| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdio> |
| #include <cstring> |
| #include <string> |
| #if defined(WEBRTC_POSIX) |
| #ifdef OPENBSD |
| #include <netinet/in_systm.h> |
| #endif |
| #ifndef __native_client__ |
| #endif |
| #include <netdb.h> |
| #endif |
| |
| #include "absl/strings/string_view.h" |
| #include "rtc_base/byte_order.h" |
| #include "rtc_base/ip_address.h" |
| #include "rtc_base/net_helpers.h" |
| #include "rtc_base/string_utils.h" |
| |
| namespace rtc { |
| |
| // Prefixes used for categorizing IPv6 addresses. |
| static const in6_addr kV4MappedPrefix = { |
| {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 0}}}; |
| static const in6_addr k6To4Prefix = {{{0x20, 0x02, 0}}}; |
| static const in6_addr kTeredoPrefix = {{{0x20, 0x01, 0x00, 0x00}}}; |
| static const in6_addr kV4CompatibilityPrefix = {{{0}}}; |
| static const in6_addr k6BonePrefix = {{{0x3f, 0xfe, 0}}}; |
| static const in6_addr kPrivateNetworkPrefix = {{{0xFD}}}; |
| |
| static bool IPIsHelper(const IPAddress& ip, |
| const in6_addr& tomatch, |
| int length); |
| static in_addr ExtractMappedAddress(const in6_addr& addr); |
| |
| uint32_t IPAddress::v4AddressAsHostOrderInteger() const { |
| if (family_ == AF_INET) { |
| return NetworkToHost32(u_.ip4.s_addr); |
| } else { |
| return 0; |
| } |
| } |
| |
| int IPAddress::overhead() const { |
| switch (family_) { |
| case AF_INET: // IPv4 |
| return 20; |
| case AF_INET6: // IPv6 |
| return 40; |
| default: |
| return 0; |
| } |
| } |
| |
| bool IPAddress::IsNil() const { |
| return IPIsUnspec(*this); |
| } |
| |
| size_t IPAddress::Size() const { |
| switch (family_) { |
| case AF_INET: |
| return sizeof(in_addr); |
| case AF_INET6: |
| return sizeof(in6_addr); |
| } |
| return 0; |
| } |
| |
| bool IPAddress::operator==(const IPAddress& other) const { |
| if (family_ != other.family_) { |
| return false; |
| } |
| if (family_ == AF_INET) { |
| return memcmp(&u_.ip4, &other.u_.ip4, sizeof(u_.ip4)) == 0; |
| } |
| if (family_ == AF_INET6) { |
| return memcmp(&u_.ip6, &other.u_.ip6, sizeof(u_.ip6)) == 0; |
| } |
| return family_ == AF_UNSPEC; |
| } |
| |
| bool IPAddress::operator!=(const IPAddress& other) const { |
| return !((*this) == other); |
| } |
| |
| bool IPAddress::operator>(const IPAddress& other) const { |
| return (*this) != other && !((*this) < other); |
| } |
| |
| bool IPAddress::operator<(const IPAddress& other) const { |
| // IPv4 is 'less than' IPv6 |
| if (family_ != other.family_) { |
| if (family_ == AF_UNSPEC) { |
| return true; |
| } |
| if (family_ == AF_INET && other.family_ == AF_INET6) { |
| return true; |
| } |
| return false; |
| } |
| // Comparing addresses of the same family. |
| switch (family_) { |
| case AF_INET: { |
| return NetworkToHost32(u_.ip4.s_addr) < |
| NetworkToHost32(other.u_.ip4.s_addr); |
| } |
| case AF_INET6: { |
| return memcmp(&u_.ip6.s6_addr, &other.u_.ip6.s6_addr, 16) < 0; |
| } |
| } |
| // Catches AF_UNSPEC and invalid addresses. |
| return false; |
| } |
| |
| in6_addr IPAddress::ipv6_address() const { |
| return u_.ip6; |
| } |
| |
| in_addr IPAddress::ipv4_address() const { |
| return u_.ip4; |
| } |
| |
| std::string IPAddress::ToString() const { |
| if (family_ != AF_INET && family_ != AF_INET6) { |
| return std::string(); |
| } |
| char buf[INET6_ADDRSTRLEN] = {0}; |
| const void* src = &u_.ip4; |
| if (family_ == AF_INET6) { |
| src = &u_.ip6; |
| } |
| if (!rtc::inet_ntop(family_, src, buf, sizeof(buf))) { |
| return std::string(); |
| } |
| return std::string(buf); |
| } |
| |
| std::string IPAddress::ToSensitiveString() const { |
| switch (family_) { |
| case AF_INET: { |
| std::string address = ToString(); |
| size_t find_pos = address.rfind('.'); |
| if (find_pos == std::string::npos) |
| return std::string(); |
| address.resize(find_pos); |
| address += ".x"; |
| return address; |
| } |
| case AF_INET6: { |
| std::string result; |
| result.resize(INET6_ADDRSTRLEN); |
| in6_addr addr = ipv6_address(); |
| size_t len = snprintf(&(result[0]), result.size(), "%x:%x:%x:x:x:x:x:x", |
| (addr.s6_addr[0] << 8) + addr.s6_addr[1], |
| (addr.s6_addr[2] << 8) + addr.s6_addr[3], |
| (addr.s6_addr[4] << 8) + addr.s6_addr[5]); |
| result.resize(len); |
| return result; |
| } |
| } |
| return std::string(); |
| } |
| |
| IPAddress IPAddress::Normalized() const { |
| if (family_ != AF_INET6) { |
| return *this; |
| } |
| if (!IPIsV4Mapped(*this)) { |
| return *this; |
| } |
| in_addr addr = ExtractMappedAddress(u_.ip6); |
| return IPAddress(addr); |
| } |
| |
| IPAddress IPAddress::AsIPv6Address() const { |
| if (family_ != AF_INET) { |
| return *this; |
| } |
| in6_addr v6addr = kV4MappedPrefix; |
| ::memcpy(&v6addr.s6_addr[12], &u_.ip4.s_addr, sizeof(u_.ip4.s_addr)); |
| return IPAddress(v6addr); |
| } |
| |
| bool InterfaceAddress::operator==(const InterfaceAddress& other) const { |
| return ipv6_flags_ == other.ipv6_flags() && |
| static_cast<const IPAddress&>(*this) == other; |
| } |
| |
| bool InterfaceAddress::operator!=(const InterfaceAddress& other) const { |
| return !((*this) == other); |
| } |
| |
| const InterfaceAddress& InterfaceAddress::operator=( |
| const InterfaceAddress& other) { |
| ipv6_flags_ = other.ipv6_flags_; |
| static_cast<IPAddress&>(*this) = other; |
| return *this; |
| } |
| |
| std::string InterfaceAddress::ToString() const { |
| std::string result = IPAddress::ToString(); |
| |
| if (family() == AF_INET6) |
| result += "|flags:0x" + rtc::ToHex(ipv6_flags()); |
| |
| return result; |
| } |
| |
| static bool IPIsPrivateNetworkV4(const IPAddress& ip) { |
| uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger(); |
| return ((ip_in_host_order >> 24) == 10) || |
| ((ip_in_host_order >> 20) == ((172 << 4) | 1)) || |
| ((ip_in_host_order >> 16) == ((192 << 8) | 168)); |
| } |
| |
| static bool IPIsPrivateNetworkV6(const IPAddress& ip) { |
| return IPIsHelper(ip, kPrivateNetworkPrefix, 8); |
| } |
| |
| bool IPIsPrivateNetwork(const IPAddress& ip) { |
| switch (ip.family()) { |
| case AF_INET: { |
| return IPIsPrivateNetworkV4(ip); |
| } |
| case AF_INET6: { |
| return IPIsPrivateNetworkV6(ip); |
| } |
| } |
| return false; |
| } |
| |
| static bool IPIsSharedNetworkV4(const IPAddress& ip) { |
| uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger(); |
| return (ip_in_host_order >> 22) == ((100 << 2) | 1); |
| } |
| |
| bool IPIsSharedNetwork(const IPAddress& ip) { |
| if (ip.family() == AF_INET) { |
| return IPIsSharedNetworkV4(ip); |
| } |
| return false; |
| } |
| |
| in_addr ExtractMappedAddress(const in6_addr& in6) { |
| in_addr ipv4; |
| ::memcpy(&ipv4.s_addr, &in6.s6_addr[12], sizeof(ipv4.s_addr)); |
| return ipv4; |
| } |
| |
| bool IPFromAddrInfo(struct addrinfo* info, IPAddress* out) { |
| if (!info || !info->ai_addr) { |
| return false; |
| } |
| if (info->ai_addr->sa_family == AF_INET) { |
| sockaddr_in* addr = reinterpret_cast<sockaddr_in*>(info->ai_addr); |
| *out = IPAddress(addr->sin_addr); |
| return true; |
| } else if (info->ai_addr->sa_family == AF_INET6) { |
| sockaddr_in6* addr = reinterpret_cast<sockaddr_in6*>(info->ai_addr); |
| *out = IPAddress(addr->sin6_addr); |
| return true; |
| } |
| return false; |
| } |
| |
| bool IPFromString(absl::string_view str, IPAddress* out) { |
| if (!out) { |
| return false; |
| } |
| in_addr addr; |
| if (rtc::inet_pton(AF_INET, str, &addr) == 0) { |
| in6_addr addr6; |
| if (rtc::inet_pton(AF_INET6, str, &addr6) == 0) { |
| *out = IPAddress(); |
| return false; |
| } |
| *out = IPAddress(addr6); |
| } else { |
| *out = IPAddress(addr); |
| } |
| return true; |
| } |
| |
| bool IPFromString(absl::string_view str, int flags, InterfaceAddress* out) { |
| IPAddress ip; |
| if (!IPFromString(str, &ip)) { |
| return false; |
| } |
| |
| *out = InterfaceAddress(ip, flags); |
| return true; |
| } |
| |
| bool IPIsAny(const IPAddress& ip) { |
| switch (ip.family()) { |
| case AF_INET: |
| return ip == IPAddress(INADDR_ANY); |
| case AF_INET6: |
| return ip == IPAddress(in6addr_any) || ip == IPAddress(kV4MappedPrefix); |
| case AF_UNSPEC: |
| return false; |
| } |
| return false; |
| } |
| |
| static bool IPIsLoopbackV4(const IPAddress& ip) { |
| uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger(); |
| return ((ip_in_host_order >> 24) == 127); |
| } |
| |
| static bool IPIsLoopbackV6(const IPAddress& ip) { |
| return ip == IPAddress(in6addr_loopback); |
| } |
| |
| bool IPIsLoopback(const IPAddress& ip) { |
| switch (ip.family()) { |
| case AF_INET: { |
| return IPIsLoopbackV4(ip); |
| } |
| case AF_INET6: { |
| return IPIsLoopbackV6(ip); |
| } |
| } |
| return false; |
| } |
| |
| bool IPIsPrivate(const IPAddress& ip) { |
| return IPIsLinkLocal(ip) || IPIsLoopback(ip) || IPIsPrivateNetwork(ip) || |
| IPIsSharedNetwork(ip); |
| } |
| |
| bool IPIsUnspec(const IPAddress& ip) { |
| return ip.family() == AF_UNSPEC; |
| } |
| |
| size_t HashIP(const IPAddress& ip) { |
| switch (ip.family()) { |
| case AF_INET: { |
| return ip.ipv4_address().s_addr; |
| } |
| case AF_INET6: { |
| in6_addr v6addr = ip.ipv6_address(); |
| const uint32_t* v6_as_ints = |
| reinterpret_cast<const uint32_t*>(&v6addr.s6_addr); |
| return v6_as_ints[0] ^ v6_as_ints[1] ^ v6_as_ints[2] ^ v6_as_ints[3]; |
| } |
| } |
| return 0; |
| } |
| |
| IPAddress TruncateIP(const IPAddress& ip, int length) { |
| if (length < 0) { |
| return IPAddress(); |
| } |
| if (ip.family() == AF_INET) { |
| if (length > 31) { |
| return ip; |
| } |
| if (length == 0) { |
| return IPAddress(INADDR_ANY); |
| } |
| int mask = (0xFFFFFFFF << (32 - length)); |
| uint32_t host_order_ip = NetworkToHost32(ip.ipv4_address().s_addr); |
| in_addr masked; |
| masked.s_addr = HostToNetwork32(host_order_ip & mask); |
| return IPAddress(masked); |
| } else if (ip.family() == AF_INET6) { |
| if (length > 127) { |
| return ip; |
| } |
| if (length == 0) { |
| return IPAddress(in6addr_any); |
| } |
| in6_addr v6addr = ip.ipv6_address(); |
| int position = length / 32; |
| int inner_length = 32 - (length - (position * 32)); |
| // Note: 64bit mask constant needed to allow possible 32-bit left shift. |
| uint32_t inner_mask = 0xFFFFFFFFLL << inner_length; |
| uint32_t* v6_as_ints = reinterpret_cast<uint32_t*>(&v6addr.s6_addr); |
| for (int i = 0; i < 4; ++i) { |
| if (i == position) { |
| uint32_t host_order_inner = NetworkToHost32(v6_as_ints[i]); |
| v6_as_ints[i] = HostToNetwork32(host_order_inner & inner_mask); |
| } else if (i > position) { |
| v6_as_ints[i] = 0; |
| } |
| } |
| return IPAddress(v6addr); |
| } |
| return IPAddress(); |
| } |
| |
| int CountIPMaskBits(const IPAddress& mask) { |
| uint32_t word_to_count = 0; |
| int bits = 0; |
| switch (mask.family()) { |
| case AF_INET: { |
| word_to_count = NetworkToHost32(mask.ipv4_address().s_addr); |
| break; |
| } |
| case AF_INET6: { |
| in6_addr v6addr = mask.ipv6_address(); |
| const uint32_t* v6_as_ints = |
| reinterpret_cast<const uint32_t*>(&v6addr.s6_addr); |
| int i = 0; |
| for (; i < 4; ++i) { |
| if (v6_as_ints[i] != 0xFFFFFFFF) { |
| break; |
| } |
| } |
| if (i < 4) { |
| word_to_count = NetworkToHost32(v6_as_ints[i]); |
| } |
| bits = (i * 32); |
| break; |
| } |
| default: { |
| return 0; |
| } |
| } |
| if (word_to_count == 0) { |
| return bits; |
| } |
| |
| // Public domain bit-twiddling hack from: |
| // http://graphics.stanford.edu/~seander/bithacks.html |
| // Counts the trailing 0s in the word. |
| unsigned int zeroes = 32; |
| // This could also be written word_to_count &= -word_to_count, but |
| // MSVC emits warning C4146 when negating an unsigned number. |
| word_to_count &= ~word_to_count + 1; // Isolate lowest set bit. |
| if (word_to_count) |
| zeroes--; |
| if (word_to_count & 0x0000FFFF) |
| zeroes -= 16; |
| if (word_to_count & 0x00FF00FF) |
| zeroes -= 8; |
| if (word_to_count & 0x0F0F0F0F) |
| zeroes -= 4; |
| if (word_to_count & 0x33333333) |
| zeroes -= 2; |
| if (word_to_count & 0x55555555) |
| zeroes -= 1; |
| |
| return bits + (32 - zeroes); |
| } |
| |
| bool IPIsHelper(const IPAddress& ip, const in6_addr& tomatch, int length) { |
| // Helper method for checking IP prefix matches (but only on whole byte |
| // lengths). Length is in bits. |
| in6_addr addr = ip.ipv6_address(); |
| return ::memcmp(&addr, &tomatch, (length >> 3)) == 0; |
| } |
| |
| bool IPIs6Bone(const IPAddress& ip) { |
| return IPIsHelper(ip, k6BonePrefix, 16); |
| } |
| |
| bool IPIs6To4(const IPAddress& ip) { |
| return IPIsHelper(ip, k6To4Prefix, 16); |
| } |
| |
| static bool IPIsLinkLocalV4(const IPAddress& ip) { |
| uint32_t ip_in_host_order = ip.v4AddressAsHostOrderInteger(); |
| return ((ip_in_host_order >> 16) == ((169 << 8) | 254)); |
| } |
| |
| static bool IPIsLinkLocalV6(const IPAddress& ip) { |
| // Can't use the helper because the prefix is 10 bits. |
| in6_addr addr = ip.ipv6_address(); |
| return (addr.s6_addr[0] == 0xFE) && ((addr.s6_addr[1] & 0xC0) == 0x80); |
| } |
| |
| bool IPIsLinkLocal(const IPAddress& ip) { |
| switch (ip.family()) { |
| case AF_INET: { |
| return IPIsLinkLocalV4(ip); |
| } |
| case AF_INET6: { |
| return IPIsLinkLocalV6(ip); |
| } |
| } |
| return false; |
| } |
| |
| // According to http://www.ietf.org/rfc/rfc2373.txt, Appendix A, page 19. An |
| // address which contains MAC will have its 11th and 12th bytes as FF:FE as well |
| // as the U/L bit as 1. |
| bool IPIsMacBased(const IPAddress& ip) { |
| in6_addr addr = ip.ipv6_address(); |
| return ((addr.s6_addr[8] & 0x02) && addr.s6_addr[11] == 0xFF && |
| addr.s6_addr[12] == 0xFE); |
| } |
| |
| bool IPIsSiteLocal(const IPAddress& ip) { |
| // Can't use the helper because the prefix is 10 bits. |
| in6_addr addr = ip.ipv6_address(); |
| return addr.s6_addr[0] == 0xFE && (addr.s6_addr[1] & 0xC0) == 0xC0; |
| } |
| |
| bool IPIsULA(const IPAddress& ip) { |
| // Can't use the helper because the prefix is 7 bits. |
| in6_addr addr = ip.ipv6_address(); |
| return (addr.s6_addr[0] & 0xFE) == 0xFC; |
| } |
| |
| bool IPIsTeredo(const IPAddress& ip) { |
| return IPIsHelper(ip, kTeredoPrefix, 32); |
| } |
| |
| bool IPIsV4Compatibility(const IPAddress& ip) { |
| return IPIsHelper(ip, kV4CompatibilityPrefix, 96); |
| } |
| |
| bool IPIsV4Mapped(const IPAddress& ip) { |
| return IPIsHelper(ip, kV4MappedPrefix, 96); |
| } |
| |
| int IPAddressPrecedence(const IPAddress& ip) { |
| // Precedence values from RFC 3484-bis. Prefers native v4 over 6to4/Teredo. |
| if (ip.family() == AF_INET) { |
| return 30; |
| } else if (ip.family() == AF_INET6) { |
| if (IPIsLoopback(ip)) { |
| return 60; |
| } else if (IPIsULA(ip)) { |
| return 50; |
| } else if (IPIsV4Mapped(ip)) { |
| return 30; |
| } else if (IPIs6To4(ip)) { |
| return 20; |
| } else if (IPIsTeredo(ip)) { |
| return 10; |
| } else if (IPIsV4Compatibility(ip) || IPIsSiteLocal(ip) || IPIs6Bone(ip)) { |
| return 1; |
| } else { |
| // A 'normal' IPv6 address. |
| return 40; |
| } |
| } |
| return 0; |
| } |
| |
| IPAddress GetLoopbackIP(int family) { |
| if (family == AF_INET) { |
| return rtc::IPAddress(INADDR_LOOPBACK); |
| } |
| if (family == AF_INET6) { |
| return rtc::IPAddress(in6addr_loopback); |
| } |
| return rtc::IPAddress(); |
| } |
| |
| IPAddress GetAnyIP(int family) { |
| if (family == AF_INET) { |
| return rtc::IPAddress(INADDR_ANY); |
| } |
| if (family == AF_INET6) { |
| return rtc::IPAddress(in6addr_any); |
| } |
| return rtc::IPAddress(); |
| } |
| |
| } // namespace rtc |