratesNotUsedIfDisabled) {
webrtc::test::ScopedKeyValueConfig field_trials(
field_trials_, "WebRTC-DefaultBitrateLimitsKillSwitch/Enabled/");
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(PayloadStringToCodecType("VP9"), 1,
&video_encoder_config);
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = 3;
// Since only one layer is active - automatic resize should be enabled.
vp9_settings.automaticResizeOn = true;
video_encoder_config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp9EncoderSpecificSettings>(
vp9_settings);
video_encoder_config.max_bitrate_bps = kSimulcastTargetBitrate.bps();
video_encoder_config.content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
// Simulcast layers are used to indicate which spatial layers are active.
video_encoder_config.simulcast_layers.resize(3);
video_encoder_config.simulcast_layers[0].active = false;
video_encoder_config.simulcast_layers[1].active = true;
video_encoder_config.simulcast_layers[2].active = false;
// Reset encoder for field trials to take effect.
ConfigureEncoder(video_encoder_config.Copy());
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// The default bitrate limits for 360p should not be used.
const absl::optional<VideoEncoder::ResolutionBitrateLimits> kLimits360p =
EncoderInfoSettings::GetDefaultSinglecastBitrateLimitsForResolution(
kVideoCodecVP9, 640 * 360);
video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, 1);
EXPECT_EQ(fake_encoder_.config().codecType, kVideoCodecVP9);
EXPECT_EQ(fake_encoder_.config().VP9().numberOfSpatialLayers, 2);
EXPECT_TRUE(fake_encoder_.config().spatialLayers[0].active);
EXPECT_EQ(640, fake_encoder_.config().spatialLayers[0].width);
EXPECT_EQ(360, fake_encoder_.config().spatialLayers[0].height);
EXPECT_NE(static_cast<uint32_t>(kLimits360p->max_bitrate_bps),
fake_encoder_.config().spatialLayers[0].maxBitrate * 1000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SinglecastBitrateLimitsNotUsedForOneStream) {
ResetEncoder("VP9", /*num_streams=*/1, /*num_temporal_layers=*/1,
/*num_spatial_layers=*/1, /*screenshare=*/false);
// The default singlecast bitrate limits for 720p should not be used.
const absl::optional<VideoEncoder::ResolutionBitrateLimits> kLimits720p =
EncoderInfoSettings::GetDefaultSinglecastBitrateLimitsForResolution(
kVideoCodecVP9, 1280 * 720);
video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, 1);
EXPECT_EQ(fake_encoder_.config().codecType, VideoCodecType::kVideoCodecVP9);
EXPECT_EQ(fake_encoder_.config().VP9().numberOfSpatialLayers, 1);
EXPECT_TRUE(fake_encoder_.config().spatialLayers[0].active);
EXPECT_EQ(1280, fake_encoder_.config().spatialLayers[0].width);
EXPECT_EQ(720, fake_encoder_.config().spatialLayers[0].height);
EXPECT_NE(static_cast<uint32_t>(kLimits720p->max_bitrate_bps),
fake_encoder_.config().spatialLayers[0].maxBitrate * 1000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
EncoderMaxAndMinBitratesNotUsedIfLowestStreamActive) {
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits180p(
320 * 180, 34 * 1000, 12 * 1000, 1234 * 1000);
const VideoEncoder::ResolutionBitrateLimits kEncoderLimits720p(
1280 * 720, 54 * 1000, 31 * 1000, 2500 * 1000);
fake_encoder_.SetResolutionBitrateLimits(
{kEncoderLimits180p, kEncoderLimits720p});
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(PayloadStringToCodecType("VP9"), 1,
&video_encoder_config);
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = 3;
// Since only one layer is active - automatic resize should be enabled.
vp9_settings.automaticResizeOn = true;
video_encoder_config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp9EncoderSpecificSettings>(
vp9_settings);
video_encoder_config.max_bitrate_bps = kSimulcastTargetBitrate.bps();
video_encoder_config.content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
// Simulcast layers are used to indicate which spatial layers are active.
video_encoder_config.simulcast_layers.resize(3);
video_encoder_config.simulcast_layers[0].active = true;
video_encoder_config.simulcast_layers[1].active = false;
video_encoder_config.simulcast_layers[2].active = false;
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Limits not applied on lowest stream, limits for 180p should not be used.
video_source_.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
EXPECT_FALSE(WaitForFrame(1000));
EXPECT_EQ(fake_encoder_.config().numberOfSimulcastStreams, 1);
EXPECT_EQ(fake_encoder_.config().codecType, VideoCodecType::kVideoCodecVP9);
EXPECT_EQ(fake_encoder_.config().VP9().numberOfSpatialLayers, 3);
EXPECT_TRUE(fake_encoder_.config().spatialLayers[0].active);
EXPECT_EQ(320, fake_encoder_.config().spatialLayers[0].width);
EXPECT_EQ(180, fake_encoder_.config().spatialLayers[0].height);
EXPECT_NE(static_cast<uint32_t>(kEncoderLimits180p.min_bitrate_bps),
fake_encoder_.config().spatialLayers[0].minBitrate * 1000);
EXPECT_NE(static_cast<uint32_t>(kEncoderLimits180p.max_bitrate_bps),
fake_encoder_.config().spatialLayers[0].maxBitrate * 1000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
InitialFrameDropActivatesWhenResolutionIncreases) {
const int kWidth = 640;
const int kHeight = 360;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(1, kWidth / 2, kHeight / 2));
// Frame should not be dropped.
WaitForEncodedFrame(1);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(CreateFrame(2, kWidth / 2, kHeight / 2));
// Frame should not be dropped, bitrate not too low for frame.
WaitForEncodedFrame(2);
// Incoming resolution increases.
video_source_.IncomingCapturedFrame(CreateFrame(3, kWidth, kHeight));
// Expect to drop this frame, bitrate too low for frame.
ExpectDroppedFrame();
// Expect the sink_wants to specify a scaled frame.
EXPECT_TRUE_WAIT(
video_source_.sink_wants().max_pixel_count < kWidth * kHeight, 5000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, InitialFrameDropIsNotReactivatedWhenAdaptingUp) {
const int kWidth = 640;
const int kHeight = 360;
// So that quality scaling doesn't happen by itself.
fake_encoder_.SetQp(kQpHigh);
AdaptingFrameForwarder source(&time_controller_);
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
int timestamp = 1;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
source.IncomingCapturedFrame(CreateFrame(timestamp, kWidth, kHeight));
WaitForEncodedFrame(timestamp);
timestamp += 9000;
// Long pause to disable all first BWE drop logic.
AdvanceTime(TimeDelta::Millis(1000));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kLowTargetBitrate, kLowTargetBitrate, kLowTargetBitrate, 0, 0, 0);
source.IncomingCapturedFrame(CreateFrame(timestamp, kWidth, kHeight));
// Not dropped frame, as initial frame drop is disabled by now.
WaitForEncodedFrame(timestamp);
timestamp += 9000;
AdvanceTime(TimeDelta::Millis(100));
// Quality adaptation down.
video_stream_encoder_->TriggerQualityLow();
// Adaptation has an effect.
EXPECT_TRUE_WAIT(source.sink_wants().max_pixel_count < kWidth * kHeight,
5000);
// Frame isn't dropped as initial frame dropper is disabled.
source.IncomingCapturedFrame(CreateFrame(timestamp, kWidth, kHeight));
WaitForEncodedFrame(timestamp);
timestamp += 9000;
AdvanceTime(TimeDelta::Millis(100));
// Quality adaptation up.
video_stream_encoder_->TriggerQualityHigh();
// Adaptation has an effect.
EXPECT_TRUE_WAIT(source.sink_wants().max_pixel_count > kWidth * kHeight,
5000);
source.IncomingCapturedFrame(CreateFrame(timestamp, kWidth, kHeight));
// Frame should not be dropped, as initial framedropper is off.
WaitForEncodedFrame(timestamp);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
FrameDroppedWhenResolutionIncreasesAndLinkAllocationIsLow) {
const int kMinStartBps360p = 222000;
fake_encoder_.SetResolutionBitrateLimits(
{VideoEncoder::ResolutionBitrateLimits(320 * 180, 0, 30000, 400000),
VideoEncoder::ResolutionBitrateLimits(640 * 360, kMinStartBps360p, 30000,
800000)});
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::BitsPerSec(kMinStartBps360p - 1), // target_bitrate
DataRate::BitsPerSec(kMinStartBps360p - 1), // stable_target_bitrate
DataRate::BitsPerSec(kMinStartBps360p - 1), // link_allocation
0, 0, 0);
// Frame should not be dropped, bitrate not too low for frame.
video_source_.IncomingCapturedFrame(CreateFrame(1, 320, 180));
WaitForEncodedFrame(1);
// Incoming resolution increases, initial frame drop activates.
// Frame should be dropped, link allocation too low for frame.
video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360));
ExpectDroppedFrame();
// Expect sink_wants to specify a scaled frame.
EXPECT_TRUE_WAIT(video_source_.sink_wants().max_pixel_count < 640 * 360,
5000);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
FrameNotDroppedWhenResolutionIncreasesAndLinkAllocationIsHigh) {
const int kMinStartBps360p = 222000;
fake_encoder_.SetResolutionBitrateLimits(
{VideoEncoder::ResolutionBitrateLimits(320 * 180, 0, 30000, 400000),
VideoEncoder::ResolutionBitrateLimits(640 * 360, kMinStartBps360p, 30000,
800000)});
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::BitsPerSec(kMinStartBps360p - 1), // target_bitrate
DataRate::BitsPerSec(kMinStartBps360p - 1), // stable_target_bitrate
DataRate::BitsPerSec(kMinStartBps360p), // link_allocation
0, 0, 0);
// Frame should not be dropped, bitrate not too low for frame.
video_source_.IncomingCapturedFrame(CreateFrame(1, 320, 180));
WaitForEncodedFrame(1);
// Incoming resolution increases, initial frame drop activates.
// Frame should be dropped, link allocation not too low for frame.
video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 360));
WaitForEncodedFrame(2);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, RampsUpInQualityWhenBwIsHigh) {
webrtc::test::ScopedKeyValueConfig field_trials(
field_trials_,
"WebRTC-Video-QualityRampupSettings/"
"min_pixels:921600,min_duration_ms:2000/");
const int kWidth = 1280;
const int kHeight = 720;
const int kFps = 10;
max_framerate_ = kFps;
// Reset encoder for field trials to take effect.
VideoEncoderConfig config = video_encoder_config_.Copy();
config.max_bitrate_bps = kTargetBitrate.bps();
DataRate max_bitrate = DataRate::BitsPerSec(config.max_bitrate_bps);
ConfigureEncoder(std::move(config));
fake_encoder_.SetQp(kQpLow);
// Enable MAINTAIN_FRAMERATE preference.
AdaptingFrameForwarder source(&time_controller_);
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(&source,
DegradationPreference::MAINTAIN_FRAMERATE);
// Start at low bitrate.
const DataRate kLowBitrate = DataRate::KilobitsPerSec(200);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kLowBitrate, kLowBitrate, kLowBitrate, 0, 0, 0);
// Expect first frame to be dropped and resolution to be limited.
const int64_t kFrameIntervalMs = 1000 / kFps;
int64_t timestamp_ms = kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
ExpectDroppedFrame();
EXPECT_TRUE_WAIT(source.sink_wants().max_pixel_count < kWidth * kHeight,
5000);
// Increase bitrate to encoder max.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
max_bitrate, max_bitrate, max_bitrate, 0, 0, 0);
// Insert frames and advance `min_duration_ms`.
const int64_t start_bw_high_ms = CurrentTimeMs();
for (size_t i = 1; i <= 10; i++) {
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
}
// Advance to `min_duration_ms` - 1, frame should not trigger high BW.
int64_t elapsed_bw_high_ms = CurrentTimeMs() - start_bw_high_ms;
AdvanceTime(TimeDelta::Millis(2000 - elapsed_bw_high_ms - 1));
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_LT(source.sink_wants().max_pixel_count, kWidth * kHeight);
// Frame should trigger high BW and release quality limitation.
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
// The ramp-up code involves the adaptation queue, give it time to execute.
// TODO(hbos): Can we await an appropriate event instead?
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
// Frame should not be adapted.
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
QualityScalerAdaptationsRemovedWhenQualityScalingDisabled) {
webrtc::test::ScopedKeyValueConfig field_trials(
field_trials_, "WebRTC-Video-QualityScaling/Disabled/");
AdaptingFrameForwarder source(&time_controller_);
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(&source,
DegradationPreference::MAINTAIN_FRAMERATE);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
fake_encoder_.SetQp(kQpHigh + 1);
const int kWidth = 1280;
const int kHeight = 720;
const int64_t kFrameIntervalMs = 100;
int64_t timestamp_ms = kFrameIntervalMs;
for (size_t i = 1; i <= 100; i++) {
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
}
// Wait for QualityScaler, which will wait for 2000*2.5 ms until checking QP
// for the first time.
// TODO(eshr): We should avoid these waits by using threads with simulated
// time.
EXPECT_TRUE_WAIT(stats_proxy_->GetStats().bw_limited_resolution,
2000 * 2.5 * 2);
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_THAT(source.sink_wants(), WantsMaxPixels(Lt(kWidth * kHeight)));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
// Disable Quality scaling by turning off scaler on the encoder and
// reconfiguring.
fake_encoder_.SetQualityScaling(false);
video_stream_encoder_->ConfigureEncoder(video_encoder_config_.Copy(),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
AdvanceTime(TimeDelta::Zero());
// Since we turned off the quality scaler, the adaptations made by it are
// removed.
EXPECT_THAT(source.sink_wants(), ResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ResolutionNotAdaptedForTooSmallFrame_MaintainFramerateMode) {
const int kTooSmallWidth = 10;
const int kTooSmallHeight = 10;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable MAINTAIN_FRAMERATE preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
// Trigger adapt down, too small frame, expect no change.
source.IncomingCapturedFrame(CreateFrame(1, kTooSmallWidth, kTooSmallHeight));
WaitForEncodedFrame(1);
video_stream_encoder_->TriggerCpuOveruse();
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
ResolutionNotAdaptedForTooSmallFrame_BalancedMode) {
const int kTooSmallWidth = 10;
const int kTooSmallHeight = 10;
const int kFpsLimit = 7;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable BALANCED preference, no initial limitation.
test::FrameForwarder source;
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
// Trigger adapt down, expect limited framerate.
source.IncomingCapturedFrame(CreateFrame(1, kTooSmallWidth, kTooSmallHeight));
WaitForEncodedFrame(1);
video_stream_encoder_->TriggerQualityLow();
EXPECT_THAT(source.sink_wants(), FpsMatchesResolutionMax(Eq(kFpsLimit)));
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, too small frame, expect no change.
source.IncomingCapturedFrame(CreateFrame(2, kTooSmallWidth, kTooSmallHeight));
WaitForEncodedFrame(2);
video_stream_encoder_->TriggerQualityLow();
EXPECT_THAT(source.sink_wants(), FpsMatchesResolutionMax(Eq(kFpsLimit)));
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, FailingInitEncodeDoesntCauseCrash) {
fake_encoder_.ForceInitEncodeFailure(true);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
ResetEncoder("VP8", 2, 1, 1, false);
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
video_source_.IncomingCapturedFrame(
CreateFrame(1, kFrameWidth, kFrameHeight));
ExpectDroppedFrame();
video_stream_encoder_->Stop();
}
// TODO(sprang): Extend this with fps throttling and any "balanced" extensions.
TEST_F(VideoStreamEncoderTest,
AdaptsResolutionOnOveruse_MaintainFramerateMode) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
// Enabled default VideoAdapter downscaling. First step is 3/4, not 3/5 as
// requested by
// VideoStreamEncoder::VideoSourceProxy::RequestResolutionLowerThan().
video_source_.set_adaptation_enabled(true);
video_source_.IncomingCapturedFrame(
CreateFrame(1 * kFrameIntervalMs, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(kFrameWidth, kFrameHeight);
// Trigger CPU overuse, downscale by 3/4.
video_stream_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(
CreateFrame(2 * kFrameIntervalMs, kFrameWidth, kFrameHeight));
WaitForEncodedFrame((kFrameWidth * 3) / 4, (kFrameHeight * 3) / 4);
// Trigger CPU normal use, return to original resolution.
video_stream_encoder_->TriggerCpuUnderuse();
video_source_.IncomingCapturedFrame(
CreateFrame(3 * kFrameIntervalMs, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(kFrameWidth, kFrameHeight);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptsFramerateOnOveruse_MaintainResolutionMode) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_stream_encoder_->SetSource(
&video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
video_source_.set_adaptation_enabled(true);
int64_t timestamp_ms = CurrentTimeMs();
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(timestamp_ms);
// Try to trigger overuse. No fps estimate available => no effect.
video_stream_encoder_->TriggerCpuOveruse();
// Insert frames for one second to get a stable estimate.
for (int i = 0; i < max_framerate_; ++i) {
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(timestamp_ms);
}
// Trigger CPU overuse, reduce framerate by 2/3.
video_stream_encoder_->TriggerCpuOveruse();
int num_frames_dropped = 0;
for (int i = 0; i < max_framerate_; ++i) {
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
if (!WaitForFrame(kFrameTimeoutMs)) {
++num_frames_dropped;
} else {
sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight);
}
}
// Add some slack to account for frames dropped by the frame dropper.
const int kErrorMargin = 1;
EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 2 / 3),
kErrorMargin);
// Trigger CPU overuse, reduce framerate by 2/3 again.
video_stream_encoder_->TriggerCpuOveruse();
num_frames_dropped = 0;
for (int i = 0; i <= max_framerate_; ++i) {
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
if (!WaitForFrame(kFrameTimeoutMs)) {
++num_frames_dropped;
} else {
sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight);
}
}
EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 4 / 9),
kErrorMargin);
// Go back up one step.
video_stream_encoder_->TriggerCpuUnderuse();
num_frames_dropped = 0;
for (int i = 0; i < max_framerate_; ++i) {
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
if (!WaitForFrame(kFrameTimeoutMs)) {
++num_frames_dropped;
} else {
sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight);
}
}
EXPECT_NEAR(num_frames_dropped, max_framerate_ - (max_framerate_ * 2 / 3),
kErrorMargin);
// Go back up to original mode.
video_stream_encoder_->TriggerCpuUnderuse();
num_frames_dropped = 0;
for (int i = 0; i < max_framerate_; ++i) {
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
if (!WaitForFrame(kFrameTimeoutMs)) {
++num_frames_dropped;
} else {
sink_.CheckLastFrameSizeMatches(kFrameWidth, kFrameHeight);
}
}
EXPECT_NEAR(num_frames_dropped, 0, kErrorMargin);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DoesntAdaptDownPastMinFramerate) {
const int kFramerateFps = 5;
const int kFrameIntervalMs = rtc::kNumMillisecsPerSec / kFramerateFps;
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
// Reconfigure encoder with two temporal layers and screensharing, which will
// disable frame dropping and make testing easier.
ResetEncoder("VP8", 1, 2, 1, true);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_stream_encoder_->SetSource(
&video_source_, webrtc::DegradationPreference::MAINTAIN_RESOLUTION);
video_source_.set_adaptation_enabled(true);
int64_t timestamp_ms = CurrentTimeMs();
// Trigger overuse as much as we can.
rtc::VideoSinkWants last_wants;
do {
last_wants = video_source_.sink_wants();
// Insert frames to get a new fps estimate...
for (int j = 0; j < kFramerateFps; ++j) {
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
if (video_source_.last_sent_width()) {
sink_.WaitForEncodedFrame(timestamp_ms);
}
timestamp_ms += kFrameIntervalMs;
AdvanceTime(TimeDelta::Millis(kFrameIntervalMs));
}
// ...and then try to adapt again.
video_stream_encoder_->TriggerCpuOveruse();
} while (video_source_.sink_wants().max_framerate_fps <
last_wants.max_framerate_fps);
EXPECT_THAT(video_source_.sink_wants(),
FpsMatchesResolutionMax(Eq(kMinFramerateFps)));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptsResolutionAndFramerateForLowQuality_BalancedMode) {
const int kWidth = 1280;
const int kHeight = 720;
const int64_t kFrameIntervalMs = 150;
int64_t timestamp_ms = kFrameIntervalMs;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable BALANCED preference, no initial limitation.
AdaptingFrameForwarder source(&time_controller_);
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution (960x540@30fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(),
FpsMaxResolutionMatches(Lt(kWidth * kHeight)));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution (640x360@30fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect reduced fps (640x360@15fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution (480x270@15fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsEqResolutionLt(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Restrict bitrate, trigger adapt down, expect reduced fps (480x270@10fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(5, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect scaled down resolution (320x180@10fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsEqResolutionLt(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(6, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, expect reduced fps (320x180@7fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants()));
rtc::VideoSinkWants last_wants = source.sink_wants();
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(7, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt down, min resolution reached, expect no change.
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsEqResolutionEqTo(last_wants));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(7, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect increased fps (320x180@10fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(8, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect upscaled resolution (480x270@10fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsEqResolutionGt(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(9, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Increase bitrate, trigger adapt up, expect increased fps (480x270@15fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(10, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect upscaled resolution (640x360@15fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsEqResolutionGt(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(11, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect increased fps (640x360@30fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMax());
EXPECT_EQ(source.sink_wants().max_pixel_count,
source.last_wants().max_pixel_count);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(12, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect upscaled resolution (960x540@30fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(13, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no restriction (1280x720fps@30fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants()));
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_EQ(14, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no change.
video_stream_encoder_->TriggerQualityHigh();
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_EQ(14, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, AdaptWithTwoReasonsAndDifferentOrder_Framerate) {
const int kWidth = 1280;
const int kHeight = 720;
const int64_t kFrameIntervalMs = 150;
int64_t timestamp_ms = kFrameIntervalMs;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable BALANCED preference, no initial limitation.
AdaptingFrameForwarder source(&time_controller_);
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt down, expect scaled down resolution (960x540@30fps).
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(),
FpsMaxResolutionMatches(Lt(kWidth * kHeight)));
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt down, expect scaled down resolution (640x360@30fps).
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionLt(source.last_wants()));
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt down, expect reduced fps (640x360@15fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsLtResolutionEq(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt up, expect no change since QP is most limited.
{
// Store current sink wants since we expect no change and if there is no
// change then last_wants() is not updated.
auto previous_sink_wants = source.sink_wants();
video_stream_encoder_->TriggerCpuUnderuse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsEqResolutionEqTo(previous_sink_wants));
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
}
// Trigger quality adapt up, expect increased fps (640x360@30fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsGtResolutionEq(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt up and Cpu adapt up since both are most limited,
// expect increased resolution (960x540@30fps).
video_stream_encoder_->TriggerQualityHigh();
video_stream_encoder_->TriggerCpuUnderuse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt up and Cpu adapt up since both are most limited,
// expect no restriction (1280x720fps@30fps).
video_stream_encoder_->TriggerQualityHigh();
video_stream_encoder_->TriggerCpuUnderuse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionGt(source.last_wants()));
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no change.
video_stream_encoder_->TriggerQualityHigh();
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(4, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AdaptWithTwoReasonsAndDifferentOrder_Resolution) {
const int kWidth = 640;
const int kHeight = 360;
const int kFpsLimit = 15;
const int64_t kFrameIntervalMs = 150;
int64_t timestamp_ms = kFrameIntervalMs;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Enable BALANCED preference, no initial limitation.
AdaptingFrameForwarder source(&time_controller_);
source.set_adaptation_enabled(true);
video_stream_encoder_->SetSource(&source,
webrtc::DegradationPreference::BALANCED);
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(kWidth, kHeight);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt down, expect scaled down framerate (640x360@15fps).
video_stream_encoder_->TriggerCpuOveruse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMatchesResolutionMax(Eq(kFpsLimit)));
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(0, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality adapt down, expect scaled down resolution (480x270@15fps).
video_stream_encoder_->TriggerQualityLow();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsEqResolutionLt(source.last_wants()));
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger cpu adapt up, expect no change because quality is most limited.
{
auto previous_sink_wants = source.sink_wants();
// Store current sink wants since we expect no change ind if there is no
// change then last__wants() is not updated.
video_stream_encoder_->TriggerCpuUnderuse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsEqResolutionEqTo(previous_sink_wants));
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_quality_adapt_changes);
}
// Trigger quality adapt up, expect upscaled resolution (640x360@15fps).
video_stream_encoder_->TriggerQualityHigh();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsEqResolutionGt(source.last_wants()));
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_TRUE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(1, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger quality and cpu adapt up, expect increased fps (640x360@30fps).
video_stream_encoder_->TriggerQualityHigh();
video_stream_encoder_->TriggerCpuUnderuse();
timestamp_ms += kFrameIntervalMs;
source.IncomingCapturedFrame(CreateFrame(timestamp_ms, kWidth, kHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_framerate);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_resolution);
EXPECT_FALSE(stats_proxy_->GetStats().cpu_limited_framerate);
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
// Trigger adapt up, expect no change.
video_stream_encoder_->TriggerQualityHigh();
EXPECT_THAT(source.sink_wants(), FpsMaxResolutionMax());
EXPECT_EQ(2, stats_proxy_->GetStats().number_of_cpu_adapt_changes);
EXPECT_EQ(3, stats_proxy_->GetStats().number_of_quality_adapt_changes);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, AcceptsFullHdAdaptedDownSimulcastFrames) {
const int kFrameWidth = 1920;
const int kFrameHeight = 1080;
// 2/3 of 1920.
const int kAdaptedFrameWidth = 1280;
// 2/3 of 1080.
const int kAdaptedFrameHeight = 720;
const int kFramerate = 24;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Trigger reconfigure encoder (without resetting the entire instance).
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &video_encoder_config);
video_encoder_config.simulcast_layers[0].max_framerate = kFramerate;
video_encoder_config.max_bitrate_bps = kTargetBitrate.bps();
video_encoder_config.video_stream_factory =
rtc::make_ref_counted<CroppingVideoStreamFactory>();
video_stream_encoder_->ConfigureEncoder(std::move(video_encoder_config),
kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
video_source_.set_adaptation_enabled(true);
video_source_.IncomingCapturedFrame(
CreateFrame(1, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(kFrameWidth, kFrameHeight);
// Trigger CPU overuse, downscale by 3/4.
video_stream_encoder_->TriggerCpuOveruse();
video_source_.IncomingCapturedFrame(
CreateFrame(2, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(kAdaptedFrameWidth, kAdaptedFrameHeight);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, PeriodicallyUpdatesChannelParameters) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const int kLowFps = 2;
const int kHighFps = 30;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
int64_t timestamp_ms = CurrentTimeMs();
max_framerate_ = kLowFps;
// Insert 2 seconds of 2fps video.
for (int i = 0; i < kLowFps * 2; ++i) {
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(timestamp_ms);
timestamp_ms += 1000 / kLowFps;
}
// Make sure encoder is updated with new target.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(timestamp_ms);
timestamp_ms += 1000 / kLowFps;
EXPECT_EQ(kLowFps, fake_encoder_.GetConfiguredInputFramerate());
// Insert 30fps frames for just a little more than the forced update period.
const int kVcmTimerIntervalFrames = (kProcessIntervalMs * kHighFps) / 1000;
const int kFrameIntervalMs = 1000 / kHighFps;
max_framerate_ = kHighFps;
for (int i = 0; i < kVcmTimerIntervalFrames + 2; ++i) {
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
// Wait for encoded frame, but skip ahead if it doesn't arrive as it might
// be dropped if the encoder hans't been updated with the new higher target
// framerate yet, causing it to overshoot the target bitrate and then
// suffering the wrath of the media optimizer.
TimedWaitForEncodedFrame(timestamp_ms, 2 * kFrameIntervalMs);
timestamp_ms += kFrameIntervalMs;
}
// Don expect correct measurement just yet, but it should be higher than
// before.
EXPECT_GT(fake_encoder_.GetConfiguredInputFramerate(), kLowFps);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DoesNotUpdateBitrateAllocationWhenSuspended) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
ResetEncoder("FAKE", 1, 1, 1, false,
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoBitrateAllocation);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Insert a first video frame, causes another bitrate update.
int64_t timestamp_ms = CurrentTimeMs();
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(timestamp_ms);
EXPECT_EQ(sink_.number_of_bitrate_allocations(), 1);
// Next, simulate video suspension due to pacer queue overrun.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::Zero(), DataRate::Zero(), DataRate::Zero(), 0, 1, 0);
// Skip ahead until a new periodic parameter update should have occured.
timestamp_ms += kProcessIntervalMs;
AdvanceTime(TimeDelta::Millis(kProcessIntervalMs));
// No more allocations has been made.
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
ExpectDroppedFrame();
EXPECT_EQ(sink_.number_of_bitrate_allocations(), 1);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
DefaultCpuAdaptationThresholdsForSoftwareEncoder) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const test::ScopedKeyValueConfig kFieldTrials;
const CpuOveruseOptions default_options(kFieldTrials);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(1, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(1);
EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions()
.low_encode_usage_threshold_percent,
default_options.low_encode_usage_threshold_percent);
EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions()
.high_encode_usage_threshold_percent,
default_options.high_encode_usage_threshold_percent);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
HigherCpuAdaptationThresholdsForHardwareEncoder) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const test::ScopedKeyValueConfig kFieldTrials;
CpuOveruseOptions hardware_options(kFieldTrials);
hardware_options.low_encode_usage_threshold_percent = 150;
hardware_options.high_encode_usage_threshold_percent = 200;
fake_encoder_.SetIsHardwareAccelerated(true);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(1, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(1);
EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions()
.low_encode_usage_threshold_percent,
hardware_options.low_encode_usage_threshold_percent);
EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions()
.high_encode_usage_threshold_percent,
hardware_options.high_encode_usage_threshold_percent);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
CpuAdaptationThresholdsUpdatesWhenHardwareAccelerationChange) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const test::ScopedKeyValueConfig kFieldTrials;
const CpuOveruseOptions default_options(kFieldTrials);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(1, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(1);
EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions()
.low_encode_usage_threshold_percent,
default_options.low_encode_usage_threshold_percent);
EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions()
.high_encode_usage_threshold_percent,
default_options.high_encode_usage_threshold_percent);
CpuOveruseOptions hardware_options(kFieldTrials);
hardware_options.low_encode_usage_threshold_percent = 150;
hardware_options.high_encode_usage_threshold_percent = 200;
fake_encoder_.SetIsHardwareAccelerated(true);
video_source_.IncomingCapturedFrame(
CreateFrame(2, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(2);
EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions()
.low_encode_usage_threshold_percent,
hardware_options.low_encode_usage_threshold_percent);
EXPECT_EQ(video_stream_encoder_->overuse_detector_proxy_->GetOptions()
.high_encode_usage_threshold_percent,
hardware_options.high_encode_usage_threshold_percent);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DropsFramesWhenEncoderOvershoots) {
const int kFrameWidth = 320;
const int kFrameHeight = 240;
const int kFps = 30;
const DataRate kTargetBitrate = DataRate::KilobitsPerSec(120);
const int kNumFramesInRun = kFps * 5; // Runs of five seconds.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
int64_t timestamp_ms = CurrentTimeMs();
max_framerate_ = kFps;
// Insert 3 seconds of video, verify number of drops with normal bitrate.
fake_encoder_.SimulateOvershoot(1.0);
int num_dropped = 0;
for (int i = 0; i < kNumFramesInRun; ++i) {
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
// Wait up to two frame durations for a frame to arrive.
if (!TimedWaitForEncodedFrame(timestamp_ms, 2 * 1000 / kFps)) {
++num_dropped;
}
timestamp_ms += 1000 / kFps;
}
// Framerate should be measured to be near the expected target rate.
EXPECT_NEAR(fake_encoder_.GetLastFramerate(), kFps, 1);
// Frame drops should be within 5% of expected 0%.
EXPECT_NEAR(num_dropped, 0, 5 * kNumFramesInRun / 100);
// Make encoder produce frames at double the expected bitrate during 3 seconds
// of video, verify number of drops. Rate needs to be slightly changed in
// order to force the rate to be reconfigured.
double overshoot_factor = 2.0;
const RateControlSettings trials =
RateControlSettings::ParseFromFieldTrials();
if (trials.UseEncoderBitrateAdjuster()) {
// With bitrate adjuster, when need to overshoot even more to trigger
// frame dropping since the adjuter will try to just lower the target
// bitrate rather than drop frames. If network headroom can be used, it
// doesn't push back as hard so we don't need quite as much overshoot.
// These numbers are unfortunately a bit magical but there's not trivial
// way to algebraically infer them.
overshoot_factor = 3.0;
}
fake_encoder_.SimulateOvershoot(overshoot_factor);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate + DataRate::KilobitsPerSec(1),
kTargetBitrate + DataRate::KilobitsPerSec(1),
kTargetBitrate + DataRate::KilobitsPerSec(1), 0, 0, 0);
num_dropped = 0;
for (int i = 0; i < kNumFramesInRun; ++i) {
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
// Wait up to two frame durations for a frame to arrive.
if (!TimedWaitForEncodedFrame(timestamp_ms, 2 * 1000 / kFps)) {
++num_dropped;
}
timestamp_ms += 1000 / kFps;
}
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Target framerate should be still be near the expected target, despite
// the frame drops.
EXPECT_NEAR(fake_encoder_.GetLastFramerate(), kFps, 1);
// Frame drops should be within 5% of expected 50%.
EXPECT_NEAR(num_dropped, kNumFramesInRun / 2, 5 * kNumFramesInRun / 100);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, ConfiguresCorrectFrameRate) {
const int kFrameWidth = 320;
const int kFrameHeight = 240;
const int kActualInputFps = 24;
const DataRate kTargetBitrate = DataRate::KilobitsPerSec(120);
ASSERT_GT(max_framerate_, kActualInputFps);
int64_t timestamp_ms = CurrentTimeMs();
max_framerate_ = kActualInputFps;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Insert 3 seconds of video, with an input fps lower than configured max.
for (int i = 0; i < kActualInputFps * 3; ++i) {
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
// Wait up to two frame durations for a frame to arrive.
WaitForEncodedFrame(timestamp_ms);
timestamp_ms += 1000 / kActualInputFps;
}
EXPECT_NEAR(kActualInputFps, fake_encoder_.GetLastFramerate(), 1);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, AccumulatesUpdateRectOnDroppedFrames) {
VideoFrame::UpdateRect rect;
test::FrameForwarder source;
video_stream_encoder_->SetSource(&source,
DegradationPreference::MAINTAIN_FRAMERATE);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
source.IncomingCapturedFrame(CreateFrameWithUpdatedPixel(1, nullptr, 0));
WaitForEncodedFrame(1);
// On the very first frame full update should be forced.
rect = fake_encoder_.GetLastUpdateRect();
EXPECT_EQ(rect.offset_x, 0);
EXPECT_EQ(rect.offset_y, 0);
EXPECT_EQ(rect.height, codec_height_);
EXPECT_EQ(rect.width, codec_width_);
// Frame with NTP timestamp 2 will be dropped due to outstanding frames
// scheduled for processing during encoder queue processing of frame 2.
source.IncomingCapturedFrame(CreateFrameWithUpdatedPixel(2, nullptr, 1));
source.IncomingCapturedFrame(CreateFrameWithUpdatedPixel(3, nullptr, 10));
WaitForEncodedFrame(3);
// Updates to pixels 1 and 10 should be accumulated to one 10x1 rect.
rect = fake_encoder_.GetLastUpdateRect();
EXPECT_EQ(rect.offset_x, 1);
EXPECT_EQ(rect.offset_y, 0);
EXPECT_EQ(rect.width, 10);
EXPECT_EQ(rect.height, 1);
source.IncomingCapturedFrame(CreateFrameWithUpdatedPixel(4, nullptr, 0));
WaitForEncodedFrame(4);
// Previous frame was encoded, so no accumulation should happen.
rect = fake_encoder_.GetLastUpdateRect();
EXPECT_EQ(rect.offset_x, 0);
EXPECT_EQ(rect.offset_y, 0);
EXPECT_EQ(rect.width, 1);
EXPECT_EQ(rect.height, 1);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SetsFrameTypes) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// First frame is always keyframe.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
EXPECT_THAT(
fake_encoder_.LastFrameTypes(),
::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameKey}));
// Insert delta frame.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
WaitForEncodedFrame(2);
EXPECT_THAT(
fake_encoder_.LastFrameTypes(),
::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameDelta}));
// Request next frame be a key-frame.
video_stream_encoder_->SendKeyFrame();
video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr));
WaitForEncodedFrame(3);
EXPECT_THAT(
fake_encoder_.LastFrameTypes(),
::testing::ElementsAre(VideoFrameType{VideoFrameType::kVideoFrameKey}));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, SetsFrameTypesSimulcast) {
// Setup simulcast with three streams.
ResetEncoder("VP8", 3, 1, 1, false);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kSimulcastTargetBitrate, kSimulcastTargetBitrate, kSimulcastTargetBitrate,
0, 0, 0);
// Wait for all three layers before triggering event.
sink_.SetNumExpectedLayers(3);
// First frame is always keyframe.
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
EXPECT_THAT(fake_encoder_.LastFrameTypes(),
::testing::ElementsAreArray({VideoFrameType::kVideoFrameKey,
VideoFrameType::kVideoFrameKey,
VideoFrameType::kVideoFrameKey}));
// Insert delta frame.
video_source_.IncomingCapturedFrame(CreateFrame(2, nullptr));
WaitForEncodedFrame(2);
EXPECT_THAT(fake_encoder_.LastFrameTypes(),
::testing::ElementsAreArray({VideoFrameType::kVideoFrameDelta,
VideoFrameType::kVideoFrameDelta,
VideoFrameType::kVideoFrameDelta}));
// Request next frame be a key-frame.
// Only first stream is configured to produce key-frame.
video_stream_encoder_->SendKeyFrame();
video_source_.IncomingCapturedFrame(CreateFrame(3, nullptr));
WaitForEncodedFrame(3);
// TODO(webrtc:10615): Map keyframe request to spatial layer. Currently
// keyframe request on any layer triggers keyframe on all layers.
EXPECT_THAT(fake_encoder_.LastFrameTypes(),
::testing::ElementsAreArray({VideoFrameType::kVideoFrameKey,
VideoFrameType::kVideoFrameKey,
VideoFrameType::kVideoFrameKey}));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, DoesNotRewriteH264BitstreamWithOptimalSps) {
// SPS contains VUI with restrictions on the maximum number of reordered
// pictures, there is no need to rewrite the bitstream to enable faster
// decoding.
ResetEncoder("H264", 1, 1, 1, false);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
fake_encoder_.SetEncodedImageData(
EncodedImageBuffer::Create(kOptimalSps, sizeof(kOptimalSps)));
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
EXPECT_THAT(sink_.GetLastEncodedImageData(),
testing::ElementsAreArray(kOptimalSps));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, RewritesH264BitstreamWithNonOptimalSps) {
// SPS does not contain VUI, the bitstream is will be rewritten with added
// VUI with restrictions on the maximum number of reordered pictures to
// enable faster decoding.
uint8_t original_sps[] = {0, 0, 0, 1, H264::NaluType::kSps,
0x00, 0x00, 0x03, 0x03, 0xF4,
0x05, 0x03, 0xC7, 0xC0};
ResetEncoder("H264", 1, 1, 1, false);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
fake_encoder_.SetEncodedImageData(
EncodedImageBuffer::Create(original_sps, sizeof(original_sps)));
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
EXPECT_THAT(sink_.GetLastEncodedImageData(),
testing::ElementsAreArray(kOptimalSps));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, CopiesVideoFrameMetadataAfterDownscale) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const DataRate kTargetBitrate =
DataRate::KilobitsPerSec(300); // Too low for HD resolution.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Insert a first video frame. It should be dropped because of downscale in
// resolution.
int64_t timestamp_ms = CurrentTimeMs();
VideoFrame frame = CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight);
frame.set_rotation(kVideoRotation_270);
video_source_.IncomingCapturedFrame(frame);
ExpectDroppedFrame();
// Second frame is downscaled.
timestamp_ms = CurrentTimeMs();
frame = CreateFrame(timestamp_ms, kFrameWidth / 2, kFrameHeight / 2);
frame.set_rotation(kVideoRotation_90);
video_source_.IncomingCapturedFrame(frame);
WaitForEncodedFrame(timestamp_ms);
sink_.CheckLastFrameRotationMatches(kVideoRotation_90);
// Insert another frame, also downscaled.
timestamp_ms = CurrentTimeMs();
frame = CreateFrame(timestamp_ms, kFrameWidth / 2, kFrameHeight / 2);
frame.set_rotation(kVideoRotation_180);
video_source_.IncomingCapturedFrame(frame);
WaitForEncodedFrame(timestamp_ms);
sink_.CheckLastFrameRotationMatches(kVideoRotation_180);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, BandwidthAllocationLowerBound) {
const int kFrameWidth = 320;
const int kFrameHeight = 180;
// Initial rate.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
/*target_bitrate=*/DataRate::KilobitsPerSec(300),
/*stable_target_bitrate=*/DataRate::KilobitsPerSec(300),
/*link_allocation=*/DataRate::KilobitsPerSec(300),
/*fraction_lost=*/0,
/*round_trip_time_ms=*/0,
/*cwnd_reduce_ratio=*/0);
// Insert a first video frame so that encoder gets configured.
int64_t timestamp_ms = CurrentTimeMs();
VideoFrame frame = CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight);
frame.set_rotation(kVideoRotation_270);
video_source_.IncomingCapturedFrame(frame);
WaitForEncodedFrame(timestamp_ms);
// Set a target rate below the minimum allowed by the codec settings.
VideoCodec codec_config = fake_encoder_.config();
DataRate min_rate = DataRate::KilobitsPerSec(codec_config.minBitrate);
DataRate target_rate = min_rate - DataRate::KilobitsPerSec(1);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
/*target_bitrate=*/target_rate,
/*stable_target_bitrate=*/target_rate,
/*link_allocation=*/target_rate,
/*fraction_lost=*/0,
/*round_trip_time_ms=*/0,
/*cwnd_reduce_ratio=*/0);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Target bitrate and bandwidth allocation should both be capped at min_rate.
auto rate_settings = fake_encoder_.GetAndResetLastRateControlSettings();
ASSERT_TRUE(rate_settings.has_value());
DataRate allocation_sum =
DataRate::BitsPerSec(rate_settings->bitrate.get_sum_bps());
EXPECT_EQ(min_rate, allocation_sum);
EXPECT_EQ(rate_settings->bandwidth_allocation, min_rate);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, EncoderRatesPropagatedOnReconfigure) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Capture a frame and wait for it to synchronize with the encoder thread.
int64_t timestamp_ms = CurrentTimeMs();
video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, nullptr));
WaitForEncodedFrame(1);
auto prev_rate_settings = fake_encoder_.GetAndResetLastRateControlSettings();
ASSERT_TRUE(prev_rate_settings.has_value());
EXPECT_EQ(static_cast<int>(prev_rate_settings->framerate_fps),
kDefaultFramerate);
// Send 1s of video to ensure the framerate is stable at kDefaultFramerate.
for (int i = 0; i < 2 * kDefaultFramerate; i++) {
timestamp_ms += 1000 / kDefaultFramerate;
video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, nullptr));
WaitForEncodedFrame(timestamp_ms);
}
EXPECT_EQ(static_cast<int>(fake_encoder_.GetLastFramerate()),
kDefaultFramerate);
// Capture larger frame to trigger a reconfigure.
codec_height_ *= 2;
codec_width_ *= 2;
timestamp_ms += 1000 / kDefaultFramerate;
video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, nullptr));
WaitForEncodedFrame(timestamp_ms);
EXPECT_EQ(2, sink_.number_of_reconfigurations());
auto current_rate_settings =
fake_encoder_.GetAndResetLastRateControlSettings();
// Ensure we have actually reconfigured twice
// The rate settings should have been set again even though
// they haven't changed.
ASSERT_TRUE(current_rate_settings.has_value());
EXPECT_EQ(prev_rate_settings, current_rate_settings);
video_stream_encoder_->Stop();
}
struct MockEncoderSwitchRequestCallback : public EncoderSwitchRequestCallback {
MOCK_METHOD(void, RequestEncoderFallback, (), (override));
MOCK_METHOD(void,
RequestEncoderSwitch,
(const webrtc::SdpVideoFormat& format,
bool allow_default_fallback),
(override));
};
TEST_F(VideoStreamEncoderTest, EncoderSelectorCurrentEncoderIsSignaled) {
constexpr int kDontCare = 100;
StrictMock<MockEncoderSelector> encoder_selector;
auto encoder_factory = std::make_unique<test::VideoEncoderProxyFactory>(
&fake_encoder_, &encoder_selector);
video_send_config_.encoder_settings.encoder_factory = encoder_factory.get();
// Reset encoder for new configuration to take effect.
ConfigureEncoder(video_encoder_config_.Copy());
EXPECT_CALL(encoder_selector, OnCurrentEncoder);
video_source_.IncomingCapturedFrame(
CreateFrame(kDontCare, kDontCare, kDontCare));
AdvanceTime(TimeDelta::Zero());
video_stream_encoder_->Stop();
// The encoders produced by the VideoEncoderProxyFactory have a pointer back
// to it's factory, so in order for the encoder instance in the
// `video_stream_encoder_` to be destroyed before the `encoder_factory` we
// reset the `video_stream_encoder_` here.
video_stream_encoder_.reset();
}
TEST_F(VideoStreamEncoderTest, EncoderSelectorBitrateSwitch) {
constexpr int kDontCare = 100;
NiceMock<MockEncoderSelector> encoder_selector;
StrictMock<MockEncoderSwitchRequestCallback> switch_callback;
video_send_config_.encoder_settings.encoder_switch_request_callback =
&switch_callback;
auto encoder_factory = std::make_unique<test::VideoEncoderProxyFactory>(
&fake_encoder_, &encoder_selector);
video_send_config_.encoder_settings.encoder_factory = encoder_factory.get();
// Reset encoder for new configuration to take effect.
ConfigureEncoder(video_encoder_config_.Copy());
ON_CALL(encoder_selector, OnAvailableBitrate)
.WillByDefault(Return(SdpVideoFormat("AV1")));
EXPECT_CALL(switch_callback,
RequestEncoderSwitch(Field(&SdpVideoFormat::name, "AV1"),
/*allow_default_fallback=*/false));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
/*target_bitrate=*/DataRate::KilobitsPerSec(50),
/*stable_target_bitrate=*/DataRate::KilobitsPerSec(kDontCare),
/*link_allocation=*/DataRate::KilobitsPerSec(kDontCare),
/*fraction_lost=*/0,
/*round_trip_time_ms=*/0,
/*cwnd_reduce_ratio=*/0);
AdvanceTime(TimeDelta::Zero());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, EncoderSelectorResolutionSwitch) {
NiceMock<MockEncoderSelector> encoder_selector;
StrictMock<MockEncoderSwitchRequestCallback> switch_callback;
video_send_config_.encoder_settings.encoder_switch_request_callback =
&switch_callback;
auto encoder_factory = std::make_unique<test::VideoEncoderProxyFactory>(
&fake_encoder_, &encoder_selector);
video_send_config_.encoder_settings.encoder_factory = encoder_factory.get();
// Reset encoder for new configuration to take effect.
ConfigureEncoder(video_encoder_config_.Copy());
EXPECT_CALL(encoder_selector, OnResolutionChange(RenderResolution(640, 480)))
.WillOnce(Return(absl::nullopt));
EXPECT_CALL(encoder_selector, OnResolutionChange(RenderResolution(320, 240)))
.WillOnce(Return(SdpVideoFormat("AV1")));
EXPECT_CALL(switch_callback,
RequestEncoderSwitch(Field(&SdpVideoFormat::name, "AV1"),
/*allow_default_fallback=*/false));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
/*target_bitrate=*/DataRate::KilobitsPerSec(800),
/*stable_target_bitrate=*/DataRate::KilobitsPerSec(1000),
/*link_allocation=*/DataRate::KilobitsPerSec(1000),
/*fraction_lost=*/0,
/*round_trip_time_ms=*/0,
/*cwnd_reduce_ratio=*/0);
video_source_.IncomingCapturedFrame(CreateFrame(1, 640, 480));
video_source_.IncomingCapturedFrame(CreateFrame(2, 640, 480));
video_source_.IncomingCapturedFrame(CreateFrame(3, 320, 240));
AdvanceTime(TimeDelta::Zero());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, EncoderSelectorBrokenEncoderSwitch) {
constexpr int kSufficientBitrateToNotDrop = 1000;
constexpr int kDontCare = 100;
NiceMock<MockVideoEncoder> video_encoder;
NiceMock<MockEncoderSelector> encoder_selector;
StrictMock<MockEncoderSwitchRequestCallback> switch_callback;
video_send_config_.encoder_settings.encoder_switch_request_callback =
&switch_callback;
auto encoder_factory = std::make_unique<test::VideoEncoderProxyFactory>(
&video_encoder, &encoder_selector);
video_send_config_.encoder_settings.encoder_factory = encoder_factory.get();
// Reset encoder for new configuration to take effect.
ConfigureEncoder(video_encoder_config_.Copy());
// The VideoStreamEncoder needs some bitrate before it can start encoding,
// setting some bitrate so that subsequent calls to WaitForEncodedFrame does
// not fail.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
/*target_bitrate=*/DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop),
/*stable_target_bitrate=*/
DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop),
/*link_allocation=*/DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop),
/*fraction_lost=*/0,
/*round_trip_time_ms=*/0,
/*cwnd_reduce_ratio=*/0);
ON_CALL(video_encoder, Encode)
.WillByDefault(Return(WEBRTC_VIDEO_CODEC_ENCODER_FAILURE));
ON_CALL(encoder_selector, OnEncoderBroken)
.WillByDefault(Return(SdpVideoFormat("AV2")));
rtc::Event encode_attempted;
EXPECT_CALL(switch_callback,
RequestEncoderSwitch(Field(&SdpVideoFormat::name, "AV2"),
/*allow_default_fallback=*/true))
.WillOnce([&encode_attempted]() { encode_attempted.Set(); });
video_source_.IncomingCapturedFrame(CreateFrame(1, kDontCare, kDontCare));
encode_attempted.Wait(3000);
AdvanceTime(TimeDelta::Zero());
video_stream_encoder_->Stop();
// The encoders produced by the VideoEncoderProxyFactory have a pointer back
// to it's factory, so in order for the encoder instance in the
// `video_stream_encoder_` to be destroyed before the `encoder_factory` we
// reset the `video_stream_encoder_` here.
video_stream_encoder_.reset();
}
TEST_F(VideoStreamEncoderTest, SwitchEncoderOnInitFailureWithEncoderSelector) {
NiceMock<MockVideoEncoder> video_encoder;
NiceMock<MockEncoderSelector> encoder_selector;
StrictMock<MockEncoderSwitchRequestCallback> switch_callback;
video_send_config_.encoder_settings.encoder_switch_request_callback =
&switch_callback;
auto encoder_factory = std::make_unique<test::VideoEncoderProxyFactory>(
&video_encoder, &encoder_selector);
video_send_config_.encoder_settings.encoder_factory = encoder_factory.get();
// Reset encoder for new configuration to take effect.
ConfigureEncoder(video_encoder_config_.Copy());
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, /*fraction_lost=*/0,
/*round_trip_time_ms=*/0,
/*cwnd_reduce_ratio=*/0);
ASSERT_EQ(0, sink_.number_of_reconfigurations());
ON_CALL(video_encoder, InitEncode(_, _))
.WillByDefault(Return(WEBRTC_VIDEO_CODEC_ENCODER_FAILURE));
ON_CALL(encoder_selector, OnEncoderBroken)
.WillByDefault(Return(SdpVideoFormat("AV2")));
rtc::Event encode_attempted;
EXPECT_CALL(switch_callback,
RequestEncoderSwitch(Field(&SdpVideoFormat::name, "AV2"),
/*allow_default_fallback=*/true))
.WillOnce([&encode_attempted]() { encode_attempted.Set(); });
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
encode_attempted.Wait(3000);
AdvanceTime(TimeDelta::Zero());
video_stream_encoder_->Stop();
// The encoders produced by the VideoEncoderProxyFactory have a pointer back
// to it's factory, so in order for the encoder instance in the
// `video_stream_encoder_` to be destroyed before the `encoder_factory` we
// reset the `video_stream_encoder_` here.
video_stream_encoder_.reset();
}
TEST_F(VideoStreamEncoderTest,
SwitchEncoderOnInitFailureWithoutEncoderSelector) {
NiceMock<MockVideoEncoder> video_encoder;
StrictMock<MockEncoderSwitchRequestCallback> switch_callback;
video_send_config_.encoder_settings.encoder_switch_request_callback =
&switch_callback;
auto encoder_factory = std::make_unique<test::VideoEncoderProxyFactory>(
&video_encoder, /*encoder_selector=*/nullptr);
video_send_config_.encoder_settings.encoder_factory = encoder_factory.get();
// Reset encoder for new configuration to take effect.
ConfigureEncoder(video_encoder_config_.Copy());
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, /*fraction_lost=*/0,
/*round_trip_time_ms=*/0,
/*cwnd_reduce_ratio=*/0);
ASSERT_EQ(0, sink_.number_of_reconfigurations());
ON_CALL(video_encoder, InitEncode(_, _))
.WillByDefault(Return(WEBRTC_VIDEO_CODEC_ENCODER_FAILURE));
rtc::Event encode_attempted;
EXPECT_CALL(switch_callback,
RequestEncoderSwitch(Field(&SdpVideoFormat::name, "VP8"),
/*allow_default_fallback=*/true))
.WillOnce([&encode_attempted]() { encode_attempted.Set(); });
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
encode_attempted.Wait(3000);
AdvanceTime(TimeDelta::Zero());
video_stream_encoder_->Stop();
// The encoders produced by the VideoEncoderProxyFactory have a pointer back
// to it's factory, so in order for the encoder instance in the
// `video_stream_encoder_` to be destroyed before the `encoder_factory` we
// reset the `video_stream_encoder_` here.
video_stream_encoder_.reset();
}
TEST_F(VideoStreamEncoderTest, NullEncoderReturnSwitch) {
// As a variant of EncoderSelectorBrokenEncoderSwitch, when a null
// VideoEncoder is passed in encoder_factory, it checks whether
// Codec Switch occurs without a crash.
constexpr int kSufficientBitrateToNotDrop = 1000;
constexpr int kDontCare = 100;
NiceMock<MockEncoderSelector> encoder_selector;
StrictMock<MockEncoderSwitchRequestCallback> switch_callback;
video_send_config_.encoder_settings.encoder_switch_request_callback =
&switch_callback;
auto encoder_factory =
std::make_unique<test::VideoEncoderNullableProxyFactory>(
/*encoder=*/nullptr, &encoder_selector);
video_send_config_.encoder_settings.encoder_factory = encoder_factory.get();
// Reset encoder for new configuration to take effect.
ConfigureEncoder(video_encoder_config_.Copy());
// The VideoStreamEncoder needs some bitrate before it can start encoding,
// setting some bitrate so that subsequent calls to WaitForEncodedFrame does
// not fail.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
/*target_bitrate=*/DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop),
/*stable_target_bitrate=*/
DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop),
/*link_allocation=*/DataRate::KilobitsPerSec(kSufficientBitrateToNotDrop),
/*fraction_lost=*/0,
/*round_trip_time_ms=*/0,
/*cwnd_reduce_ratio=*/0);
ON_CALL(encoder_selector, OnEncoderBroken)
.WillByDefault(Return(SdpVideoFormat("AV2")));
rtc::Event encode_attempted;
EXPECT_CALL(switch_callback,
RequestEncoderSwitch(Field(&SdpVideoFormat::name, "AV2"),
/*allow_default_fallback=*/_))
.WillOnce([&encode_attempted]() { encode_attempted.Set(); });
video_source_.IncomingCapturedFrame(CreateFrame(1, kDontCare, kDontCare));
encode_attempted.Wait(3000);
AdvanceTime(TimeDelta::Zero());
video_stream_encoder_->Stop();
// The encoders produced by the VideoEncoderProxyFactory have a pointer back
// to it's factory, so in order for the encoder instance in the
// `video_stream_encoder_` to be destroyed before the `encoder_factory` we
// reset the `video_stream_encoder_` here.
video_stream_encoder_.reset();
}
TEST_F(VideoStreamEncoderTest,
AllocationPropagatedToEncoderWhenTargetRateChanged) {
const int kFrameWidth = 320;
const int kFrameHeight = 180;
// Set initial rate.
auto rate = DataRate::KilobitsPerSec(100);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
/*target_bitrate=*/rate,
/*stable_target_bitrate=*/rate,
/*link_allocation=*/rate,
/*fraction_lost=*/0,
/*round_trip_time_ms=*/0,
/*cwnd_reduce_ratio=*/0);
// Insert a first video frame so that encoder gets configured.
int64_t timestamp_ms = CurrentTimeMs();
VideoFrame frame = CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight);
frame.set_rotation(kVideoRotation_270);
video_source_.IncomingCapturedFrame(frame);
WaitForEncodedFrame(timestamp_ms);
EXPECT_EQ(1, fake_encoder_.GetNumSetRates());
// Change of target bitrate propagates to the encoder.
auto new_stable_rate = rate - DataRate::KilobitsPerSec(5);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
/*target_bitrate=*/new_stable_rate,
/*stable_target_bitrate=*/new_stable_rate,
/*link_allocation=*/rate,
/*fraction_lost=*/0,
/*round_trip_time_ms=*/0,
/*cwnd_reduce_ratio=*/0);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(2, fake_encoder_.GetNumSetRates());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
AllocationNotPropagatedToEncoderWhenTargetRateUnchanged) {
const int kFrameWidth = 320;
const int kFrameHeight = 180;
// Set initial rate.
auto rate = DataRate::KilobitsPerSec(100);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
/*target_bitrate=*/rate,
/*stable_target_bitrate=*/rate,
/*link_allocation=*/rate,
/*fraction_lost=*/0,
/*round_trip_time_ms=*/0,
/*cwnd_reduce_ratio=*/0);
// Insert a first video frame so that encoder gets configured.
int64_t timestamp_ms = CurrentTimeMs();
VideoFrame frame = CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight);
frame.set_rotation(kVideoRotation_270);
video_source_.IncomingCapturedFrame(frame);
WaitForEncodedFrame(timestamp_ms);
EXPECT_EQ(1, fake_encoder_.GetNumSetRates());
// Set a higher target rate without changing the link_allocation. Should not
// reset encoder's rate.
auto new_stable_rate = rate - DataRate::KilobitsPerSec(5);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
/*target_bitrate=*/rate,
/*stable_target_bitrate=*/new_stable_rate,
/*link_allocation=*/rate,
/*fraction_lost=*/0,
/*round_trip_time_ms=*/0,
/*cwnd_reduce_ratio=*/0);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_EQ(1, fake_encoder_.GetNumSetRates());
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, AutomaticAnimationDetection) {
test::ScopedKeyValueConfig field_trials(
field_trials_,
"WebRTC-AutomaticAnimationDetectionScreenshare/"
"enabled:true,min_fps:20,min_duration_ms:1000,min_area_ratio:0.8/");
const int kFramerateFps = 30;
const int kWidth = 1920;
const int kHeight = 1080;
const int kNumFrames = 2 * kFramerateFps; // >1 seconds of frames.
// Works on screenshare mode.
ResetEncoder("VP8", 1, 1, 1, /*screenshare*/ true);
// We rely on the automatic resolution adaptation, but we handle framerate
// adaptation manually by mocking the stats proxy.
video_source_.set_adaptation_enabled(true);
// BALANCED degradation preference is required for this feature.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_stream_encoder_->SetSource(&video_source_,
webrtc::DegradationPreference::BALANCED);
EXPECT_THAT(video_source_.sink_wants(), UnlimitedSinkWants());
VideoFrame frame = CreateFrame(1, kWidth, kHeight);
frame.set_update_rect(VideoFrame::UpdateRect{0, 0, kWidth, kHeight});
// Pass enough frames with the full update to trigger animation detection.
for (int i = 0; i < kNumFrames; ++i) {
int64_t timestamp_ms = CurrentTimeMs();
frame.set_ntp_time_ms(timestamp_ms);
frame.set_timestamp_us(timestamp_ms * 1000);
video_source_.IncomingCapturedFrame(frame);
WaitForEncodedFrame(timestamp_ms);
}
// Resolution should be limited.
rtc::VideoSinkWants expected;
expected.max_framerate_fps = kFramerateFps;
expected.max_pixel_count = 1280 * 720 + 1;
EXPECT_THAT(video_source_.sink_wants(), FpsEqResolutionLt(expected));
// Pass one frame with no known update.
// Resolution cap should be removed immediately.
int64_t timestamp_ms = CurrentTimeMs();
frame.set_ntp_time_ms(timestamp_ms);
frame.set_timestamp_us(timestamp_ms * 1000);
frame.clear_update_rect();
video_source_.IncomingCapturedFrame(frame);
WaitForEncodedFrame(timestamp_ms);
// Resolution should be unlimited now.
EXPECT_THAT(video_source_.sink_wants(),
FpsMatchesResolutionMax(Eq(kFramerateFps)));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, ConfiguresVp9SvcAtOddResolutions) {
const int kWidth = 720; // 540p adapted down.
const int kHeight = 405;
const int kNumFrames = 3;
// Works on screenshare mode.
ResetEncoder("VP9", /*num_streams=*/1, /*num_temporal_layers=*/1,
/*num_spatial_layers=*/2, /*screenshare=*/true);
video_source_.set_adaptation_enabled(true);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
VideoFrame frame = CreateFrame(1, kWidth, kHeight);
// Pass enough frames with the full update to trigger animation detection.
for (int i = 0; i < kNumFrames; ++i) {
int64_t timestamp_ms = CurrentTimeMs();
frame.set_ntp_time_ms(timestamp_ms);
frame.set_timestamp_us(timestamp_ms * 1000);
video_source_.IncomingCapturedFrame(frame);
WaitForEncodedFrame(timestamp_ms);
}
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, EncoderResetAccordingToParameterChange) {
const float downscale_factors[] = {4.0, 2.0, 1.0};
const int number_layers =
sizeof(downscale_factors) / sizeof(downscale_factors[0]);
VideoEncoderConfig config;
test::FillEncoderConfiguration(kVideoCodecVP8, number_layers, &config);
for (int i = 0; i < number_layers; ++i) {
config.simulcast_layers[i].scale_resolution_down_by = downscale_factors[i];
config.simulcast_layers[i].active = true;
}
config.video_stream_factory =
rtc::make_ref_counted<cricket::EncoderStreamFactory>(
"VP8", /*max qp*/ 56, /*screencast*/ false,
/*screenshare enabled*/ false);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kSimulcastTargetBitrate, kSimulcastTargetBitrate, kSimulcastTargetBitrate,
0, 0, 0);
// First initialization.
// Encoder should be initialized. Next frame should be key frame.
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
sink_.SetNumExpectedLayers(number_layers);
int64_t timestamp_ms = kFrameIntervalMs;
video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720));
WaitForEncodedFrame(timestamp_ms);
EXPECT_EQ(1, fake_encoder_.GetNumInitializations());
EXPECT_THAT(fake_encoder_.LastFrameTypes(),
::testing::ElementsAreArray({VideoFrameType::kVideoFrameKey,
VideoFrameType::kVideoFrameKey,
VideoFrameType::kVideoFrameKey}));
// Disable top layer.
// Encoder shouldn't be re-initialized. Next frame should be delta frame.
config.simulcast_layers[number_layers - 1].active = false;
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
sink_.SetNumExpectedLayers(number_layers - 1);
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720));
WaitForEncodedFrame(timestamp_ms);
EXPECT_EQ(1, fake_encoder_.GetNumInitializations());
EXPECT_THAT(fake_encoder_.LastFrameTypes(),
::testing::ElementsAreArray({VideoFrameType::kVideoFrameDelta,
VideoFrameType::kVideoFrameDelta,
VideoFrameType::kVideoFrameDelta}));
// Re-enable top layer.
// Encoder should be re-initialized. Next frame should be key frame.
config.simulcast_layers[number_layers - 1].active = true;
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
sink_.SetNumExpectedLayers(number_layers);
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720));
WaitForEncodedFrame(timestamp_ms);
EXPECT_EQ(2, fake_encoder_.GetNumInitializations());
EXPECT_THAT(fake_encoder_.LastFrameTypes(),
::testing::ElementsAreArray({VideoFrameType::kVideoFrameKey,
VideoFrameType::kVideoFrameKey,
VideoFrameType::kVideoFrameKey}));
// Top layer max rate change.
// Encoder shouldn't be re-initialized. Next frame should be delta frame.
config.simulcast_layers[number_layers - 1].max_bitrate_bps -= 100;
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
sink_.SetNumExpectedLayers(number_layers);
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720));
WaitForEncodedFrame(timestamp_ms);
EXPECT_EQ(2, fake_encoder_.GetNumInitializations());
EXPECT_THAT(fake_encoder_.LastFrameTypes(),
::testing::ElementsAreArray({VideoFrameType::kVideoFrameDelta,
VideoFrameType::kVideoFrameDelta,
VideoFrameType::kVideoFrameDelta}));
// Top layer resolution change.
// Encoder should be re-initialized. Next frame should be key frame.
config.simulcast_layers[number_layers - 1].scale_resolution_down_by += 0.1;
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
sink_.SetNumExpectedLayers(number_layers);
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(CreateFrame(timestamp_ms, 1280, 720));
WaitForEncodedFrame(timestamp_ms);
EXPECT_EQ(3, fake_encoder_.GetNumInitializations());
EXPECT_THAT(fake_encoder_.LastFrameTypes(),
::testing::ElementsAreArray({VideoFrameType::kVideoFrameKey,
VideoFrameType::kVideoFrameKey,
VideoFrameType::kVideoFrameKey}));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, EncoderResolutionsExposedInSinglecast) {
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
SetUp();
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
// Capturing a frame should reconfigure the encoder and expose the encoder
// resolution, which is the same as the input frame.
int64_t timestamp_ms = kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(timestamp_ms);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_THAT(video_source_.sink_wants().resolutions,
::testing::ElementsAreArray(
{rtc::VideoSinkWants::FrameSize(kFrameWidth, kFrameHeight)}));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, EncoderResolutionsExposedInSimulcast) {
// Pick downscale factors such that we never encode at full resolution - this
// is an interesting use case. The frame resolution influences the encoder
// resolutions, but if no layer has `scale_resolution_down_by` == 1 then the
// encoder should not ask for the frame resolution. This allows video frames
// to have the appearence of one resolution but optimize its internal buffers
// for what is actually encoded.
const size_t kNumSimulcastLayers = 3u;
const float kDownscaleFactors[] = {8.0, 4.0, 2.0};
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const rtc::VideoSinkWants::FrameSize kLayer0Size(
kFrameWidth / kDownscaleFactors[0], kFrameHeight / kDownscaleFactors[0]);
const rtc::VideoSinkWants::FrameSize kLayer1Size(
kFrameWidth / kDownscaleFactors[1], kFrameHeight / kDownscaleFactors[1]);
const rtc::VideoSinkWants::FrameSize kLayer2Size(
kFrameWidth / kDownscaleFactors[2], kFrameHeight / kDownscaleFactors[2]);
VideoEncoderConfig config;
test::FillEncoderConfiguration(kVideoCodecVP8, kNumSimulcastLayers, &config);
for (size_t i = 0; i < kNumSimulcastLayers; ++i) {
config.simulcast_layers[i].scale_resolution_down_by = kDownscaleFactors[i];
config.simulcast_layers[i].active = true;
}
config.video_stream_factory =
rtc::make_ref_counted<cricket::EncoderStreamFactory>(
"VP8", /*max qp*/ 56, /*screencast*/ false,
/*screenshare enabled*/ false);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kSimulcastTargetBitrate, kSimulcastTargetBitrate, kSimulcastTargetBitrate,
0, 0, 0);
// Capture a frame with all layers active.
int64_t timestamp_ms = kFrameIntervalMs;
sink_.SetNumExpectedLayers(kNumSimulcastLayers);
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(timestamp_ms);
// Expect encoded resolutions to match the expected simulcast layers.
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_THAT(
video_source_.sink_wants().resolutions,
::testing::ElementsAreArray({kLayer0Size, kLayer1Size, kLayer2Size}));
// Capture a frame with one of the layers inactive.
timestamp_ms += kFrameIntervalMs;
config.simulcast_layers[2].active = false;
sink_.SetNumExpectedLayers(kNumSimulcastLayers - 1);
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(timestamp_ms);
// Expect encoded resolutions to match the expected simulcast layers.
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_THAT(video_source_.sink_wants().resolutions,
::testing::ElementsAreArray({kLayer0Size, kLayer1Size}));
// Capture a frame with all but one layer turned off.
timestamp_ms += kFrameIntervalMs;
config.simulcast_layers[1].active = false;
sink_.SetNumExpectedLayers(kNumSimulcastLayers - 2);
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(timestamp_ms);
// Expect encoded resolutions to match the expected simulcast layers.
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EXPECT_THAT(video_source_.sink_wants().resolutions,
::testing::ElementsAreArray({kLayer0Size}));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, QpPresent_QpKept) {
ResetEncoder("VP8", 1, 1, 1, false);
// Force encoder reconfig.
video_source_.IncomingCapturedFrame(
CreateFrame(1, codec_width_, codec_height_));
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Set QP on encoded frame and pass the frame to encode complete callback.
// Since QP is present QP parsing won't be triggered and the original value
// should be kept.
EncodedImage encoded_image;
encoded_image.qp_ = 123;
encoded_image.SetEncodedData(EncodedImageBuffer::Create(
kCodedFrameVp8Qp25, sizeof(kCodedFrameVp8Qp25)));
CodecSpecificInfo codec_info;
codec_info.codecType = kVideoCodecVP8;
fake_encoder_.InjectEncodedImage(encoded_image, &codec_info);
EXPECT_TRUE(sink_.WaitForFrame(kDefaultTimeoutMs));
EXPECT_EQ(sink_.GetLastEncodedImage().qp_, 123);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, QpAbsent_QpParsed) {
ResetEncoder("VP8", 1, 1, 1, false);
// Force encoder reconfig.
video_source_.IncomingCapturedFrame(
CreateFrame(1, codec_width_, codec_height_));
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Pass an encoded frame without QP to encode complete callback. QP should be
// parsed and set.
EncodedImage encoded_image;
encoded_image.qp_ = -1;
encoded_image.SetEncodedData(EncodedImageBuffer::Create(
kCodedFrameVp8Qp25, sizeof(kCodedFrameVp8Qp25)));
CodecSpecificInfo codec_info;
codec_info.codecType = kVideoCodecVP8;
fake_encoder_.InjectEncodedImage(encoded_image, &codec_info);
EXPECT_TRUE(sink_.WaitForFrame(kDefaultTimeoutMs));
EXPECT_EQ(sink_.GetLastEncodedImage().qp_, 25);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, QpAbsentParsingDisabled_QpAbsent) {
webrtc::test::ScopedKeyValueConfig field_trials(
field_trials_, "WebRTC-QpParsingKillSwitch/Enabled/");
ResetEncoder("VP8", 1, 1, 1, false);
// Force encoder reconfig.
video_source_.IncomingCapturedFrame(
CreateFrame(1, codec_width_, codec_height_));
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
EncodedImage encoded_image;
encoded_image.qp_ = -1;
encoded_image.SetEncodedData(EncodedImageBuffer::Create(
kCodedFrameVp8Qp25, sizeof(kCodedFrameVp8Qp25)));
CodecSpecificInfo codec_info;
codec_info.codecType = kVideoCodecVP8;
fake_encoder_.InjectEncodedImage(encoded_image, &codec_info);
EXPECT_TRUE(sink_.WaitForFrame(kDefaultTimeoutMs));
EXPECT_EQ(sink_.GetLastEncodedImage().qp_, -1);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
QualityScalingNotAllowed_QualityScalingDisabled) {
VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy();
// Disable scaling settings in encoder info.
fake_encoder_.SetQualityScaling(false);
// Disable quality scaling in encoder config.
video_encoder_config.is_quality_scaling_allowed = false;
ConfigureEncoder(std::move(video_encoder_config));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
source.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
WaitForEncodedFrame(1);
video_stream_encoder_->TriggerQualityLow();
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, QualityScalingNotAllowed_IsQpTrustedSetTrue) {
VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy();
// Disable scaling settings in encoder info.
fake_encoder_.SetQualityScaling(false);
// Set QP trusted in encoder info.
fake_encoder_.SetIsQpTrusted(true);
// Enable quality scaling in encoder config.
video_encoder_config.is_quality_scaling_allowed = false;
ConfigureEncoder(std::move(video_encoder_config));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
source.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
WaitForEncodedFrame(1);
video_stream_encoder_->TriggerQualityLow();
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
QualityScalingNotAllowedAndQPIsTrusted_BandwidthScalerDisable) {
VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy();
// Disable scaling settings in encoder info.
fake_encoder_.SetQualityScaling(false);
// Set QP trusted in encoder info.
fake_encoder_.SetIsQpTrusted(true);
// Enable quality scaling in encoder config.
video_encoder_config.is_quality_scaling_allowed = false;
ConfigureEncoder(std::move(video_encoder_config));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
source.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
WaitForEncodedFrame(1);
video_stream_encoder_->TriggerQualityLow();
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
QualityScalingNotAllowedAndQPIsNotTrusted_BandwidthScalerDisable) {
VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy();
// Disable scaling settings in encoder info.
fake_encoder_.SetQualityScaling(false);
// Set QP trusted in encoder info.
fake_encoder_.SetIsQpTrusted(false);
// Enable quality scaling in encoder config.
video_encoder_config.is_quality_scaling_allowed = false;
ConfigureEncoder(std::move(video_encoder_config));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
source.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
WaitForEncodedFrame(1);
video_stream_encoder_->TriggerQualityLow();
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, EncoderProvideLimitsWhenQPIsNotTrusted) {
// Set QP trusted in encoder info.
fake_encoder_.SetIsQpTrusted(false);
const int MinEncBitrateKbps = 30;
const int MaxEncBitrateKbps = 100;
const int MinStartBitrateKbp = 50;
const VideoEncoder::ResolutionBitrateLimits encoder_bitrate_limits(
/*frame_size_pixels=*/codec_width_ * codec_height_,
/*min_start_bitrate_bps=*/MinStartBitrateKbp,
/*min_bitrate_bps=*/MinEncBitrateKbps * 1000,
/*max_bitrate_bps=*/MaxEncBitrateKbps * 1000);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
fake_encoder_.SetResolutionBitrateLimits({encoder_bitrate_limits});
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecH264, 1, &video_encoder_config);
video_encoder_config.max_bitrate_bps = MaxEncBitrateKbps * 1000;
video_encoder_config.simulcast_layers[0].min_bitrate_bps =
MinEncBitrateKbps * 1000;
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
EXPECT_EQ(
MaxEncBitrateKbps,
static_cast<int>(bitrate_allocator_factory_.codec_config().maxBitrate));
EXPECT_EQ(
MinEncBitrateKbps,
static_cast<int>(bitrate_allocator_factory_.codec_config().minBitrate));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, EncoderDoesnotProvideLimitsWhenQPIsNotTrusted) {
// Set QP trusted in encoder info.
fake_encoder_.SetIsQpTrusted(false);
absl::optional<VideoEncoder::ResolutionBitrateLimits> suitable_bitrate_limit =
EncoderInfoSettings::
GetSinglecastBitrateLimitForResolutionWhenQpIsUntrusted(
codec_width_ * codec_height_,
EncoderInfoSettings::
GetDefaultSinglecastBitrateLimitsWhenQpIsUntrusted());
EXPECT_TRUE(suitable_bitrate_limit.has_value());
const int MaxEncBitrate = suitable_bitrate_limit->max_bitrate_bps;
const int MinEncBitrate = suitable_bitrate_limit->min_bitrate_bps;
const int TargetEncBitrate = MaxEncBitrate;
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::BitsPerSec(TargetEncBitrate),
DataRate::BitsPerSec(TargetEncBitrate),
DataRate::BitsPerSec(TargetEncBitrate), 0, 0, 0);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecH264, 1, &video_encoder_config);
video_encoder_config.max_bitrate_bps = MaxEncBitrate;
video_encoder_config.simulcast_layers[0].min_bitrate_bps = MinEncBitrate;
video_stream_encoder_->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
video_source_.IncomingCapturedFrame(CreateFrame(1, nullptr));
WaitForEncodedFrame(1);
EXPECT_EQ(
MaxEncBitrate / 1000,
static_cast<int>(bitrate_allocator_factory_.codec_config().maxBitrate));
EXPECT_EQ(
MinEncBitrate / 1000,
static_cast<int>(bitrate_allocator_factory_.codec_config().minBitrate));
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, NormalComplexityWithMoreThanTwoCores) {
ResetEncoder("VP9", /*num_stream=*/1, /*num_temporal_layers=*/1,
/*num_spatial_layers=*/1,
/*screenshare=*/false, /*allocation_callback_type=*/
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoBitrateAllocationWhenScreenSharing,
/*num_cores=*/3);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(1, /*width=*/320, /*height=*/180));
WaitForEncodedFrame(1);
EXPECT_EQ(fake_encoder_.LastEncoderComplexity(),
VideoCodecComplexity::kComplexityNormal);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
NormalComplexityWhenLowTierOptimizationsAreDisabled) {
webrtc::test::ScopedKeyValueConfig field_trials(
field_trials_, "WebRTC-VP9-LowTierOptimizations/Disabled/");
ResetEncoder("VP9", /*num_stream=*/1, /*num_temporal_layers=*/1,
/*num_spatial_layers=*/1,
/*screenshare=*/false, /*allocation_callback_type=*/
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoBitrateAllocationWhenScreenSharing,
/*num_cores=*/2);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(1, /*width=*/320, /*height=*/180));
WaitForEncodedFrame(1);
EXPECT_EQ(fake_encoder_.LastEncoderComplexity(),
VideoCodecComplexity::kComplexityNormal);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, LowComplexityWithTwoCores) {
ResetEncoder("VP9", /*num_stream=*/1, /*num_temporal_layers=*/1,
/*num_spatial_layers=*/1,
/*screenshare=*/false, /*allocation_callback_type=*/
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoBitrateAllocationWhenScreenSharing,
/*num_cores=*/2);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
video_source_.IncomingCapturedFrame(
CreateFrame(1, /*width=*/320, /*height=*/180));
WaitForEncodedFrame(1);
EXPECT_EQ(fake_encoder_.LastEncoderComplexity(),
VideoCodecComplexity::kComplexityLow);
video_stream_encoder_->Stop();
}
#if !defined(WEBRTC_IOS)
// TODO(bugs.webrtc.org/12401): Disabled because WebRTC-Video-QualityScaling is
// disabled by default on iOS.
TEST_F(VideoStreamEncoderTest, QualityScalingAllowed_QualityScalingEnabled) {
VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy();
// Disable scaling settings in encoder info.
fake_encoder_.SetQualityScaling(false);
// Enable quality scaling in encoder config.
video_encoder_config.is_quality_scaling_allowed = true;
ConfigureEncoder(std::move(video_encoder_config));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
source.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
WaitForEncodedFrame(1);
video_stream_encoder_->TriggerQualityLow();
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, QualityScalingAllowed_IsQpTrustedSetTrue) {
VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy();
// Disable scaling settings in encoder info.
fake_encoder_.SetQualityScaling(false);
// Set QP trusted in encoder info.
fake_encoder_.SetIsQpTrusted(true);
// Enable quality scaling in encoder config.
video_encoder_config.is_quality_scaling_allowed = true;
ConfigureEncoder(std::move(video_encoder_config));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
source.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
WaitForEncodedFrame(1);
video_stream_encoder_->TriggerQualityLow();
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest, QualityScalingAllowed_IsQpTrustedSetFalse) {
VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy();
// Disable scaling settings in encoder info.
fake_encoder_.SetQualityScaling(false);
// Set QP not trusted in encoder info.
fake_encoder_.SetIsQpTrusted(false);
// Enable quality scaling in encoder config.
video_encoder_config.is_quality_scaling_allowed = true;
ConfigureEncoder(std::move(video_encoder_config));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
source.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
WaitForEncodedFrame(1);
video_stream_encoder_->TriggerQualityLow();
// When quality_scaler doesn't work and is_quality_scaling_allowed is
// true,the bandwidth_quality_scaler_ works,so bw_limited_resolution is true.
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
QualityScalingAllowedAndQPIsTrusted_BandwidthScalerDisable) {
VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy();
// Disable scaling settings in encoder info.
fake_encoder_.SetQualityScaling(false);
// Set QP trusted in encoder info.
fake_encoder_.SetIsQpTrusted(true);
// Enable quality scaling in encoder config.
video_encoder_config.is_quality_scaling_allowed = true;
ConfigureEncoder(std::move(video_encoder_config));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
source.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
WaitForEncodedFrame(1);
video_stream_encoder_->TriggerQualityLow();
// bandwidth_quality_scaler isn't working, but quality_scaler is working.
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
video_stream_encoder_->Stop();
}
TEST_F(VideoStreamEncoderTest,
QualityScalingAllowedAndQPIsNotTrusted_BandwidthScalerEnabled) {
VideoEncoderConfig video_encoder_config = video_encoder_config_.Copy();
// Disable scaling settings in encoder info.
fake_encoder_.SetQualityScaling(false);
// Set QP trusted in encoder info.
fake_encoder_.SetIsQpTrusted(false);
// Enable quality scaling in encoder config.
video_encoder_config.is_quality_scaling_allowed = true;
ConfigureEncoder(std::move(video_encoder_config));
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
test::FrameForwarder source;
video_stream_encoder_->SetSource(
&source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_THAT(source.sink_wants(), UnlimitedSinkWants());
EXPECT_FALSE(stats_proxy_->GetStats().bw_limited_resolution);
source.IncomingCapturedFrame(CreateFrame(1, 1280, 720));
WaitForEncodedFrame(1);
video_stream_encoder_->TriggerQualityLow();
EXPECT_TRUE(stats_proxy_->GetStats().bw_limited_resolution);
video_stream_encoder_->Stop();
}
#endif // !defined(WEBRTC_IOS)
// Test parameters: (VideoCodecType codec, bool allow_i420_conversion)
class VideoStreamEncoderWithRealEncoderTest
: public VideoStreamEncoderTest,
public ::testing::WithParamInterface<std::pair<VideoCodecType, bool>> {
public:
VideoStreamEncoderWithRealEncoderTest()
: VideoStreamEncoderTest(),
codec_type_(std::get<0>(GetParam())),
allow_i420_conversion_(std::get<1>(GetParam())) {}
void SetUp() override {
VideoStreamEncoderTest::SetUp();
std::unique_ptr<VideoEncoder> encoder;
switch (codec_type_) {
case kVideoCodecVP8:
encoder = VP8Encoder::Create();
break;
case kVideoCodecVP9:
encoder = VP9Encoder::Create();
break;
case kVideoCodecAV1:
encoder = CreateLibaomAv1Encoder();
break;
case kVideoCodecH264:
encoder =
H264Encoder::Create(cricket::VideoCodec(cricket::kH264CodecName));
break;
case kVideoCodecMultiplex:
mock_encoder_factory_for_multiplex_ =
std::make_unique<MockVideoEncoderFactory>();
EXPECT_CALL(*mock_encoder_factory_for_multiplex_, Die);
EXPECT_CALL(*mock_encoder_factory_for_multiplex_, CreateVideoEncoder)
.WillRepeatedly([] { return VP8Encoder::Create(); });
encoder = std::make_unique<MultiplexEncoderAdapter>(
mock_encoder_factory_for_multiplex_.get(), SdpVideoFormat("VP8"),
false);
break;
default:
RTC_DCHECK_NOTREACHED();
}
ConfigureEncoderAndBitrate(codec_type_, std::move(encoder));
}
void TearDown() override {
video_stream_encoder_->Stop();
// Ensure `video_stream_encoder_` is destroyed before
// `encoder_proxy_factory_`.
video_stream_encoder_.reset();
VideoStreamEncoderTest::TearDown();
}
protected:
void ConfigureEncoderAndBitrate(VideoCodecType codec_type,
std::unique_ptr<VideoEncoder> encoder) {
// Configure VSE to use the encoder.
encoder_ = std::move(encoder);
encoder_proxy_factory_ = std::make_unique<test::VideoEncoderProxyFactory>(
encoder_.get(), &encoder_selector_);
video_send_config_.encoder_settings.encoder_factory =
encoder_proxy_factory_.get();
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(codec_type, 1, &video_encoder_config);
video_encoder_config_ = video_encoder_config.Copy();
ConfigureEncoder(video_encoder_config_.Copy());
// Set bitrate to ensure frame is not dropped.
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTargetBitrate, kTargetBitrate, kTargetBitrate, 0, 0, 0);
}
const VideoCodecType codec_type_;
const bool allow_i420_conversion_;
NiceMock<MockEncoderSelector> encoder_selector_;
std::unique_ptr<test::VideoEncoderProxyFactory> encoder_proxy_factory_;
std::unique_ptr<VideoEncoder> encoder_;
std::unique_ptr<MockVideoEncoderFactory> mock_encoder_factory_for_multiplex_;
};
TEST_P(VideoStreamEncoderWithRealEncoderTest, EncoderMapsNativeI420) {
auto native_i420_frame = test::CreateMappableNativeFrame(
1, VideoFrameBuffer::Type::kI420, codec_width_, codec_height_);
video_source_.IncomingCapturedFrame(native_i420_frame);
WaitForEncodedFrame(codec_width_, codec_height_);
auto mappable_native_buffer =
test::GetMappableNativeBufferFromVideoFrame(native_i420_frame);
std::vector<rtc::scoped_refptr<VideoFrameBuffer>> mapped_frame_buffers =
mappable_native_buffer->GetMappedFramedBuffers();
ASSERT_EQ(mapped_frame_buffers.size(), 1u);
EXPECT_EQ(mapped_frame_buffers[0]->width(), codec_width_);
EXPECT_EQ(mapped_frame_buffers[0]->height(), codec_height_);
EXPECT_EQ(mapped_frame_buffers[0]->type(), VideoFrameBuffer::Type::kI420);
}
TEST_P(VideoStreamEncoderWithRealEncoderTest, EncoderMapsNativeNV12) {
auto native_nv12_frame = test::CreateMappableNativeFrame(
1, VideoFrameBuffer::Type::kNV12, codec_width_, codec_height_);
video_source_.IncomingCapturedFrame(native_nv12_frame);
WaitForEncodedFrame(codec_width_, codec_height_);
auto mappable_native_buffer =
test::GetMappableNativeBufferFromVideoFrame(native_nv12_frame);
std::vector<rtc::scoped_refptr<VideoFrameBuffer>> mapped_frame_buffers =
mappable_native_buffer->GetMappedFramedBuffers();
ASSERT_EQ(mapped_frame_buffers.size(), 1u);
EXPECT_EQ(mapped_frame_buffers[0]->width(), codec_width_);
EXPECT_EQ(mapped_frame_buffers[0]->height(), codec_height_);
EXPECT_EQ(mapped_frame_buffers[0]->type(), VideoFrameBuffer::Type::kNV12);
if (!allow_i420_conversion_) {
EXPECT_FALSE(mappable_native_buffer->DidConvertToI420());
}
}
TEST_P(VideoStreamEncoderWithRealEncoderTest, HandlesLayerToggling) {
if (codec_type_ == kVideoCodecMultiplex) {
// Multiplex codec here uses wrapped mock codecs, ignore for this test.
return;
}
const size_t kNumSpatialLayers = 3u;
const float kDownscaleFactors[] = {4.0, 2.0, 1.0};
const int kFrameWidth = 1280;
const int kFrameHeight = 720;
const rtc::VideoSinkWants::FrameSize kLayer0Size(
kFrameWidth / kDownscaleFactors[0], kFrameHeight / kDownscaleFactors[0]);
const rtc::VideoSinkWants::FrameSize kLayer1Size(
kFrameWidth / kDownscaleFactors[1], kFrameHeight / kDownscaleFactors[1]);
const rtc::VideoSinkWants::FrameSize kLayer2Size(
kFrameWidth / kDownscaleFactors[2], kFrameHeight / kDownscaleFactors[2]);
VideoEncoderConfig config;
if (codec_type_ == VideoCodecType::kVideoCodecVP9) {
test::FillEncoderConfiguration(codec_type_, 1, &config);
config.max_bitrate_bps = kSimulcastTargetBitrate.bps();
VideoCodecVP9 vp9_settings = VideoEncoder::GetDefaultVp9Settings();
vp9_settings.numberOfSpatialLayers = kNumSpatialLayers;
vp9_settings.numberOfTemporalLayers = 3;
vp9_settings.automaticResizeOn = false;
config.encoder_specific_settings =
rtc::make_ref_counted<VideoEncoderConfig::Vp9EncoderSpecificSettings>(
vp9_settings);
config.spatial_layers = GetSvcConfig(kFrameWidth, kFrameHeight,
/*fps=*/30.0,
/*first_active_layer=*/0,
/*num_spatial_layers=*/3,
/*num_temporal_layers=*/3,
/*is_screenshare=*/false);
} else if (codec_type_ == VideoCodecType::kVideoCodecAV1) {
test::FillEncoderConfiguration(codec_type_, 1, &config);
config.max_bitrate_bps = kSimulcastTargetBitrate.bps();
config.spatial_layers = GetSvcConfig(kFrameWidth, kFrameHeight,
/*fps=*/30.0,
/*first_active_layer=*/0,
/*num_spatial_layers=*/3,
/*num_temporal_layers=*/3,
/*is_screenshare=*/false);
config.simulcast_layers[0].scalability_mode = ScalabilityMode::kL3T3_KEY;
} else {
// Simulcast for VP8/H264.
test::FillEncoderConfiguration(codec_type_, kNumSpatialLayers, &config);
for (size_t i = 0; i < kNumSpatialLayers; ++i) {
config.simulcast_layers[i].scale_resolution_down_by =
kDownscaleFactors[i];
config.simulcast_layers[i].active = true;
}
if (codec_type_ == VideoCodecType::kVideoCodecH264) {
// Turn off frame dropping to prevent flakiness.
config.frame_drop_enabled = false;
}
}
auto set_layer_active = [&](int layer_idx, bool active) {
if (codec_type_ == VideoCodecType::kVideoCodecVP9 ||
codec_type_ == VideoCodecType::kVideoCodecAV1) {
config.spatial_layers[layer_idx].active = active;
} else {
config.simulcast_layers[layer_idx].active = active;
}
};
config.video_stream_factory =
rtc::make_ref_counted<cricket::EncoderStreamFactory>(
CodecTypeToPayloadString(codec_type_), /*max qp*/ 56,
/*screencast*/ false,
/*screenshare enabled*/ false);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kSimulcastTargetBitrate, kSimulcastTargetBitrate, kSimulcastTargetBitrate,
0, 0, 0);
// Capture a frame with all layers active.
sink_.SetNumExpectedLayers(kNumSpatialLayers);
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
int64_t timestamp_ms = kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(kLayer2Size.width, kLayer2Size.height);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Capture a frame with one of the layers inactive.
set_layer_active(2, false);
sink_.SetNumExpectedLayers(kNumSpatialLayers - 1);
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(kLayer1Size.width, kLayer1Size.height);
// New target bitrates signaled based on lower resolution.
DataRate kTwoLayerBitrate = DataRate::KilobitsPerSec(833);
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
kTwoLayerBitrate, kTwoLayerBitrate, kTwoLayerBitrate, 0, 0, 0);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Re-enable the top layer.
set_layer_active(2, true);
sink_.SetNumExpectedLayers(kNumSpatialLayers);
video_stream_encoder_->ConfigureEncoder(config.Copy(), kMaxPayloadLength);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// Bitrate target adjusted back up to enable HD layer...
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
DataRate::KilobitsPerSec(1800), DataRate::KilobitsPerSec(1800),
DataRate::KilobitsPerSec(1800), 0, 0, 0);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
// ...then add a new frame.
timestamp_ms += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms, kFrameWidth, kFrameHeight));
WaitForEncodedFrame(kLayer2Size.width, kLayer2Size.height);
video_stream_encoder_->WaitUntilTaskQueueIsIdle();
video_stream_encoder_->Stop();
}
std::string TestParametersVideoCodecAndAllowI420ConversionToString(
testing::TestParamInfo<std::pair<VideoCodecType, bool>> info) {
VideoCodecType codec_type = std::get<0>(info.param);
bool allow_i420_conversion = std::get<1>(info.param);
std::string str;
switch (codec_type) {
case kVideoCodecGeneric:
str = "Generic";
break;
case kVideoCodecVP8:
str = "VP8";
break;
case kVideoCodecVP9:
str = "VP9";
break;
case kVideoCodecAV1:
str = "AV1";
break;
case kVideoCodecH264:
str = "H264";
break;
case kVideoCodecMultiplex:
str = "Multiplex";
break;
default:
RTC_DCHECK_NOTREACHED();
}
str += allow_i420_conversion ? "_AllowToI420" : "_DisallowToI420";
return str;
}
constexpr std::pair<VideoCodecType, bool> kVP8DisallowConversion =
std::make_pair(kVideoCodecVP8, /*allow_i420_conversion=*/false);
constexpr std::pair<VideoCodecType, bool> kVP9DisallowConversion =
std::make_pair(kVideoCodecVP9, /*allow_i420_conversion=*/false);
constexpr std::pair<VideoCodecType, bool> kAV1AllowConversion =
std::make_pair(kVideoCodecAV1, /*allow_i420_conversion=*/false);
constexpr std::pair<VideoCodecType, bool> kMultiplexDisallowConversion =
std::make_pair(kVideoCodecMultiplex, /*allow_i420_conversion=*/false);
#if defined(WEBRTC_USE_H264)
constexpr std::pair<VideoCodecType, bool> kH264AllowConversion =
std::make_pair(kVideoCodecH264, /*allow_i420_conversion=*/true);
// The windows compiler does not tolerate #if statements inside the
// INSTANTIATE_TEST_SUITE_P() macro, so we have to have two definitions (with
// and without H264).
INSTANTIATE_TEST_SUITE_P(
All,
VideoStreamEncoderWithRealEncoderTest,
::testing::Values(kVP8DisallowConversion,
kVP9DisallowConversion,
kAV1AllowConversion,
kMultiplexDisallowConversion,
kH264AllowConversion),
TestParametersVideoCodecAndAllowI420ConversionToString);
#else
INSTANTIATE_TEST_SUITE_P(
All,
VideoStreamEncoderWithRealEncoderTest,
::testing::Values(kVP8DisallowConversion,
kVP9DisallowConversion,
kAV1AllowConversion,
kMultiplexDisallowConversion),
TestParametersVideoCodecAndAllowI420ConversionToString);
#endif
class ReconfigureEncoderTest : public VideoStreamEncoderTest {
protected:
void RunTest(const std::vector<VideoStream>& configs,
const int expected_num_init_encode) {
ConfigureEncoder(configs[0]);
OnBitrateUpdated(kTargetBitrate);
InsertFrameAndWaitForEncoded();
EXPECT_EQ(1, sink_.number_of_reconfigurations());
ExpectEqual(bitrate_allocator_factory_.codec_config(), configs[0]);
EXPECT_EQ(1, fake_encoder_.GetNumInitializations());
ExpectEqual(fake_encoder_.config(), configs[0]);
// Reconfigure encoder, the encoder should only be reconfigured if needed.
ConfigureEncoder(configs[1]);
InsertFrameAndWaitForEncoded();
EXPECT_EQ(2, sink_.number_of_reconfigurations());
ExpectEqual(bitrate_allocator_factory_.codec_config(), configs[1]);
EXPECT_EQ(expected_num_init_encode, fake_encoder_.GetNumInitializations());
if (expected_num_init_encode > 1)
ExpectEqual(fake_encoder_.config(), configs[1]);
video_stream_encoder_->Stop();
}
void ConfigureEncoder(const VideoStream& stream) {
VideoEncoderConfig config;
test::FillEncoderConfiguration(kVideoCodecVP8, /*num_streams=*/1, &config);
config.max_bitrate_bps = stream.max_bitrate_bps;
config.simulcast_layers[0] = stream;
config.video_stream_factory =
rtc::make_ref_counted<cricket::EncoderStreamFactory>(
/*codec_name=*/"VP8", /*max_qp=*/0, /*is_screenshare=*/false,
/*conference_mode=*/false);
video_stream_encoder_->ConfigureEncoder(std::move(config),
kMaxPayloadLength);
}
void OnBitrateUpdated(DataRate bitrate) {
video_stream_encoder_->OnBitrateUpdatedAndWaitForManagedResources(
bitrate, bitrate, bitrate, 0, 0, 0);
}
void InsertFrameAndWaitForEncoded() {
timestamp_ms_ += kFrameIntervalMs;
video_source_.IncomingCapturedFrame(
CreateFrame(timestamp_ms_, kWidth, kHeight));
sink_.WaitForEncodedFrame(timestamp_ms_);
}
void ExpectEqual(const VideoCodec& actual,
const VideoStream& expected) const {
EXPECT_EQ(actual.numberOfSimulcastStreams, 1);
EXPECT_EQ(actual.simulcastStream[0].maxFramerate, expected.max_framerate);
EXPECT_EQ(actual.simulcastStream[0].minBitrate * 1000,
static_cast<unsigned int>(expected.min_bitrate_bps));
EXPECT_EQ(actual.simulcastStream[0].maxBitrate * 1000,
static_cast<unsigned int>(expected.max_bitrate_bps));
EXPECT_EQ(actual.simulcastStream[0].width,
kWidth / expected.scale_resolution_down_by);
EXPECT_EQ(actual.simulcastStream[0].height,
kHeight / expected.scale_resolution_down_by);
EXPECT_EQ(actual.simulcastStream[0].numberOfTemporalLayers,
expected.num_temporal_layers);
EXPECT_EQ(actual.GetScalabilityMode(), expected.scalability_mode);
}
VideoStream DefaultConfig() const {
VideoStream stream;
stream.max_framerate = 25;
stream.min_bitrate_bps = 35000;
stream.max_bitrate_bps = 900000;
stream.scale_resolution_down_by = 1.0;
stream.num_temporal_layers = 1;
stream.bitrate_priority = 1.0;
stream.scalability_mode = absl::nullopt;
return stream;
}
const int kWidth = 640;
const int kHeight = 360;
int64_t timestamp_ms_ = 0;
};
TEST_F(ReconfigureEncoderTest, NotReconfiguredIfMaxFramerateChanges) {
VideoStream config1 = DefaultConfig();
VideoStream config2 = config1;
config2.max_framerate++;
RunTest({config1, config2}, /*expected_num_init_encode=*/1);
}
TEST_F(ReconfigureEncoderTest, NotReconfiguredIfMinBitrateChanges) {
VideoStream config1 = DefaultConfig();
VideoStream config2 = config1;
config2.min_bitrate_bps += 10000;
RunTest({config1, config2}, /*expected_num_init_encode=*/1);
}
TEST_F(ReconfigureEncoderTest, NotReconfiguredIfMaxBitrateChanges) {
VideoStream config1 = DefaultConfig();
VideoStream config2 = config1;
config2.max_bitrate_bps += 100000;
RunTest({config1, config2}, /*expected_num_init_encode=*/1);
}
TEST_F(ReconfigureEncoderTest, NotReconfiguredIfBitratePriorityChanges) {
VideoStream config1 = DefaultConfig();
VideoStream config2 = config1;
config2.bitrate_priority = config1.bitrate_priority.value() * 2.0;
RunTest({config1, config2}, /*expected_num_init_encode=*/1);
}
TEST_F(ReconfigureEncoderTest, ReconfiguredIfResolutionChanges) {
VideoStream config1 = DefaultConfig();
VideoStream config2 = config1;
config2.scale_resolution_down_by *= 2;
RunTest({config1, config2}, /*expected_num_init_encode=*/2);
}
TEST_F(ReconfigureEncoderTest, ReconfiguredIfNumTemporalLayerChanges) {
VideoStream config1 = DefaultConfig();
VideoStream config2 = config1;
config2.num_temporal_layers = config1.num_temporal_layers.value() + 1;
RunTest({config1, config2}, /*expected_num_init_encode=*/2);
}
TEST_F(ReconfigureEncoderTest, ReconfiguredIfScalabilityModeChanges) {
VideoStream config1 = DefaultConfig();
VideoStream config2 = config1;
config2.scalability_mode = ScalabilityMode::kL2T1;
RunTest({config1, config2}, /*expected_num_init_encode=*/2);
}
TEST_F(ReconfigureEncoderTest,
UpdatesNumTemporalLayersFromScalabilityModeChanges) {
VideoStream config1 = DefaultConfig();
VideoStream config2 = config1;
config2.scalability_mode = ScalabilityMode::kL1T2;
config2.num_temporal_layers = 2;
RunTest({config1, config2}, /*expected_num_init_encode=*/2);
}
// Simple test that just creates and then immediately destroys an encoder.
// The purpose of the test is to make sure that nothing bad happens if the
// initialization step on the encoder queue, doesn't run.
TEST(VideoStreamEncoderSimpleTest, CreateDestroy) {
class SuperLazyTaskQueue : public webrtc::TaskQueueBase {
public:
SuperLazyTaskQueue() = default;
~SuperLazyTaskQueue() override = default;
private:
void Delete() override { delete this; }
void PostTask(std::unique_ptr<QueuedTask> task) override {
// meh.
}
void PostDelayedTask(std::unique_ptr<QueuedTask> task,
uint32_t milliseconds) override {
ASSERT_TRUE(false);
}
};
// Lots of boiler plate.
test::ScopedKeyValueConfig field_trials;
GlobalSimulatedTimeController time_controller(Timestamp::Millis(0));
auto stats_proxy = std::make_unique<MockableSendStatisticsProxy>(
time_controller.GetClock(), VideoSendStream::Config(nullptr),
webrtc::VideoEncoderConfig::ContentType::kRealtimeVideo, field_trials);
SimpleVideoStreamEncoderFactory::MockFakeEncoder mock_fake_encoder(
time_controller.GetClock());
test::VideoEncoderProxyFactory encoder_factory(&mock_fake_encoder);
std::unique_ptr<VideoBitrateAllocatorFactory> bitrate_allocator_factory =
CreateBuiltinVideoBitrateAllocatorFactory();
VideoStreamEncoderSettings encoder_settings{
VideoEncoder::Capabilities(/*loss_notification=*/false)};
encoder_settings.encoder_factory = &encoder_factory;
encoder_settings.bitrate_allocator_factory = bitrate_allocator_factory.get();
auto adapter = std::make_unique<MockFrameCadenceAdapter>();
EXPECT_CALL((*adapter.get()), Initialize).WillOnce(Return());
std::unique_ptr<webrtc::TaskQueueBase, webrtc::TaskQueueDeleter>
encoder_queue(new SuperLazyTaskQueue());
// Construct a VideoStreamEncoder instance and let it go out of scope without
// doing anything else (including calling Stop()). This should be fine since
// the posted init task will simply be deleted.
auto encoder = std::make_unique<VideoStreamEncoder>(
time_controller.GetClock(), 1, stats_proxy.get(), encoder_settings,
std::make_unique<CpuOveruseDetectorProxy>(stats_proxy.get(),
field_trials),
std::move(adapter), std::move(encoder_queue),
VideoStreamEncoder::BitrateAllocationCallbackType::
kVideoBitrateAllocation,
field_trials);
// Stop the encoder explicitly. This additional step tests if we could
// hang when calling stop and the TQ has been stopped and/or isn't accepting
// any more tasks.
encoder->Stop();
}
TEST(VideoStreamEncoderFrameCadenceTest, ActivatesFrameCadenceOnContentType) {
auto adapter = std::make_unique<MockFrameCadenceAdapter>();
auto* adapter_ptr = adapter.get();
SimpleVideoStreamEncoderFactory factory;
FrameCadenceAdapterInterface::Callback* video_stream_encoder_callback =
nullptr;
EXPECT_CALL(*adapter_ptr, Initialize)
.WillOnce(Invoke([&video_stream_encoder_callback](
FrameCadenceAdapterInterface::Callback* callback) {
video_stream_encoder_callback = callback;
}));
TaskQueueBase* encoder_queue = nullptr;
auto video_stream_encoder =
factory.Create(std::move(adapter), &encoder_queue);
// First a call before we know the frame size and hence cannot compute the
// number of simulcast layers.
EXPECT_CALL(*adapter_ptr, SetZeroHertzModeEnabled(Optional(Field(
&FrameCadenceAdapterInterface::
ZeroHertzModeParams::num_simulcast_layers,
Eq(0)))));
VideoEncoderConfig config;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &config);
config.content_type = VideoEncoderConfig::ContentType::kScreen;
video_stream_encoder->ConfigureEncoder(std::move(config), 0);
factory.DepleteTaskQueues();
// Then a call as we've computed the number of simulcast layers after a passed
// frame.
EXPECT_CALL(*adapter_ptr, SetZeroHertzModeEnabled(Optional(Field(
&FrameCadenceAdapterInterface::
ZeroHertzModeParams::num_simulcast_layers,
Gt(0)))));
PassAFrame(encoder_queue, video_stream_encoder_callback, /*ntp_time_ms=*/1);
factory.DepleteTaskQueues();
Mock::VerifyAndClearExpectations(adapter_ptr);
// Expect a disabled zero-hertz mode after passing realtime video.
EXPECT_CALL(*adapter_ptr, SetZeroHertzModeEnabled(Eq(absl::nullopt)));
VideoEncoderConfig config2;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &config2);
config2.content_type = VideoEncoderConfig::ContentType::kRealtimeVideo;
video_stream_encoder->ConfigureEncoder(std::move(config2), 0);
PassAFrame(encoder_queue, video_stream_encoder_callback, /*ntp_time_ms=*/2);
factory.DepleteTaskQueues();
}
TEST(VideoStreamEncoderFrameCadenceTest,
ForwardsFramesIntoFrameCadenceAdapter) {
auto adapter = std::make_unique<MockFrameCadenceAdapter>();
auto* adapter_ptr = adapter.get();
test::FrameForwarder video_source;
SimpleVideoStreamEncoderFactory factory;
auto video_stream_encoder = factory.Create(std::move(adapter));
video_stream_encoder->SetSource(
&video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
EXPECT_CALL(*adapter_ptr, OnFrame);
auto buffer = rtc::make_ref_counted<NV12Buffer>(/*width=*/16, /*height=*/16);
video_source.IncomingCapturedFrame(
VideoFrame::Builder().set_video_frame_buffer(std::move(buffer)).build());
}
TEST(VideoStreamEncoderFrameCadenceTest, UsesFrameCadenceAdapterForFrameRate) {
auto adapter = std::make_unique<MockFrameCadenceAdapter>();
auto* adapter_ptr = adapter.get();
test::FrameForwarder video_source;
SimpleVideoStreamEncoderFactory factory;
FrameCadenceAdapterInterface::Callback* video_stream_encoder_callback =
nullptr;
EXPECT_CALL(*adapter_ptr, Initialize)
.WillOnce(Invoke([&video_stream_encoder_callback](
FrameCadenceAdapterInterface::Callback* callback) {
video_stream_encoder_callback = callback;
}));
TaskQueueBase* encoder_queue = nullptr;
auto video_stream_encoder =
factory.Create(std::move(adapter), &encoder_queue);
// This is just to make the VSE operational. We'll feed a frame directly by
// the callback interface.
video_stream_encoder->SetSource(
&video_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecGeneric, 1, &video_encoder_config);
video_stream_encoder->ConfigureEncoder(std::move(video_encoder_config),
/*max_data_payload_length=*/1000);
EXPECT_CALL(*adapter_ptr, GetInputFrameRateFps);
EXPECT_CALL(*adapter_ptr, UpdateFrameRate);
PassAFrame(encoder_queue, video_stream_encoder_callback, /*ntp_time_ms=*/1);
factory.DepleteTaskQueues();
}
TEST(VideoStreamEncoderFrameCadenceTest,
DeactivatesActivatesLayersOnBitrateChanges) {
auto adapter = std::make_unique<MockFrameCadenceAdapter>();
auto* adapter_ptr = adapter.get();
SimpleVideoStreamEncoderFactory factory;
FrameCadenceAdapterInterface::Callback* video_stream_encoder_callback =
nullptr;
EXPECT_CALL(*adapter_ptr, Initialize)
.WillOnce(Invoke([&video_stream_encoder_callback](
FrameCadenceAdapterInterface::Callback* callback) {
video_stream_encoder_callback = callback;
}));
TaskQueueBase* encoder_queue = nullptr;
auto video_stream_encoder =
factory.Create(std::move(adapter), &encoder_queue);
// Configure 2 simulcast layers. FillEncoderConfiguration sets min bitrates to
// {150000, 450000}.
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 2, &video_encoder_config);
video_stream_encoder->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
// Ensure an encoder is created.
PassAFrame(encoder_queue, video_stream_encoder_callback, /*ntp_time_ms=*/1);
// Both layers enabled at 1 MBit/s.
video_stream_encoder->OnBitrateUpdated(
DataRate::KilobitsPerSec(1000), DataRate::KilobitsPerSec(1000),
DataRate::KilobitsPerSec(1000), 0, 0, 0);
EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(0, /*enabled=*/true));
EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(1, /*enabled=*/true));
factory.DepleteTaskQueues();
Mock::VerifyAndClearExpectations(adapter_ptr);
// Layer 1 disabled at 200 KBit/s.
video_stream_encoder->OnBitrateUpdated(
DataRate::KilobitsPerSec(200), DataRate::KilobitsPerSec(200),
DataRate::KilobitsPerSec(200), 0, 0, 0);
EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(0, /*enabled=*/true));
EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(1, /*enabled=*/false));
factory.DepleteTaskQueues();
Mock::VerifyAndClearExpectations(adapter_ptr);
// All layers off at suspended video.
video_stream_encoder->OnBitrateUpdated(DataRate::Zero(), DataRate::Zero(),
DataRate::Zero(), 0, 0, 0);
EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(0, /*enabled=*/false));
EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(1, /*enabled=*/false));
factory.DepleteTaskQueues();
Mock::VerifyAndClearExpectations(adapter_ptr);
// Both layers enabled again back at 1 MBit/s.
video_stream_encoder->OnBitrateUpdated(
DataRate::KilobitsPerSec(1000), DataRate::KilobitsPerSec(1000),
DataRate::KilobitsPerSec(1000), 0, 0, 0);
EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(0, /*enabled=*/true));
EXPECT_CALL(*adapter_ptr, UpdateLayerStatus(1, /*enabled=*/true));
factory.DepleteTaskQueues();
}
TEST(VideoStreamEncoderFrameCadenceTest, UpdatesQualityConvergence) {
auto adapter = std::make_unique<MockFrameCadenceAdapter>();
auto* adapter_ptr = adapter.get();
SimpleVideoStreamEncoderFactory factory;
FrameCadenceAdapterInterface::Callback* video_stream_encoder_callback =
nullptr;
EXPECT_CALL(*adapter_ptr, Initialize)
.WillOnce(Invoke([&video_stream_encoder_callback](
FrameCadenceAdapterInterface::Callback* callback) {
video_stream_encoder_callback = callback;
}));
TaskQueueBase* encoder_queue = nullptr;
auto video_stream_encoder =
factory.Create(std::move(adapter), &encoder_queue);
// Configure 2 simulcast layers and setup 1 MBit/s to unpause the encoder.
VideoEncoderConfig video_encoder_config;
test::FillEncoderConfiguration(kVideoCodecVP8, 2, &video_encoder_config);
video_stream_encoder->ConfigureEncoder(video_encoder_config.Copy(),
kMaxPayloadLength);
video_stream_encoder->OnBitrateUpdated(
DataRate::KilobitsPerSec(1000), DataRate::KilobitsPerSec(1000),
DataRate::KilobitsPerSec(1000), 0, 0, 0);
// Pass a frame which has unconverged results.
PassAFrame(encoder_queue, video_stream_encoder_callback, /*ntp_time_ms=*/1);
EXPECT_CALL(factory.GetMockFakeEncoder(), EncodeHook)
.WillRepeatedly(Invoke([](EncodedImage& encoded_image,
rtc::scoped_refptr<EncodedImageBuffer> buffer) {
EXPECT_FALSE(encoded_image.IsAtTargetQuality());
CodecSpecificInfo codec_specific;
codec_specific.codecType = kVideoCodecGeneric;
return codec_specific;
}));
EXPECT_CALL(*adapter_ptr, UpdateLayerQualityConvergence(0, false));
EXPECT_CALL(*adapter_ptr, UpdateLayerQualityConvergence(1, false));
factory.DepleteTaskQueues();
Mock::VerifyAndClearExpectations(adapter_ptr);
Mock::VerifyAndClearExpectations(&factory.GetMockFakeEncoder());
// Pass a frame which converges in layer 0 and not in layer 1.
PassAFrame(encoder_queue, video_stream_encoder_callback, /*ntp_time_ms=*/2);
EXPECT_CALL(factory.GetMockFakeEncoder(), EncodeHook)
.WillRepeatedly(Invoke([](EncodedImage& encoded_image,
rtc::scoped_refptr<EncodedImageBuffer> buffer) {
encoded_image.SetAtTargetQuality(encoded_image.SpatialIndex() == 0);
CodecSpecificInfo codec_specific;
codec_specific.codecType = kVideoCodecGeneric;
return codec_specific;
}));
EXPECT_CALL(*adapter_ptr, UpdateLayerQualityConvergence(0, true));
EXPECT_CALL(*adapter_ptr, UpdateLayerQualityConvergence(1, false));
factory.DepleteTaskQueues();
Mock::VerifyAndClearExpectations(adapter_ptr);
Mock::VerifyAndClearExpectations(&factory.GetMockFakeEncoder());
}
TEST(VideoStreamEncoderFrameCadenceTest,
RequestsRefreshFramesWhenCadenceAdapterInstructs) {
auto adapter = std::make_unique<MockFrameCadenceAdapter>();
auto* adapter_ptr = adapter.get();
MockVideoSourceInterface mock_source;
SimpleVideoStreamEncoderFactory factory;
FrameCadenceAdapterInterface::Callback* video_stream_encoder_callback =
nullptr;
EXPECT_CALL(*adapter_ptr, Initialize)
.WillOnce(Invoke([&video_stream_encoder_callback](
FrameCadenceAdapterInterface::Callback* callback) {
video_stream_encoder_callback = callback;
}));
TaskQueueBase* encoder_queue = nullptr;
auto video_stream_encoder =
factory.Create(std::move(adapter), &encoder_queue);
video_stream_encoder->SetSource(
&mock_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
VideoEncoderConfig config;
config.content_type = VideoEncoderConfig::ContentType::kScreen;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &config);
video_stream_encoder->ConfigureEncoder(std::move(config), 0);
PassAFrame(encoder_queue, video_stream_encoder_callback, /*ntp_time_ms=*/2);
// Ensure the encoder is set up.
factory.DepleteTaskQueues();
EXPECT_CALL(*adapter_ptr, ProcessKeyFrameRequest)
.WillOnce(Invoke([video_stream_encoder_callback] {
video_stream_encoder_callback->RequestRefreshFrame();
}));
EXPECT_CALL(mock_source, RequestRefreshFrame);
video_stream_encoder->SendKeyFrame();
factory.DepleteTaskQueues();
Mock::VerifyAndClearExpectations(adapter_ptr);
Mock::VerifyAndClearExpectations(&mock_source);
EXPECT_CALL(*adapter_ptr, ProcessKeyFrameRequest);
EXPECT_CALL(mock_source, RequestRefreshFrame).Times(0);
video_stream_encoder->SendKeyFrame();
factory.DepleteTaskQueues();
}
TEST(VideoStreamEncoderFrameCadenceTest,
RequestsRefreshFrameForEarlyZeroHertzKeyFrameRequest) {
SimpleVideoStreamEncoderFactory factory;
auto encoder_queue =
factory.GetTimeController()->GetTaskQueueFactory()->CreateTaskQueue(
"EncoderQueue", TaskQueueFactory::Priority::NORMAL);
// Enables zero-hertz mode.
test::ScopedKeyValueConfig field_trials(
"WebRTC-ZeroHertzScreenshare/Enabled/");
auto adapter = FrameCadenceAdapterInterface::Create(
factory.GetTimeController()->GetClock(), encoder_queue.get(),
field_trials);
FrameCadenceAdapterInterface* adapter_ptr = adapter.get();
MockVideoSourceInterface mock_source;
auto video_stream_encoder = factory.CreateWithEncoderQueue(
std::move(adapter), std::move(encoder_queue), &field_trials);
video_stream_encoder->SetSource(
&mock_source, webrtc::DegradationPreference::MAINTAIN_FRAMERATE);
VideoEncoderConfig config;
config.content_type = VideoEncoderConfig::ContentType::kScreen;
test::FillEncoderConfiguration(kVideoCodecVP8, 1, &config);
video_stream_encoder->ConfigureEncoder(std::move(config), 0);
// Eventually expect a refresh frame request when requesting a key frame
// before initializing zero-hertz mode. This can happen in reality because the
// threads invoking key frame requests and constraints setup aren't
// synchronized.
EXPECT_CALL(mock_source, RequestRefreshFrame);
video_stream_encoder->SendKeyFrame();
adapter_ptr->OnConstraintsChanged(VideoTrackSourceConstraints{0, 30});
factory.DepleteTaskQueues();
}
} // namespace webrtc