|  | /* | 
|  | *  Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "modules/audio_processing/aec3/aec_state.h" | 
|  |  | 
|  | #include "modules/audio_processing/aec3/aec3_fft.h" | 
|  | #include "modules/audio_processing/aec3/render_delay_buffer.h" | 
|  | #include "modules/audio_processing/logging/apm_data_dumper.h" | 
|  | #include "rtc_base/strings/string_builder.h" | 
|  | #include "test/gtest.h" | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace { | 
|  |  | 
|  | void RunNormalUsageTest(size_t num_render_channels, | 
|  | size_t num_capture_channels) { | 
|  | // TODO(bugs.webrtc.org/10913): Test with different content in different | 
|  | // channels. | 
|  | constexpr int kSampleRateHz = 48000; | 
|  | constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); | 
|  | ApmDataDumper data_dumper(42); | 
|  | EchoCanceller3Config config; | 
|  | AecState state(config, num_capture_channels); | 
|  | absl::optional<DelayEstimate> delay_estimate = | 
|  | DelayEstimate(DelayEstimate::Quality::kRefined, 10); | 
|  | std::unique_ptr<RenderDelayBuffer> render_delay_buffer( | 
|  | RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels)); | 
|  | std::vector<std::array<float, kFftLengthBy2Plus1>> E2_refined( | 
|  | num_capture_channels); | 
|  | std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels); | 
|  | std::vector<std::vector<std::vector<float>>> x( | 
|  | kNumBands, std::vector<std::vector<float>>( | 
|  | num_render_channels, std::vector<float>(kBlockSize, 0.f))); | 
|  | EchoPathVariability echo_path_variability( | 
|  | false, EchoPathVariability::DelayAdjustment::kNone, false); | 
|  | std::vector<std::array<float, kBlockSize>> y(num_capture_channels); | 
|  | std::vector<SubtractorOutput> subtractor_output(num_capture_channels); | 
|  | for (size_t ch = 0; ch < num_capture_channels; ++ch) { | 
|  | subtractor_output[ch].Reset(); | 
|  | subtractor_output[ch].s_refined.fill(100.f); | 
|  | subtractor_output[ch].e_refined.fill(100.f); | 
|  | y[ch].fill(1000.f); | 
|  | E2_refined[ch].fill(0.f); | 
|  | Y2[ch].fill(0.f); | 
|  | } | 
|  | Aec3Fft fft; | 
|  | std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>> | 
|  | converged_filter_frequency_response( | 
|  | num_capture_channels, | 
|  | std::vector<std::array<float, kFftLengthBy2Plus1>>(10)); | 
|  | for (auto& v_ch : converged_filter_frequency_response) { | 
|  | for (auto& v : v_ch) { | 
|  | v.fill(0.01f); | 
|  | } | 
|  | } | 
|  | std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>> | 
|  | diverged_filter_frequency_response = converged_filter_frequency_response; | 
|  | converged_filter_frequency_response[0][2].fill(100.f); | 
|  | converged_filter_frequency_response[0][2][0] = 1.f; | 
|  | std::vector<std::vector<float>> impulse_response( | 
|  | num_capture_channels, | 
|  | std::vector<float>( | 
|  | GetTimeDomainLength(config.filter.refined.length_blocks), 0.f)); | 
|  |  | 
|  | // Verify that linear AEC usability is true when the filter is converged | 
|  | for (size_t band = 0; band < kNumBands; ++band) { | 
|  | for (size_t ch = 0; ch < num_render_channels; ++ch) { | 
|  | std::fill(x[band][ch].begin(), x[band][ch].end(), 101.f); | 
|  | } | 
|  | } | 
|  | for (int k = 0; k < 3000; ++k) { | 
|  | render_delay_buffer->Insert(x); | 
|  | for (size_t ch = 0; ch < num_capture_channels; ++ch) { | 
|  | subtractor_output[ch].ComputeMetrics(y[ch]); | 
|  | } | 
|  | state.Update(delay_estimate, converged_filter_frequency_response, | 
|  | impulse_response, *render_delay_buffer->GetRenderBuffer(), | 
|  | E2_refined, Y2, subtractor_output); | 
|  | } | 
|  | EXPECT_TRUE(state.UsableLinearEstimate()); | 
|  |  | 
|  | // Verify that linear AEC usability becomes false after an echo path | 
|  | // change is reported | 
|  | for (size_t ch = 0; ch < num_capture_channels; ++ch) { | 
|  | subtractor_output[ch].ComputeMetrics(y[ch]); | 
|  | } | 
|  | state.HandleEchoPathChange(EchoPathVariability( | 
|  | false, EchoPathVariability::DelayAdjustment::kNewDetectedDelay, false)); | 
|  | state.Update(delay_estimate, converged_filter_frequency_response, | 
|  | impulse_response, *render_delay_buffer->GetRenderBuffer(), | 
|  | E2_refined, Y2, subtractor_output); | 
|  | EXPECT_FALSE(state.UsableLinearEstimate()); | 
|  |  | 
|  | // Verify that the active render detection works as intended. | 
|  | for (size_t ch = 0; ch < num_render_channels; ++ch) { | 
|  | std::fill(x[0][ch].begin(), x[0][ch].end(), 101.f); | 
|  | } | 
|  | render_delay_buffer->Insert(x); | 
|  | for (size_t ch = 0; ch < num_capture_channels; ++ch) { | 
|  | subtractor_output[ch].ComputeMetrics(y[ch]); | 
|  | } | 
|  | state.HandleEchoPathChange(EchoPathVariability( | 
|  | true, EchoPathVariability::DelayAdjustment::kNewDetectedDelay, false)); | 
|  | state.Update(delay_estimate, converged_filter_frequency_response, | 
|  | impulse_response, *render_delay_buffer->GetRenderBuffer(), | 
|  | E2_refined, Y2, subtractor_output); | 
|  | EXPECT_FALSE(state.ActiveRender()); | 
|  |  | 
|  | for (int k = 0; k < 1000; ++k) { | 
|  | render_delay_buffer->Insert(x); | 
|  | for (size_t ch = 0; ch < num_capture_channels; ++ch) { | 
|  | subtractor_output[ch].ComputeMetrics(y[ch]); | 
|  | } | 
|  | state.Update(delay_estimate, converged_filter_frequency_response, | 
|  | impulse_response, *render_delay_buffer->GetRenderBuffer(), | 
|  | E2_refined, Y2, subtractor_output); | 
|  | } | 
|  | EXPECT_TRUE(state.ActiveRender()); | 
|  |  | 
|  | // Verify that the ERL is properly estimated | 
|  | for (auto& band : x) { | 
|  | for (auto& channel : band) { | 
|  | channel = std::vector<float>(kBlockSize, 0.f); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (size_t ch = 0; ch < num_render_channels; ++ch) { | 
|  | x[0][ch][0] = 5000.f; | 
|  | } | 
|  | for (size_t k = 0; | 
|  | k < render_delay_buffer->GetRenderBuffer()->GetFftBuffer().size(); ++k) { | 
|  | render_delay_buffer->Insert(x); | 
|  | if (k == 0) { | 
|  | render_delay_buffer->Reset(); | 
|  | } | 
|  | render_delay_buffer->PrepareCaptureProcessing(); | 
|  | } | 
|  |  | 
|  | for (auto& Y2_ch : Y2) { | 
|  | Y2_ch.fill(10.f * 10000.f * 10000.f); | 
|  | } | 
|  | for (size_t k = 0; k < 1000; ++k) { | 
|  | for (size_t ch = 0; ch < num_capture_channels; ++ch) { | 
|  | subtractor_output[ch].ComputeMetrics(y[ch]); | 
|  | } | 
|  | state.Update(delay_estimate, converged_filter_frequency_response, | 
|  | impulse_response, *render_delay_buffer->GetRenderBuffer(), | 
|  | E2_refined, Y2, subtractor_output); | 
|  | } | 
|  |  | 
|  | ASSERT_TRUE(state.UsableLinearEstimate()); | 
|  | const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl(); | 
|  | EXPECT_EQ(erl[0], erl[1]); | 
|  | for (size_t k = 1; k < erl.size() - 1; ++k) { | 
|  | EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1); | 
|  | } | 
|  | EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]); | 
|  |  | 
|  | // Verify that the ERLE is properly estimated | 
|  | for (auto& E2_refined_ch : E2_refined) { | 
|  | E2_refined_ch.fill(1.f * 10000.f * 10000.f); | 
|  | } | 
|  | for (auto& Y2_ch : Y2) { | 
|  | Y2_ch.fill(10.f * E2_refined[0][0]); | 
|  | } | 
|  | for (size_t k = 0; k < 1000; ++k) { | 
|  | for (size_t ch = 0; ch < num_capture_channels; ++ch) { | 
|  | subtractor_output[ch].ComputeMetrics(y[ch]); | 
|  | } | 
|  | state.Update(delay_estimate, converged_filter_frequency_response, | 
|  | impulse_response, *render_delay_buffer->GetRenderBuffer(), | 
|  | E2_refined, Y2, subtractor_output); | 
|  | } | 
|  | ASSERT_TRUE(state.UsableLinearEstimate()); | 
|  | { | 
|  | // Note that the render spectrum is built so it does not have energy in | 
|  | // the odd bands but just in the even bands. | 
|  | const auto& erle = state.Erle(/*onset_compensated=*/true)[0]; | 
|  | EXPECT_EQ(erle[0], erle[1]); | 
|  | constexpr size_t kLowFrequencyLimit = 32; | 
|  | for (size_t k = 2; k < kLowFrequencyLimit; k = k + 2) { | 
|  | EXPECT_NEAR(4.f, erle[k], 0.1); | 
|  | } | 
|  | for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; k = k + 2) { | 
|  | EXPECT_NEAR(1.5f, erle[k], 0.1); | 
|  | } | 
|  | EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]); | 
|  | } | 
|  | for (auto& E2_refined_ch : E2_refined) { | 
|  | E2_refined_ch.fill(1.f * 10000.f * 10000.f); | 
|  | } | 
|  | for (auto& Y2_ch : Y2) { | 
|  | Y2_ch.fill(5.f * E2_refined[0][0]); | 
|  | } | 
|  | for (size_t k = 0; k < 1000; ++k) { | 
|  | for (size_t ch = 0; ch < num_capture_channels; ++ch) { | 
|  | subtractor_output[ch].ComputeMetrics(y[ch]); | 
|  | } | 
|  | state.Update(delay_estimate, converged_filter_frequency_response, | 
|  | impulse_response, *render_delay_buffer->GetRenderBuffer(), | 
|  | E2_refined, Y2, subtractor_output); | 
|  | } | 
|  |  | 
|  | ASSERT_TRUE(state.UsableLinearEstimate()); | 
|  | { | 
|  | const auto& erle = state.Erle(/*onset_compensated=*/true)[0]; | 
|  | EXPECT_EQ(erle[0], erle[1]); | 
|  | constexpr size_t kLowFrequencyLimit = 32; | 
|  | for (size_t k = 1; k < kLowFrequencyLimit; ++k) { | 
|  | EXPECT_NEAR(k % 2 == 0 ? 4.f : 1.f, erle[k], 0.1); | 
|  | } | 
|  | for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) { | 
|  | EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1); | 
|  | } | 
|  | EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | class AecStateMultiChannel | 
|  | : public ::testing::Test, | 
|  | public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {}; | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(MultiChannel, | 
|  | AecStateMultiChannel, | 
|  | ::testing::Combine(::testing::Values(1, 2, 8), | 
|  | ::testing::Values(1, 2, 8))); | 
|  |  | 
|  | // Verify the general functionality of AecState | 
|  | TEST_P(AecStateMultiChannel, NormalUsage) { | 
|  | const size_t num_render_channels = std::get<0>(GetParam()); | 
|  | const size_t num_capture_channels = std::get<1>(GetParam()); | 
|  | RunNormalUsageTest(num_render_channels, num_capture_channels); | 
|  | } | 
|  |  | 
|  | // Verifies the delay for a converged filter is correctly identified. | 
|  | TEST(AecState, ConvergedFilterDelay) { | 
|  | constexpr int kFilterLengthBlocks = 10; | 
|  | constexpr size_t kNumCaptureChannels = 1; | 
|  | EchoCanceller3Config config; | 
|  | AecState state(config, kNumCaptureChannels); | 
|  | std::unique_ptr<RenderDelayBuffer> render_delay_buffer( | 
|  | RenderDelayBuffer::Create(config, 48000, 1)); | 
|  | absl::optional<DelayEstimate> delay_estimate; | 
|  | std::vector<std::array<float, kFftLengthBy2Plus1>> E2_refined( | 
|  | kNumCaptureChannels); | 
|  | std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(kNumCaptureChannels); | 
|  | std::array<float, kBlockSize> x; | 
|  | EchoPathVariability echo_path_variability( | 
|  | false, EchoPathVariability::DelayAdjustment::kNone, false); | 
|  | std::vector<SubtractorOutput> subtractor_output(kNumCaptureChannels); | 
|  | for (auto& output : subtractor_output) { | 
|  | output.Reset(); | 
|  | output.s_refined.fill(100.f); | 
|  | } | 
|  | std::array<float, kBlockSize> y; | 
|  | x.fill(0.f); | 
|  | y.fill(0.f); | 
|  |  | 
|  | std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>> | 
|  | frequency_response( | 
|  | kNumCaptureChannels, | 
|  | std::vector<std::array<float, kFftLengthBy2Plus1>>(kFilterLengthBlocks)); | 
|  | for (auto& v_ch : frequency_response) { | 
|  | for (auto& v : v_ch) { | 
|  | v.fill(0.01f); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<std::vector<float>> impulse_response( | 
|  | kNumCaptureChannels, | 
|  | std::vector<float>( | 
|  | GetTimeDomainLength(config.filter.refined.length_blocks), 0.f)); | 
|  |  | 
|  | // Verify that the filter delay for a converged filter is properly | 
|  | // identified. | 
|  | for (int k = 0; k < kFilterLengthBlocks; ++k) { | 
|  | for (auto& ir : impulse_response) { | 
|  | std::fill(ir.begin(), ir.end(), 0.f); | 
|  | ir[k * kBlockSize + 1] = 1.f; | 
|  | } | 
|  |  | 
|  | state.HandleEchoPathChange(echo_path_variability); | 
|  | subtractor_output[0].ComputeMetrics(y); | 
|  | state.Update(delay_estimate, frequency_response, impulse_response, | 
|  | *render_delay_buffer->GetRenderBuffer(), E2_refined, Y2, | 
|  | subtractor_output); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |