blob: e8255f1fd57f45092476a1099cde2c5973dabee4 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "p2p/client/basic_port_allocator.h"
#include <algorithm>
#include <functional>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "absl/algorithm/container.h"
#include "absl/memory/memory.h"
#include "absl/strings/string_view.h"
#include "api/task_queue/pending_task_safety_flag.h"
#include "api/transport/field_trial_based_config.h"
#include "api/units/time_delta.h"
#include "p2p/base/basic_packet_socket_factory.h"
#include "p2p/base/port.h"
#include "p2p/base/stun_port.h"
#include "p2p/base/tcp_port.h"
#include "p2p/base/turn_port.h"
#include "p2p/base/udp_port.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/helpers.h"
#include "rtc_base/logging.h"
#include "rtc_base/network_constants.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_base/trace_event.h"
#include "system_wrappers/include/metrics.h"
namespace cricket {
namespace {
using ::rtc::CreateRandomId;
using ::webrtc::SafeTask;
using ::webrtc::TimeDelta;
const int PHASE_UDP = 0;
const int PHASE_RELAY = 1;
const int PHASE_TCP = 2;
const int kNumPhases = 3;
// Gets protocol priority: UDP > TCP > SSLTCP == TLS.
int GetProtocolPriority(cricket::ProtocolType protocol) {
switch (protocol) {
case cricket::PROTO_UDP:
return 2;
case cricket::PROTO_TCP:
return 1;
case cricket::PROTO_SSLTCP:
case cricket::PROTO_TLS:
return 0;
default:
RTC_DCHECK_NOTREACHED();
return 0;
}
}
// Gets address family priority: IPv6 > IPv4 > Unspecified.
int GetAddressFamilyPriority(int ip_family) {
switch (ip_family) {
case AF_INET6:
return 2;
case AF_INET:
return 1;
default:
RTC_DCHECK_NOTREACHED();
return 0;
}
}
// Returns positive if a is better, negative if b is better, and 0 otherwise.
int ComparePort(const cricket::Port* a, const cricket::Port* b) {
int a_protocol = GetProtocolPriority(a->GetProtocol());
int b_protocol = GetProtocolPriority(b->GetProtocol());
int cmp_protocol = a_protocol - b_protocol;
if (cmp_protocol != 0) {
return cmp_protocol;
}
int a_family = GetAddressFamilyPriority(a->Network()->GetBestIP().family());
int b_family = GetAddressFamilyPriority(b->Network()->GetBestIP().family());
return a_family - b_family;
}
struct NetworkFilter {
using Predicate = std::function<bool(const rtc::Network*)>;
NetworkFilter(Predicate pred, absl::string_view description)
: predRemain(
[pred](const rtc::Network* network) { return !pred(network); }),
description(description) {}
Predicate predRemain;
const std::string description;
};
void FilterNetworks(std::vector<const rtc::Network*>* networks,
NetworkFilter filter) {
auto start_to_remove =
std::partition(networks->begin(), networks->end(), filter.predRemain);
if (start_to_remove == networks->end()) {
return;
}
RTC_LOG(LS_INFO) << "Filtered out " << filter.description << " networks:";
for (auto it = start_to_remove; it != networks->end(); ++it) {
RTC_LOG(LS_INFO) << (*it)->ToString();
}
networks->erase(start_to_remove, networks->end());
}
bool IsAllowedByCandidateFilter(const Candidate& c, uint32_t filter) {
// When binding to any address, before sending packets out, the getsockname
// returns all 0s, but after sending packets, it'll be the NIC used to
// send. All 0s is not a valid ICE candidate address and should be filtered
// out.
if (c.address().IsAnyIP()) {
return false;
}
if (c.type() == RELAY_PORT_TYPE) {
return ((filter & CF_RELAY) != 0);
} else if (c.type() == STUN_PORT_TYPE) {
return ((filter & CF_REFLEXIVE) != 0);
} else if (c.type() == LOCAL_PORT_TYPE) {
if ((filter & CF_REFLEXIVE) && !c.address().IsPrivateIP()) {
// We allow host candidates if the filter allows server-reflexive
// candidates and the candidate is a public IP. Because we don't generate
// server-reflexive candidates if they have the same IP as the host
// candidate (i.e. when the host candidate is a public IP), filtering to
// only server-reflexive candidates won't work right when the host
// candidates have public IPs.
return true;
}
return ((filter & CF_HOST) != 0);
}
return false;
}
std::string NetworksToString(const std::vector<const rtc::Network*>& networks) {
rtc::StringBuilder ost;
for (auto n : networks) {
ost << n->name() << " ";
}
return ost.Release();
}
} // namespace
const uint32_t DISABLE_ALL_PHASES =
PORTALLOCATOR_DISABLE_UDP | PORTALLOCATOR_DISABLE_TCP |
PORTALLOCATOR_DISABLE_STUN | PORTALLOCATOR_DISABLE_RELAY;
// BasicPortAllocator
BasicPortAllocator::BasicPortAllocator(
rtc::NetworkManager* network_manager,
rtc::PacketSocketFactory* socket_factory,
webrtc::TurnCustomizer* customizer,
RelayPortFactoryInterface* relay_port_factory,
const webrtc::FieldTrialsView* field_trials)
: field_trials_(field_trials),
network_manager_(network_manager),
socket_factory_(socket_factory),
default_relay_port_factory_(relay_port_factory ? nullptr
: new TurnPortFactory()),
relay_port_factory_(relay_port_factory
? relay_port_factory
: default_relay_port_factory_.get()) {
RTC_CHECK(socket_factory_);
RTC_DCHECK(relay_port_factory_);
RTC_DCHECK(network_manager_);
SetConfiguration(ServerAddresses(), std::vector<RelayServerConfig>(), 0,
webrtc::NO_PRUNE, customizer);
}
BasicPortAllocator::BasicPortAllocator(
rtc::NetworkManager* network_manager,
rtc::PacketSocketFactory* socket_factory,
const ServerAddresses& stun_servers,
const webrtc::FieldTrialsView* field_trials)
: field_trials_(field_trials),
network_manager_(network_manager),
socket_factory_(socket_factory),
default_relay_port_factory_(new TurnPortFactory()),
relay_port_factory_(default_relay_port_factory_.get()) {
RTC_CHECK(socket_factory_);
RTC_DCHECK(relay_port_factory_);
RTC_DCHECK(network_manager_);
SetConfiguration(stun_servers, std::vector<RelayServerConfig>(), 0,
webrtc::NO_PRUNE, nullptr);
}
void BasicPortAllocator::OnIceRegathering(PortAllocatorSession* session,
IceRegatheringReason reason) {
// If the session has not been taken by an active channel, do not report the
// metric.
for (auto& allocator_session : pooled_sessions()) {
if (allocator_session.get() == session) {
return;
}
}
RTC_HISTOGRAM_ENUMERATION("WebRTC.PeerConnection.IceRegatheringReason",
static_cast<int>(reason),
static_cast<int>(IceRegatheringReason::MAX_VALUE));
}
BasicPortAllocator::~BasicPortAllocator() {
CheckRunOnValidThreadIfInitialized();
// Our created port allocator sessions depend on us, so destroy our remaining
// pooled sessions before anything else.
DiscardCandidatePool();
}
void BasicPortAllocator::SetNetworkIgnoreMask(int network_ignore_mask) {
// TODO(phoglund): implement support for other types than loopback.
// See https://code.google.com/p/webrtc/issues/detail?id=4288.
// Then remove set_network_ignore_list from NetworkManager.
CheckRunOnValidThreadIfInitialized();
network_ignore_mask_ = network_ignore_mask;
}
int BasicPortAllocator::GetNetworkIgnoreMask() const {
CheckRunOnValidThreadIfInitialized();
int mask = network_ignore_mask_;
switch (vpn_preference_) {
case webrtc::VpnPreference::kOnlyUseVpn:
mask |= ~static_cast<int>(rtc::ADAPTER_TYPE_VPN);
break;
case webrtc::VpnPreference::kNeverUseVpn:
mask |= static_cast<int>(rtc::ADAPTER_TYPE_VPN);
break;
default:
break;
}
return mask;
}
PortAllocatorSession* BasicPortAllocator::CreateSessionInternal(
absl::string_view content_name,
int component,
absl::string_view ice_ufrag,
absl::string_view ice_pwd) {
CheckRunOnValidThreadAndInitialized();
PortAllocatorSession* session = new BasicPortAllocatorSession(
this, std::string(content_name), component, std::string(ice_ufrag),
std::string(ice_pwd));
session->SignalIceRegathering.connect(this,
&BasicPortAllocator::OnIceRegathering);
return session;
}
void BasicPortAllocator::AddTurnServerForTesting(
const RelayServerConfig& turn_server) {
CheckRunOnValidThreadAndInitialized();
std::vector<RelayServerConfig> new_turn_servers = turn_servers();
new_turn_servers.push_back(turn_server);
SetConfiguration(stun_servers(), new_turn_servers, candidate_pool_size(),
turn_port_prune_policy(), turn_customizer());
}
// BasicPortAllocatorSession
BasicPortAllocatorSession::BasicPortAllocatorSession(
BasicPortAllocator* allocator,
absl::string_view content_name,
int component,
absl::string_view ice_ufrag,
absl::string_view ice_pwd)
: PortAllocatorSession(content_name,
component,
ice_ufrag,
ice_pwd,
allocator->flags()),
allocator_(allocator),
network_thread_(rtc::Thread::Current()),
socket_factory_(allocator->socket_factory()),
allocation_started_(false),
network_manager_started_(false),
allocation_sequences_created_(false),
turn_port_prune_policy_(allocator->turn_port_prune_policy()) {
TRACE_EVENT0("webrtc",
"BasicPortAllocatorSession::BasicPortAllocatorSession");
allocator_->network_manager()->SignalNetworksChanged.connect(
this, &BasicPortAllocatorSession::OnNetworksChanged);
allocator_->network_manager()->StartUpdating();
}
BasicPortAllocatorSession::~BasicPortAllocatorSession() {
TRACE_EVENT0("webrtc",
"BasicPortAllocatorSession::~BasicPortAllocatorSession");
RTC_DCHECK_RUN_ON(network_thread_);
allocator_->network_manager()->StopUpdating();
for (uint32_t i = 0; i < sequences_.size(); ++i) {
// AllocationSequence should clear it's map entry for turn ports before
// ports are destroyed.
sequences_[i]->Clear();
}
std::vector<PortData>::iterator it;
for (it = ports_.begin(); it != ports_.end(); it++)
delete it->port();
configs_.clear();
for (uint32_t i = 0; i < sequences_.size(); ++i)
delete sequences_[i];
}
BasicPortAllocator* BasicPortAllocatorSession::allocator() {
RTC_DCHECK_RUN_ON(network_thread_);
return allocator_;
}
void BasicPortAllocatorSession::SetCandidateFilter(uint32_t filter) {
RTC_DCHECK_RUN_ON(network_thread_);
if (filter == candidate_filter_) {
return;
}
uint32_t prev_filter = candidate_filter_;
candidate_filter_ = filter;
for (PortData& port_data : ports_) {
if (port_data.error() || port_data.pruned()) {
continue;
}
PortData::State cur_state = port_data.state();
bool found_signalable_candidate = false;
bool found_pairable_candidate = false;
cricket::Port* port = port_data.port();
for (const auto& c : port->Candidates()) {
if (!IsStopped() && !IsAllowedByCandidateFilter(c, prev_filter) &&
IsAllowedByCandidateFilter(c, filter)) {
// This candidate was not signaled because of not matching the previous
// filter (see OnCandidateReady below). Let the Port to fire the signal
// again.
//
// Note that
// 1) we would need the Port to enter the state of in-progress of
// gathering to have candidates signaled;
//
// 2) firing the signal would also let the session set the port ready
// if needed, so that we could form candidate pairs with candidates
// from this port;
//
// * See again OnCandidateReady below for 1) and 2).
//
// 3) we only try to resurface candidates if we have not stopped
// getting ports, which is always true for the continual gathering.
if (!found_signalable_candidate) {
found_signalable_candidate = true;
port_data.set_state(PortData::STATE_INPROGRESS);
}
port->SignalCandidateReady(port, c);
}
if (CandidatePairable(c, port)) {
found_pairable_candidate = true;
}
}
// Restore the previous state.
port_data.set_state(cur_state);
// Setting a filter may cause a ready port to become non-ready
// if it no longer has any pairable candidates.
//
// Note that we only set for the negative case here, since a port would be
// set to have pairable candidates when it signals a ready candidate, which
// requires the port is still in the progress of gathering/surfacing
// candidates, and would be done in the firing of the signal above.
if (!found_pairable_candidate) {
port_data.set_has_pairable_candidate(false);
}
}
}
void BasicPortAllocatorSession::StartGettingPorts() {
RTC_DCHECK_RUN_ON(network_thread_);
state_ = SessionState::GATHERING;
network_thread_->PostTask(
SafeTask(network_safety_.flag(), [this] { GetPortConfigurations(); }));
RTC_LOG(LS_INFO) << "Start getting ports with turn_port_prune_policy "
<< turn_port_prune_policy_;
}
void BasicPortAllocatorSession::StopGettingPorts() {
RTC_DCHECK_RUN_ON(network_thread_);
ClearGettingPorts();
// Note: this must be called after ClearGettingPorts because both may set the
// session state and we should set the state to STOPPED.
state_ = SessionState::STOPPED;
}
void BasicPortAllocatorSession::ClearGettingPorts() {
RTC_DCHECK_RUN_ON(network_thread_);
++allocation_epoch_;
for (uint32_t i = 0; i < sequences_.size(); ++i) {
sequences_[i]->Stop();
}
network_thread_->PostTask(
SafeTask(network_safety_.flag(), [this] { OnConfigStop(); }));
state_ = SessionState::CLEARED;
}
bool BasicPortAllocatorSession::IsGettingPorts() {
RTC_DCHECK_RUN_ON(network_thread_);
return state_ == SessionState::GATHERING;
}
bool BasicPortAllocatorSession::IsCleared() const {
RTC_DCHECK_RUN_ON(network_thread_);
return state_ == SessionState::CLEARED;
}
bool BasicPortAllocatorSession::IsStopped() const {
RTC_DCHECK_RUN_ON(network_thread_);
return state_ == SessionState::STOPPED;
}
std::vector<const rtc::Network*>
BasicPortAllocatorSession::GetFailedNetworks() {
RTC_DCHECK_RUN_ON(network_thread_);
std::vector<const rtc::Network*> networks = GetNetworks();
// A network interface may have both IPv4 and IPv6 networks. Only if
// neither of the networks has any connections, the network interface
// is considered failed and need to be regathered on.
std::set<std::string> networks_with_connection;
for (const PortData& data : ports_) {
Port* port = data.port();
if (!port->connections().empty()) {
networks_with_connection.insert(port->Network()->name());
}
}
networks.erase(
std::remove_if(networks.begin(), networks.end(),
[networks_with_connection](const rtc::Network* network) {
// If a network does not have any connection, it is
// considered failed.
return networks_with_connection.find(network->name()) !=
networks_with_connection.end();
}),
networks.end());
return networks;
}
void BasicPortAllocatorSession::RegatherOnFailedNetworks() {
RTC_DCHECK_RUN_ON(network_thread_);
// Find the list of networks that have no connection.
std::vector<const rtc::Network*> failed_networks = GetFailedNetworks();
if (failed_networks.empty()) {
return;
}
RTC_LOG(LS_INFO) << "Regather candidates on failed networks";
// Mark a sequence as "network failed" if its network is in the list of failed
// networks, so that it won't be considered as equivalent when the session
// regathers ports and candidates.
for (AllocationSequence* sequence : sequences_) {
if (!sequence->network_failed() &&
absl::c_linear_search(failed_networks, sequence->network())) {
sequence->set_network_failed();
}
}
bool disable_equivalent_phases = true;
Regather(failed_networks, disable_equivalent_phases,
IceRegatheringReason::NETWORK_FAILURE);
}
void BasicPortAllocatorSession::Regather(
const std::vector<const rtc::Network*>& networks,
bool disable_equivalent_phases,
IceRegatheringReason reason) {
RTC_DCHECK_RUN_ON(network_thread_);
// Remove ports from being used locally and send signaling to remove
// the candidates on the remote side.
std::vector<PortData*> ports_to_prune = GetUnprunedPorts(networks);
if (!ports_to_prune.empty()) {
RTC_LOG(LS_INFO) << "Prune " << ports_to_prune.size() << " ports";
PrunePortsAndRemoveCandidates(ports_to_prune);
}
if (allocation_started_ && network_manager_started_ && !IsStopped()) {
SignalIceRegathering(this, reason);
DoAllocate(disable_equivalent_phases);
}
}
void BasicPortAllocatorSession::GetCandidateStatsFromReadyPorts(
CandidateStatsList* candidate_stats_list) const {
auto ports = ReadyPorts();
for (auto* port : ports) {
auto candidates = port->Candidates();
for (const auto& candidate : candidates) {
absl::optional<StunStats> stun_stats;
port->GetStunStats(&stun_stats);
CandidateStats candidate_stats(allocator_->SanitizeCandidate(candidate),
std::move(stun_stats));
candidate_stats_list->push_back(std::move(candidate_stats));
}
}
}
void BasicPortAllocatorSession::SetStunKeepaliveIntervalForReadyPorts(
const absl::optional<int>& stun_keepalive_interval) {
RTC_DCHECK_RUN_ON(network_thread_);
auto ports = ReadyPorts();
for (PortInterface* port : ports) {
// The port type and protocol can be used to identify different subclasses
// of Port in the current implementation. Note that a TCPPort has the type
// LOCAL_PORT_TYPE but uses the protocol PROTO_TCP.
if (port->Type() == STUN_PORT_TYPE ||
(port->Type() == LOCAL_PORT_TYPE && port->GetProtocol() == PROTO_UDP)) {
static_cast<UDPPort*>(port)->set_stun_keepalive_delay(
stun_keepalive_interval);
}
}
}
std::vector<PortInterface*> BasicPortAllocatorSession::ReadyPorts() const {
RTC_DCHECK_RUN_ON(network_thread_);
std::vector<PortInterface*> ret;
for (const PortData& data : ports_) {
if (data.ready()) {
ret.push_back(data.port());
}
}
return ret;
}
std::vector<Candidate> BasicPortAllocatorSession::ReadyCandidates() const {
RTC_DCHECK_RUN_ON(network_thread_);
std::vector<Candidate> candidates;
for (const PortData& data : ports_) {
if (!data.ready()) {
continue;
}
GetCandidatesFromPort(data, &candidates);
}
return candidates;
}
void BasicPortAllocatorSession::GetCandidatesFromPort(
const PortData& data,
std::vector<Candidate>* candidates) const {
RTC_DCHECK_RUN_ON(network_thread_);
RTC_CHECK(candidates != nullptr);
for (const Candidate& candidate : data.port()->Candidates()) {
if (!CheckCandidateFilter(candidate)) {
continue;
}
candidates->push_back(allocator_->SanitizeCandidate(candidate));
}
}
bool BasicPortAllocator::MdnsObfuscationEnabled() const {
return network_manager()->GetMdnsResponder() != nullptr;
}
bool BasicPortAllocatorSession::CandidatesAllocationDone() const {
RTC_DCHECK_RUN_ON(network_thread_);
// Done only if all required AllocationSequence objects
// are created.
if (!allocation_sequences_created_) {
return false;
}
// Check that all port allocation sequences are complete (not running).
if (absl::c_any_of(sequences_, [](const AllocationSequence* sequence) {
return sequence->state() == AllocationSequence::kRunning;
})) {
return false;
}
// If all allocated ports are no longer gathering, session must have got all
// expected candidates. Session will trigger candidates allocation complete
// signal.
return absl::c_none_of(
ports_, [](const PortData& port) { return port.inprogress(); });
}
void BasicPortAllocatorSession::UpdateIceParametersInternal() {
RTC_DCHECK_RUN_ON(network_thread_);
for (PortData& port : ports_) {
port.port()->set_content_name(content_name());
port.port()->SetIceParameters(component(), ice_ufrag(), ice_pwd());
}
}
void BasicPortAllocatorSession::GetPortConfigurations() {
RTC_DCHECK_RUN_ON(network_thread_);
auto config = std::make_unique<PortConfiguration>(
allocator_->stun_servers(), username(), password(),
allocator()->field_trials());
for (const RelayServerConfig& turn_server : allocator_->turn_servers()) {
config->AddRelay(turn_server);
}
ConfigReady(std::move(config));
}
void BasicPortAllocatorSession::ConfigReady(PortConfiguration* config) {
RTC_DCHECK_RUN_ON(network_thread_);
ConfigReady(absl::WrapUnique(config));
}
void BasicPortAllocatorSession::ConfigReady(
std::unique_ptr<PortConfiguration> config) {
RTC_DCHECK_RUN_ON(network_thread_);
network_thread_->PostTask(SafeTask(
network_safety_.flag(), [this, config = std::move(config)]() mutable {
OnConfigReady(std::move(config));
}));
}
// Adds a configuration to the list.
void BasicPortAllocatorSession::OnConfigReady(
std::unique_ptr<PortConfiguration> config) {
RTC_DCHECK_RUN_ON(network_thread_);
if (config)
configs_.push_back(std::move(config));
AllocatePorts();
}
void BasicPortAllocatorSession::OnConfigStop() {
RTC_DCHECK_RUN_ON(network_thread_);
// If any of the allocated ports have not completed the candidates allocation,
// mark those as error. Since session doesn't need any new candidates
// at this stage of the allocation, it's safe to discard any new candidates.
bool send_signal = false;
for (std::vector<PortData>::iterator it = ports_.begin(); it != ports_.end();
++it) {
if (it->inprogress()) {
// Updating port state to error, which didn't finish allocating candidates
// yet.
it->set_state(PortData::STATE_ERROR);
send_signal = true;
}
}
// Did we stop any running sequences?
for (std::vector<AllocationSequence*>::iterator it = sequences_.begin();
it != sequences_.end() && !send_signal; ++it) {
if ((*it)->state() == AllocationSequence::kStopped) {
send_signal = true;
}
}
// If we stopped anything that was running, send a done signal now.
if (send_signal) {
MaybeSignalCandidatesAllocationDone();
}
}
void BasicPortAllocatorSession::AllocatePorts() {
RTC_DCHECK_RUN_ON(network_thread_);
network_thread_->PostTask(SafeTask(
network_safety_.flag(), [this, allocation_epoch = allocation_epoch_] {
OnAllocate(allocation_epoch);
}));
}
void BasicPortAllocatorSession::OnAllocate(int allocation_epoch) {
RTC_DCHECK_RUN_ON(network_thread_);
if (allocation_epoch != allocation_epoch_)
return;
if (network_manager_started_ && !IsStopped()) {
bool disable_equivalent_phases = true;
DoAllocate(disable_equivalent_phases);
}
allocation_started_ = true;
}
std::vector<const rtc::Network*> BasicPortAllocatorSession::GetNetworks() {
RTC_DCHECK_RUN_ON(network_thread_);
std::vector<const rtc::Network*> networks;
rtc::NetworkManager* network_manager = allocator_->network_manager();
RTC_DCHECK(network_manager != nullptr);
// If the network permission state is BLOCKED, we just act as if the flag has
// been passed in.
if (network_manager->enumeration_permission() ==
rtc::NetworkManager::ENUMERATION_BLOCKED) {
set_flags(flags() | PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION);
}
// If the adapter enumeration is disabled, we'll just bind to any address
// instead of specific NIC. This is to ensure the same routing for http
// traffic by OS is also used here to avoid any local or public IP leakage
// during stun process.
if (flags() & PORTALLOCATOR_DISABLE_ADAPTER_ENUMERATION) {
networks = network_manager->GetAnyAddressNetworks();
} else {
networks = network_manager->GetNetworks();
// If network enumeration fails, use the ANY address as a fallback, so we
// can at least try gathering candidates using the default route chosen by
// the OS. Or, if the PORTALLOCATOR_ENABLE_ANY_ADDRESS_PORTS flag is
// set, we'll use ANY address candidates either way.
if (networks.empty() ||
(flags() & PORTALLOCATOR_ENABLE_ANY_ADDRESS_PORTS)) {
std::vector<const rtc::Network*> any_address_networks =
network_manager->GetAnyAddressNetworks();
networks.insert(networks.end(), any_address_networks.begin(),
any_address_networks.end());
}
RTC_LOG(LS_INFO) << "Count of networks: " << networks.size();
for (const rtc::Network* network : networks) {
RTC_LOG(LS_INFO) << network->ToString();
}
}
// Filter out link-local networks if needed.
if (flags() & PORTALLOCATOR_DISABLE_LINK_LOCAL_NETWORKS) {
NetworkFilter link_local_filter(
[](const rtc::Network* network) {
return IPIsLinkLocal(network->prefix());
},
"link-local");
FilterNetworks(&networks, link_local_filter);
}
// Do some more filtering, depending on the network ignore mask and "disable
// costly networks" flag.
NetworkFilter ignored_filter(
[this](const rtc::Network* network) {
return allocator_->GetNetworkIgnoreMask() & network->type();
},
"ignored");
FilterNetworks(&networks, ignored_filter);
if (flags() & PORTALLOCATOR_DISABLE_COSTLY_NETWORKS) {
uint16_t lowest_cost = rtc::kNetworkCostMax;
for (const rtc::Network* network : networks) {
// Don't determine the lowest cost from a link-local network.
// On iOS, a device connected to the computer will get a link-local
// network for communicating with the computer, however this network can't
// be used to connect to a peer outside the network.
if (rtc::IPIsLinkLocal(network->GetBestIP())) {
continue;
}
lowest_cost = std::min<uint16_t>(
lowest_cost, network->GetCost(*allocator()->field_trials()));
}
NetworkFilter costly_filter(
[lowest_cost, this](const rtc::Network* network) {
return network->GetCost(*allocator()->field_trials()) >
lowest_cost + rtc::kNetworkCostLow;
},
"costly");
FilterNetworks(&networks, costly_filter);
}
// Lastly, if we have a limit for the number of IPv6 network interfaces (by
// default, it's 5), pick IPv6 networks from different interfaces in a
// priority order and stick to the limit.
std::vector<const rtc::Network*> ipv6_networks;
for (auto it = networks.begin(); it != networks.end();) {
if ((*it)->prefix().family() == AF_INET6) {
ipv6_networks.push_back(*it);
it = networks.erase(it);
continue;
}
++it;
}
ipv6_networks =
SelectIPv6Networks(ipv6_networks, allocator_->max_ipv6_networks());
networks.insert(networks.end(), ipv6_networks.begin(), ipv6_networks.end());
return networks;
}
std::vector<const rtc::Network*> BasicPortAllocatorSession::SelectIPv6Networks(
std::vector<const rtc::Network*>& all_ipv6_networks,
int max_ipv6_networks) {
if (static_cast<int>(all_ipv6_networks.size()) <= max_ipv6_networks) {
return all_ipv6_networks;
}
// Adapter types are placed in priority order. Cellular type is an alias of
// cellular, 2G..5G types.
std::vector<rtc::AdapterType> adapter_types = {
rtc::ADAPTER_TYPE_ETHERNET, rtc::ADAPTER_TYPE_LOOPBACK,
rtc::ADAPTER_TYPE_WIFI, rtc::ADAPTER_TYPE_CELLULAR,
rtc::ADAPTER_TYPE_VPN, rtc::ADAPTER_TYPE_UNKNOWN,
rtc::ADAPTER_TYPE_ANY};
int adapter_types_cnt = adapter_types.size();
std::vector<const rtc::Network*> selected_networks;
int adapter_types_pos = 0;
while (static_cast<int>(selected_networks.size()) < max_ipv6_networks &&
adapter_types_pos < adapter_types_cnt * max_ipv6_networks) {
int network_pos = 0;
while (network_pos < static_cast<int>(all_ipv6_networks.size())) {
if (adapter_types[adapter_types_pos % adapter_types_cnt] ==
all_ipv6_networks[network_pos]->type() ||
(adapter_types[adapter_types_pos % adapter_types_cnt] ==
rtc::ADAPTER_TYPE_CELLULAR &&
all_ipv6_networks[network_pos]->IsCellular())) {
selected_networks.push_back(all_ipv6_networks[network_pos]);
all_ipv6_networks.erase(all_ipv6_networks.begin() + network_pos);
break;
}
network_pos++;
}
adapter_types_pos++;
}
return selected_networks;
}
// For each network, see if we have a sequence that covers it already. If not,
// create a new sequence to create the appropriate ports.
void BasicPortAllocatorSession::DoAllocate(bool disable_equivalent) {
RTC_DCHECK_RUN_ON(network_thread_);
bool done_signal_needed = false;
std::vector<const rtc::Network*> networks = GetNetworks();
if (networks.empty()) {
RTC_LOG(LS_WARNING)
<< "Machine has no networks; no ports will be allocated";
done_signal_needed = true;
} else {
RTC_LOG(LS_INFO) << "Allocate ports on " << NetworksToString(networks);
PortConfiguration* config =
configs_.empty() ? nullptr : configs_.back().get();
for (uint32_t i = 0; i < networks.size(); ++i) {
uint32_t sequence_flags = flags();
if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) {
// If all the ports are disabled we should just fire the allocation
// done event and return.
done_signal_needed = true;
break;
}
if (!config || config->relays.empty()) {
// No relay ports specified in this config.
sequence_flags |= PORTALLOCATOR_DISABLE_RELAY;
}
if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6) &&
networks[i]->GetBestIP().family() == AF_INET6) {
// Skip IPv6 networks unless the flag's been set.
continue;
}
if (!(sequence_flags & PORTALLOCATOR_ENABLE_IPV6_ON_WIFI) &&
networks[i]->GetBestIP().family() == AF_INET6 &&
networks[i]->type() == rtc::ADAPTER_TYPE_WIFI) {
// Skip IPv6 Wi-Fi networks unless the flag's been set.
continue;
}
if (disable_equivalent) {
// Disable phases that would only create ports equivalent to
// ones that we have already made.
DisableEquivalentPhases(networks[i], config, &sequence_flags);
if ((sequence_flags & DISABLE_ALL_PHASES) == DISABLE_ALL_PHASES) {
// New AllocationSequence would have nothing to do, so don't make it.
continue;
}
}
AllocationSequence* sequence =
new AllocationSequence(this, networks[i], config, sequence_flags,
[this, safety_flag = network_safety_.flag()] {
if (safety_flag->alive())
OnPortAllocationComplete();
});
sequence->Init();
sequence->Start();
sequences_.push_back(sequence);
done_signal_needed = true;
}
}
if (done_signal_needed) {
network_thread_->PostTask(SafeTask(network_safety_.flag(), [this] {
OnAllocationSequenceObjectsCreated();
}));
}
}
void BasicPortAllocatorSession::OnNetworksChanged() {
RTC_DCHECK_RUN_ON(network_thread_);
std::vector<const rtc::Network*> networks = GetNetworks();
std::vector<const rtc::Network*> failed_networks;
for (AllocationSequence* sequence : sequences_) {
// Mark the sequence as "network failed" if its network is not in
// `networks`.
if (!sequence->network_failed() &&
!absl::c_linear_search(networks, sequence->network())) {
sequence->OnNetworkFailed();
failed_networks.push_back(sequence->network());
}
}
std::vector<PortData*> ports_to_prune = GetUnprunedPorts(failed_networks);
if (!ports_to_prune.empty()) {
RTC_LOG(LS_INFO) << "Prune " << ports_to_prune.size()
<< " ports because their networks were gone";
PrunePortsAndRemoveCandidates(ports_to_prune);
}
if (allocation_started_ && !IsStopped()) {
if (network_manager_started_) {
// If the network manager has started, it must be regathering.
SignalIceRegathering(this, IceRegatheringReason::NETWORK_CHANGE);
}
bool disable_equivalent_phases = true;
DoAllocate(disable_equivalent_phases);
}
if (!network_manager_started_) {
RTC_LOG(LS_INFO) << "Network manager has started";
network_manager_started_ = true;
}
}
void BasicPortAllocatorSession::DisableEquivalentPhases(
const rtc::Network* network,
PortConfiguration* config,
uint32_t* flags) {
RTC_DCHECK_RUN_ON(network_thread_);
for (uint32_t i = 0; i < sequences_.size() &&
(*flags & DISABLE_ALL_PHASES) != DISABLE_ALL_PHASES;
++i) {
sequences_[i]->DisableEquivalentPhases(network, config, flags);
}
}
void BasicPortAllocatorSession::AddAllocatedPort(Port* port,
AllocationSequence* seq) {
RTC_DCHECK_RUN_ON(network_thread_);
if (!port)
return;
RTC_LOG(LS_INFO) << "Adding allocated port for " << content_name();
port->set_content_name(content_name());
port->set_component(component());
port->set_generation(generation());
if (allocator_->proxy().type != rtc::PROXY_NONE)
port->set_proxy(allocator_->user_agent(), allocator_->proxy());
port->set_send_retransmit_count_attribute(
(flags() & PORTALLOCATOR_ENABLE_STUN_RETRANSMIT_ATTRIBUTE) != 0);
PortData data(port, seq);
ports_.push_back(data);
port->SignalCandidateReady.connect(
this, &BasicPortAllocatorSession::OnCandidateReady);
port->SignalCandidateError.connect(
this, &BasicPortAllocatorSession::OnCandidateError);
port->SignalPortComplete.connect(this,
&BasicPortAllocatorSession::OnPortComplete);
port->SubscribePortDestroyed(
[this](PortInterface* port) { OnPortDestroyed(port); });
port->SignalPortError.connect(this, &BasicPortAllocatorSession::OnPortError);
RTC_LOG(LS_INFO) << port->ToString() << ": Added port to allocator";
port->PrepareAddress();
}
void BasicPortAllocatorSession::OnAllocationSequenceObjectsCreated() {
RTC_DCHECK_RUN_ON(network_thread_);
allocation_sequences_created_ = true;
// Send candidate allocation complete signal if we have no sequences.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::OnCandidateReady(Port* port,
const Candidate& c) {
RTC_DCHECK_RUN_ON(network_thread_);
PortData* data = FindPort(port);
RTC_DCHECK(data != NULL);
RTC_LOG(LS_INFO) << port->ToString()
<< ": Gathered candidate: " << c.ToSensitiveString();
// Discarding any candidate signal if port allocation status is
// already done with gathering.
if (!data->inprogress()) {
RTC_LOG(LS_WARNING)
<< "Discarding candidate because port is already done gathering.";
return;
}
// Mark that the port has a pairable candidate, either because we have a
// usable candidate from the port, or simply because the port is bound to the
// any address and therefore has no host candidate. This will trigger the port
// to start creating candidate pairs (connections) and issue connectivity
// checks. If port has already been marked as having a pairable candidate,
// do nothing here.
// Note: We should check whether any candidates may become ready after this
// because there we will check whether the candidate is generated by the ready
// ports, which may include this port.
bool pruned = false;
if (CandidatePairable(c, port) && !data->has_pairable_candidate()) {
data->set_has_pairable_candidate(true);
if (port->Type() == RELAY_PORT_TYPE) {
if (turn_port_prune_policy_ == webrtc::KEEP_FIRST_READY) {
pruned = PruneNewlyPairableTurnPort(data);
} else if (turn_port_prune_policy_ == webrtc::PRUNE_BASED_ON_PRIORITY) {
pruned = PruneTurnPorts(port);
}
}
// If the current port is not pruned yet, SignalPortReady.
if (!data->pruned()) {
RTC_LOG(LS_INFO) << port->ToString() << ": Port ready.";
SignalPortReady(this, port);
port->KeepAliveUntilPruned();
}
}
if (data->ready() && CheckCandidateFilter(c)) {
std::vector<Candidate> candidates;
candidates.push_back(allocator_->SanitizeCandidate(c));
SignalCandidatesReady(this, candidates);
} else {
RTC_LOG(LS_INFO) << "Discarding candidate because it doesn't match filter.";
}
// If we have pruned any port, maybe need to signal port allocation done.
if (pruned) {
MaybeSignalCandidatesAllocationDone();
}
}
void BasicPortAllocatorSession::OnCandidateError(
Port* port,
const IceCandidateErrorEvent& event) {
RTC_DCHECK_RUN_ON(network_thread_);
RTC_DCHECK(FindPort(port));
if (event.address.empty()) {
candidate_error_events_.push_back(event);
} else {
SignalCandidateError(this, event);
}
}
Port* BasicPortAllocatorSession::GetBestTurnPortForNetwork(
absl::string_view network_name) const {
RTC_DCHECK_RUN_ON(network_thread_);
Port* best_turn_port = nullptr;
for (const PortData& data : ports_) {
if (data.port()->Network()->name() == network_name &&
data.port()->Type() == RELAY_PORT_TYPE && data.ready() &&
(!best_turn_port || ComparePort(data.port(), best_turn_port) > 0)) {
best_turn_port = data.port();
}
}
return best_turn_port;
}
bool BasicPortAllocatorSession::PruneNewlyPairableTurnPort(
PortData* newly_pairable_port_data) {
RTC_DCHECK_RUN_ON(network_thread_);
RTC_DCHECK(newly_pairable_port_data->port()->Type() == RELAY_PORT_TYPE);
// If an existing turn port is ready on the same network, prune the newly
// pairable port.
const std::string& network_name =
newly_pairable_port_data->port()->Network()->name();
for (PortData& data : ports_) {
if (data.port()->Network()->name() == network_name &&
data.port()->Type() == RELAY_PORT_TYPE && data.ready() &&
&data != newly_pairable_port_data) {
RTC_LOG(LS_INFO) << "Port pruned: "
<< newly_pairable_port_data->port()->ToString();
newly_pairable_port_data->Prune();
return true;
}
}
return false;
}
bool BasicPortAllocatorSession::PruneTurnPorts(Port* newly_pairable_turn_port) {
RTC_DCHECK_RUN_ON(network_thread_);
// Note: We determine the same network based only on their network names. So
// if an IPv4 address and an IPv6 address have the same network name, they
// are considered the same network here.
const std::string& network_name = newly_pairable_turn_port->Network()->name();
Port* best_turn_port = GetBestTurnPortForNetwork(network_name);
// `port` is already in the list of ports, so the best port cannot be nullptr.
RTC_CHECK(best_turn_port != nullptr);
bool pruned = false;
std::vector<PortData*> ports_to_prune;
for (PortData& data : ports_) {
if (data.port()->Network()->name() == network_name &&
data.port()->Type() == RELAY_PORT_TYPE && !data.pruned() &&
ComparePort(data.port(), best_turn_port) < 0) {
pruned = true;
if (data.port() != newly_pairable_turn_port) {
// These ports will be pruned in PrunePortsAndRemoveCandidates.
ports_to_prune.push_back(&data);
} else {
data.Prune();
}
}
}
if (!ports_to_prune.empty()) {
RTC_LOG(LS_INFO) << "Prune " << ports_to_prune.size()
<< " low-priority TURN ports";
PrunePortsAndRemoveCandidates(ports_to_prune);
}
return pruned;
}
void BasicPortAllocatorSession::PruneAllPorts() {
RTC_DCHECK_RUN_ON(network_thread_);
for (PortData& data : ports_) {
data.Prune();
}
}
void BasicPortAllocatorSession::OnPortComplete(Port* port) {
RTC_DCHECK_RUN_ON(network_thread_);
RTC_LOG(LS_INFO) << port->ToString()
<< ": Port completed gathering candidates.";
PortData* data = FindPort(port);
RTC_DCHECK(data != NULL);
// Ignore any late signals.
if (!data->inprogress()) {
return;
}
// Moving to COMPLETE state.
data->set_state(PortData::STATE_COMPLETE);
// Send candidate allocation complete signal if this was the last port.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::OnPortError(Port* port) {
RTC_DCHECK_RUN_ON(network_thread_);
RTC_LOG(LS_INFO) << port->ToString()
<< ": Port encountered error while gathering candidates.";
PortData* data = FindPort(port);
RTC_DCHECK(data != NULL);
// We might have already given up on this port and stopped it.
if (!data->inprogress()) {
return;
}
// SignalAddressError is currently sent from StunPort/TurnPort.
// But this signal itself is generic.
data->set_state(PortData::STATE_ERROR);
// Send candidate allocation complete signal if this was the last port.
MaybeSignalCandidatesAllocationDone();
}
bool BasicPortAllocatorSession::CheckCandidateFilter(const Candidate& c) const {
RTC_DCHECK_RUN_ON(network_thread_);
return IsAllowedByCandidateFilter(c, candidate_filter_);
}
bool BasicPortAllocatorSession::CandidatePairable(const Candidate& c,
const Port* port) const {
RTC_DCHECK_RUN_ON(network_thread_);
bool candidate_signalable = CheckCandidateFilter(c);
// When device enumeration is disabled (to prevent non-default IP addresses
// from leaking), we ping from some local candidates even though we don't
// signal them. However, if host candidates are also disabled (for example, to
// prevent even default IP addresses from leaking), we still don't want to
// ping from them, even if device enumeration is disabled. Thus, we check for
// both device enumeration and host candidates being disabled.
bool network_enumeration_disabled = c.address().IsAnyIP();
bool can_ping_from_candidate =
(port->SharedSocket() || c.protocol() == TCP_PROTOCOL_NAME);
bool host_candidates_disabled = !(candidate_filter_ & CF_HOST);
return candidate_signalable ||
(network_enumeration_disabled && can_ping_from_candidate &&
!host_candidates_disabled);
}
void BasicPortAllocatorSession::OnPortAllocationComplete() {
RTC_DCHECK_RUN_ON(network_thread_);
// Send candidate allocation complete signal if all ports are done.
MaybeSignalCandidatesAllocationDone();
}
void BasicPortAllocatorSession::MaybeSignalCandidatesAllocationDone() {
RTC_DCHECK_RUN_ON(network_thread_);
if (CandidatesAllocationDone()) {
if (pooled()) {
RTC_LOG(LS_INFO) << "All candidates gathered for pooled session.";
} else {
RTC_LOG(LS_INFO) << "All candidates gathered for " << content_name()
<< ":" << component() << ":" << generation();
}
for (const auto& event : candidate_error_events_) {
SignalCandidateError(this, event);
}
candidate_error_events_.clear();
SignalCandidatesAllocationDone(this);
}
}
void BasicPortAllocatorSession::OnPortDestroyed(PortInterface* port) {
RTC_DCHECK_RUN_ON(network_thread_);
for (std::vector<PortData>::iterator iter = ports_.begin();
iter != ports_.end(); ++iter) {
if (port == iter->port()) {
ports_.erase(iter);
RTC_LOG(LS_INFO) << port->ToString() << ": Removed port from allocator ("
<< static_cast<int>(ports_.size()) << " remaining)";
return;
}
}
RTC_DCHECK_NOTREACHED();
}
BasicPortAllocatorSession::PortData* BasicPortAllocatorSession::FindPort(
Port* port) {
RTC_DCHECK_RUN_ON(network_thread_);
for (std::vector<PortData>::iterator it = ports_.begin(); it != ports_.end();
++it) {
if (it->port() == port) {
return &*it;
}
}
return NULL;
}
std::vector<BasicPortAllocatorSession::PortData*>
BasicPortAllocatorSession::GetUnprunedPorts(
const std::vector<const rtc::Network*>& networks) {
RTC_DCHECK_RUN_ON(network_thread_);
std::vector<PortData*> unpruned_ports;
for (PortData& port : ports_) {
if (!port.pruned() &&
absl::c_linear_search(networks, port.sequence()->network())) {
unpruned_ports.push_back(&port);
}
}
return unpruned_ports;
}
void BasicPortAllocatorSession::PrunePortsAndRemoveCandidates(
const std::vector<PortData*>& port_data_list) {
RTC_DCHECK_RUN_ON(network_thread_);
std::vector<PortInterface*> pruned_ports;
std::vector<Candidate> removed_candidates;
for (PortData* data : port_data_list) {
// Prune the port so that it may be destroyed.
data->Prune();
pruned_ports.push_back(data->port());
if (data->has_pairable_candidate()) {
GetCandidatesFromPort(*data, &removed_candidates);
// Mark the port as having no pairable candidates so that its candidates
// won't be removed multiple times.
data->set_has_pairable_candidate(false);
}
}
if (!pruned_ports.empty()) {
SignalPortsPruned(this, pruned_ports);
}
if (!removed_candidates.empty()) {
RTC_LOG(LS_INFO) << "Removed " << removed_candidates.size()
<< " candidates";
SignalCandidatesRemoved(this, removed_candidates);
}
}
void BasicPortAllocator::SetVpnList(
const std::vector<rtc::NetworkMask>& vpn_list) {
network_manager_->set_vpn_list(vpn_list);
}
// AllocationSequence
AllocationSequence::AllocationSequence(
BasicPortAllocatorSession* session,
const rtc::Network* network,
PortConfiguration* config,
uint32_t flags,
std::function<void()> port_allocation_complete_callback)
: session_(session),
network_(network),
config_(config),
state_(kInit),
flags_(flags),
udp_socket_(),
udp_port_(NULL),
phase_(0),
port_allocation_complete_callback_(
std::move(port_allocation_complete_callback)) {}
void AllocationSequence::Init() {
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
udp_socket_.reset(session_->socket_factory()->CreateUdpSocket(
rtc::SocketAddress(network_->GetBestIP(), 0),
session_->allocator()->min_port(), session_->allocator()->max_port()));
if (udp_socket_) {
udp_socket_->RegisterReceivedPacketCallback(
[&](rtc::AsyncPacketSocket* socket,
const rtc::ReceivedPacket& packet) {
OnReadPacket(socket, packet);
});
}
// Continuing if `udp_socket_` is NULL, as local TCP and RelayPort using TCP
// are next available options to setup a communication channel.
}
}
void AllocationSequence::Clear() {
TRACE_EVENT0("webrtc", "AllocationSequence::Clear");
udp_port_ = NULL;
relay_ports_.clear();
}
void AllocationSequence::OnNetworkFailed() {
RTC_DCHECK(!network_failed_);
network_failed_ = true;
// Stop the allocation sequence if its network failed.
Stop();
}
void AllocationSequence::DisableEquivalentPhases(const rtc::Network* network,
PortConfiguration* config,
uint32_t* flags) {
if (network_failed_) {
// If the network of this allocation sequence has ever become failed,
// it won't be equivalent to the new network.
return;
}
if (!((network == network_) && (previous_best_ip_ == network->GetBestIP()))) {
// Different network setup; nothing is equivalent.
return;
}
// Else turn off the stuff that we've already got covered.
// Every config implicitly specifies local, so turn that off right away if we
// already have a port of the corresponding type. Look for a port that
// matches this AllocationSequence's network, is the right protocol, and
// hasn't encountered an error.
// TODO(deadbeef): This doesn't take into account that there may be another
// AllocationSequence that's ABOUT to allocate a UDP port, but hasn't yet.
// This can happen if, say, there's a network change event right before an
// application-triggered ICE restart. Hopefully this problem will just go
// away if we get rid of the gathering "phases" though, which is planned.
//
//
// PORTALLOCATOR_DISABLE_UDP is used to disable a Port from gathering the host
// candidate (and srflx candidate if Port::SharedSocket()), and we do not want
// to disable the gathering of these candidates just becaue of an existing
// Port over PROTO_UDP, namely a TurnPort over UDP.
if (absl::c_any_of(session_->ports_,
[this](const BasicPortAllocatorSession::PortData& p) {
return !p.pruned() && p.port()->Network() == network_ &&
p.port()->GetProtocol() == PROTO_UDP &&
p.port()->Type() == LOCAL_PORT_TYPE && !p.error();
})) {
*flags |= PORTALLOCATOR_DISABLE_UDP;
}
// Similarly we need to check both the protocol used by an existing Port and
// its type.
if (absl::c_any_of(session_->ports_,
[this](const BasicPortAllocatorSession::PortData& p) {
return !p.pruned() && p.port()->Network() == network_ &&
p.port()->GetProtocol() == PROTO_TCP &&
p.port()->Type() == LOCAL_PORT_TYPE && !p.error();
})) {
*flags |= PORTALLOCATOR_DISABLE_TCP;
}
if (config_ && config) {
// We need to regather srflx candidates if either of the following
// conditions occurs:
// 1. The STUN servers are different from the previous gathering.
// 2. We will regather host candidates, hence possibly inducing new NAT
// bindings.
if (config_->StunServers() == config->StunServers() &&
(*flags & PORTALLOCATOR_DISABLE_UDP)) {
// Already got this STUN servers covered.
*flags |= PORTALLOCATOR_DISABLE_STUN;
}
if (!config_->relays.empty()) {
// Already got relays covered.
// NOTE: This will even skip a _different_ set of relay servers if we
// were to be given one, but that never happens in our codebase. Should
// probably get rid of the list in PortConfiguration and just keep a
// single relay server in each one.
*flags |= PORTALLOCATOR_DISABLE_RELAY;
}
}
}
void AllocationSequence::Start() {
state_ = kRunning;
session_->network_thread()->PostTask(
SafeTask(safety_.flag(), [this, epoch = epoch_] { Process(epoch); }));
// Take a snapshot of the best IP, so that when DisableEquivalentPhases is
// called next time, we enable all phases if the best IP has since changed.
previous_best_ip_ = network_->GetBestIP();
}
void AllocationSequence::Stop() {
// If the port is completed, don't set it to stopped.
if (state_ == kRunning) {
state_ = kStopped;
// Cause further Process calls in the previous epoch to be ignored.
++epoch_;
}
}
void AllocationSequence::Process(int epoch) {
RTC_DCHECK(rtc::Thread::Current() == session_->network_thread());
const char* const PHASE_NAMES[kNumPhases] = {"Udp", "Relay", "Tcp"};
if (epoch != epoch_)
return;
// Perform all of the phases in the current step.
RTC_LOG(LS_INFO) << network_->ToString()
<< ": Allocation Phase=" << PHASE_NAMES[phase_];
switch (phase_) {
case PHASE_UDP:
CreateUDPPorts();
CreateStunPorts();
break;
case PHASE_RELAY:
CreateRelayPorts();
break;
case PHASE_TCP:
CreateTCPPorts();
state_ = kCompleted;
break;
default:
RTC_DCHECK_NOTREACHED();
}
if (state() == kRunning) {
++phase_;
session_->network_thread()->PostDelayedTask(
SafeTask(safety_.flag(), [this, epoch = epoch_] { Process(epoch); }),
TimeDelta::Millis(session_->allocator()->step_delay()));
} else {
// No allocation steps needed further if all phases in AllocationSequence
// are completed. Cause further Process calls in the previous epoch to be
// ignored.
++epoch_;
port_allocation_complete_callback_();
}
}
void AllocationSequence::CreateUDPPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP)) {
RTC_LOG(LS_VERBOSE) << "AllocationSequence: UDP ports disabled, skipping.";
return;
}
// TODO(mallinath) - Remove UDPPort creating socket after shared socket
// is enabled completely.
std::unique_ptr<UDPPort> port;
bool emit_local_candidate_for_anyaddress =
!IsFlagSet(PORTALLOCATOR_DISABLE_DEFAULT_LOCAL_CANDIDATE);
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) && udp_socket_) {
port = UDPPort::Create(
session_->network_thread(), session_->socket_factory(), network_,
udp_socket_.get(), session_->username(), session_->password(),
emit_local_candidate_for_anyaddress,
session_->allocator()->stun_candidate_keepalive_interval(),
session_->allocator()->field_trials());
} else {
port = UDPPort::Create(
session_->network_thread(), session_->socket_factory(), network_,
session_->allocator()->min_port(), session_->allocator()->max_port(),
session_->username(), session_->password(),
emit_local_candidate_for_anyaddress,
session_->allocator()->stun_candidate_keepalive_interval(),
session_->allocator()->field_trials());
}
if (port) {
port->SetIceTiebreaker(session_->ice_tiebreaker());
// If shared socket is enabled, STUN candidate will be allocated by the
// UDPPort.
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
udp_port_ = port.get();
port->SubscribePortDestroyed(
[this](PortInterface* port) { OnPortDestroyed(port); });
// If STUN is not disabled, setting stun server address to port.
if (!IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) {
if (config_ && !config_->StunServers().empty()) {
RTC_LOG(LS_INFO)
<< "AllocationSequence: UDPPort will be handling the "
"STUN candidate generation.";
port->set_server_addresses(config_->StunServers());
}
}
}
session_->AddAllocatedPort(port.release(), this);
}
}
void AllocationSequence::CreateTCPPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_TCP)) {
RTC_LOG(LS_VERBOSE) << "AllocationSequence: TCP ports disabled, skipping.";
return;
}
std::unique_ptr<Port> port = TCPPort::Create(
session_->network_thread(), session_->socket_factory(), network_,
session_->allocator()->min_port(), session_->allocator()->max_port(),
session_->username(), session_->password(),
session_->allocator()->allow_tcp_listen(),
session_->allocator()->field_trials());
if (port) {
port->SetIceTiebreaker(session_->ice_tiebreaker());
session_->AddAllocatedPort(port.release(), this);
// Since TCPPort is not created using shared socket, `port` will not be
// added to the dequeue.
}
}
void AllocationSequence::CreateStunPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_STUN)) {
RTC_LOG(LS_VERBOSE) << "AllocationSequence: STUN ports disabled, skipping.";
return;
}
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET)) {
return;
}
if (!(config_ && !config_->StunServers().empty())) {
RTC_LOG(LS_WARNING)
<< "AllocationSequence: No STUN server configured, skipping.";
return;
}
std::unique_ptr<StunPort> port = StunPort::Create(
session_->network_thread(), session_->socket_factory(), network_,
session_->allocator()->min_port(), session_->allocator()->max_port(),
session_->username(), session_->password(), config_->StunServers(),
session_->allocator()->stun_candidate_keepalive_interval(),
session_->allocator()->field_trials());
if (port) {
port->SetIceTiebreaker(session_->ice_tiebreaker());
session_->AddAllocatedPort(port.release(), this);
// Since StunPort is not created using shared socket, `port` will not be
// added to the dequeue.
}
}
void AllocationSequence::CreateRelayPorts() {
if (IsFlagSet(PORTALLOCATOR_DISABLE_RELAY)) {
RTC_LOG(LS_VERBOSE)
<< "AllocationSequence: Relay ports disabled, skipping.";
return;
}
// If BasicPortAllocatorSession::OnAllocate left relay ports enabled then we
// ought to have a relay list for them here.
RTC_DCHECK(config_);
RTC_DCHECK(!config_->relays.empty());
if (!(config_ && !config_->relays.empty())) {
RTC_LOG(LS_WARNING)
<< "AllocationSequence: No relay server configured, skipping.";
return;
}
// Relative priority of candidates from this TURN server in relation
// to the candidates from other servers. Required because ICE priorities
// need to be unique.
int relative_priority = config_->relays.size();
for (RelayServerConfig& relay : config_->relays) {
CreateTurnPort(relay, relative_priority--);
}
}
void AllocationSequence::CreateTurnPort(const RelayServerConfig& config,
int relative_priority) {
PortList::const_iterator relay_port;
for (relay_port = config.ports.begin(); relay_port != config.ports.end();
++relay_port) {
// Skip UDP connections to relay servers if it's disallowed.
if (IsFlagSet(PORTALLOCATOR_DISABLE_UDP_RELAY) &&
relay_port->proto == PROTO_UDP) {
continue;
}
// Do not create a port if the server address family is known and does
// not match the local IP address family.
int server_ip_family = relay_port->address.ipaddr().family();
int local_ip_family = network_->GetBestIP().family();
if (server_ip_family != AF_UNSPEC && server_ip_family != local_ip_family) {
RTC_LOG(LS_INFO)
<< "Server and local address families are not compatible. "
"Server address: "
<< relay_port->address.ipaddr().ToSensitiveString()
<< " Local address: " << network_->GetBestIP().ToSensitiveString();
continue;
}
CreateRelayPortArgs args;
args.network_thread = session_->network_thread();
args.socket_factory = session_->socket_factory();
args.network = network_;
args.username = session_->username();
args.password = session_->password();
args.server_address = &(*relay_port);
args.config = &config;
args.turn_customizer = session_->allocator()->turn_customizer();
args.field_trials = session_->allocator()->field_trials();
args.relative_priority = relative_priority;
std::unique_ptr<cricket::Port> port;
// Shared socket mode must be enabled only for UDP based ports. Hence
// don't pass shared socket for ports which will create TCP sockets.
// TODO(mallinath) - Enable shared socket mode for TURN ports. Disabled
// due to webrtc bug https://code.google.com/p/webrtc/issues/detail?id=3537
if (IsFlagSet(PORTALLOCATOR_ENABLE_SHARED_SOCKET) &&
relay_port->proto == PROTO_UDP && udp_socket_) {
port = session_->allocator()->relay_port_factory()->Create(
args, udp_socket_.get());
if (!port) {
RTC_LOG(LS_WARNING) << "Failed to create relay port with "
<< args.server_address->address.ToSensitiveString();
continue;
}
relay_ports_.push_back(port.get());
// Listen to the port destroyed signal, to allow AllocationSequence to
// remove the entry from it's map.
port->SubscribePortDestroyed(
[this](PortInterface* port) { OnPortDestroyed(port); });
} else {
port = session_->allocator()->relay_port_factory()->Create(
args, session_->allocator()->min_port(),
session_->allocator()->max_port());
if (!port) {
RTC_LOG(LS_WARNING) << "Failed to create relay port with "
<< args.server_address->address.ToSensitiveString();
continue;
}
}
RTC_DCHECK(port != NULL);
port->SetIceTiebreaker(session_->ice_tiebreaker());
session_->AddAllocatedPort(port.release(), this);
}
}
void AllocationSequence::OnReadPacket(rtc::AsyncPacketSocket* socket,
const rtc::ReceivedPacket& packet) {
RTC_DCHECK(socket == udp_socket_.get());
bool turn_port_found = false;
// Try to find the TurnPort that matches the remote address. Note that the
// message could be a STUN binding response if the TURN server is also used as
// a STUN server. We don't want to parse every message here to check if it is
// a STUN binding response, so we pass the message to TurnPort regardless of
// the message type. The TurnPort will just ignore the message since it will
// not find any request by transaction ID.
for (auto* port : relay_ports_) {
if (port->CanHandleIncomingPacketsFrom(packet.source_address())) {
if (port->HandleIncomingPacket(socket, packet)) {
return;
}
turn_port_found = true;
}
}
if (udp_port_) {
const ServerAddresses& stun_servers = udp_port_->server_addresses();
// Pass the packet to the UdpPort if there is no matching TurnPort, or if
// the TURN server is also a STUN server.
if (!turn_port_found ||
stun_servers.find(packet.source_address()) != stun_servers.end()) {
RTC_DCHECK(udp_port_->SharedSocket());
udp_port_->HandleIncomingPacket(socket, packet);
}
}
}
void AllocationSequence::OnPortDestroyed(PortInterface* port) {
if (udp_port_ == port) {
udp_port_ = NULL;
return;
}
auto it = absl::c_find(relay_ports_, port);
if (it != relay_ports_.end()) {
relay_ports_.erase(it);
} else {
RTC_LOG(LS_ERROR) << "Unexpected OnPortDestroyed for nonexistent port.";
RTC_DCHECK_NOTREACHED();
}
}
PortConfiguration::PortConfiguration(
const ServerAddresses& stun_servers,
absl::string_view username,
absl::string_view password,
const webrtc::FieldTrialsView* field_trials)
: stun_servers(stun_servers), username(username), password(password) {
if (!stun_servers.empty())
stun_address = *(stun_servers.begin());
// Note that this won't change once the config is initialized.
if (field_trials) {
use_turn_server_as_stun_server_disabled =
field_trials->IsDisabled("WebRTC-UseTurnServerAsStunServer");
}
}
ServerAddresses PortConfiguration::StunServers() {
if (!stun_address.IsNil() &&
stun_servers.find(stun_address) == stun_servers.end()) {
stun_servers.insert(stun_address);
}
if (!stun_servers.empty() && use_turn_server_as_stun_server_disabled) {
return stun_servers;
}
// Every UDP TURN server should also be used as a STUN server if
// use_turn_server_as_stun_server is not disabled or the stun servers are
// empty.
ServerAddresses turn_servers = GetRelayServerAddresses(PROTO_UDP);
for (const rtc::SocketAddress& turn_server : turn_servers) {
if (stun_servers.find(turn_server) == stun_servers.end()) {
stun_servers.insert(turn_server);
}
}
return stun_servers;
}
void PortConfiguration::AddRelay(const RelayServerConfig& config) {
relays.push_back(config);
}
bool PortConfiguration::SupportsProtocol(const RelayServerConfig& relay,
ProtocolType type) const {
PortList::const_iterator relay_port;
for (relay_port = relay.ports.begin(); relay_port != relay.ports.end();
++relay_port) {
if (relay_port->proto == type)
return true;
}
return false;
}
bool PortConfiguration::SupportsProtocol(ProtocolType type) const {
for (size_t i = 0; i < relays.size(); ++i) {
if (SupportsProtocol(relays[i], type))
return true;
}
return false;
}
ServerAddresses PortConfiguration::GetRelayServerAddresses(
ProtocolType type) const {
ServerAddresses servers;
for (size_t i = 0; i < relays.size(); ++i) {
if (SupportsProtocol(relays[i], type)) {
servers.insert(relays[i].ports.front().address);
}
}
return servers;
}
} // namespace cricket