| /* |
| * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // |
| // Specifies helper classes for intelligibility enhancement. |
| // |
| |
| #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_ |
| #define WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_ |
| |
| #include <complex> |
| |
| #include "webrtc/base/scoped_ptr.h" |
| |
| namespace webrtc { |
| |
| namespace intelligibility { |
| |
| // Return |current| changed towards |target|, with the change being at most |
| // |limit|. |
| float UpdateFactor(float target, float current, float limit); |
| |
| // Apply a small fudge to degenerate complex values. The numbers in the array |
| // were chosen randomly, so that even a series of all zeroes has some small |
| // variability. |
| std::complex<float> zerofudge(std::complex<float> c); |
| |
| // Incremental mean computation. Return the mean of the series with the |
| // mean |mean| with added |data|. |
| std::complex<float> NewMean(std::complex<float> mean, |
| std::complex<float> data, |
| size_t count); |
| |
| // Updates |mean| with added |data|; |
| void AddToMean(std::complex<float> data, |
| size_t count, |
| std::complex<float>* mean); |
| |
| // Internal helper for computing the variances of a stream of arrays. |
| // The result is an array of variances per position: the i-th variance |
| // is the variance of the stream of data on the i-th positions in the |
| // input arrays. |
| // There are four methods of computation: |
| // * kStepInfinite computes variances from the beginning onwards |
| // * kStepDecaying uses a recursive exponential decay formula with a |
| // settable forgetting factor |
| // * kStepWindowed computes variances within a moving window |
| // * kStepBlocked is similar to kStepWindowed, but history is kept |
| // as a rolling window of blocks: multiple input elements are used for |
| // one block and the history then consists of the variances of these blocks |
| // with the same effect as kStepWindowed, but less storage, so the window |
| // can be longer |
| class VarianceArray { |
| public: |
| enum StepType { |
| kStepInfinite = 0, |
| kStepDecaying, |
| kStepWindowed, |
| kStepBlocked, |
| kStepBlockBasedMovingAverage |
| }; |
| |
| // Construct an instance for the given input array length (|freqs|) and |
| // computation algorithm (|type|), with the appropriate parameters. |
| // |window_size| is the number of samples for kStepWindowed and |
| // the number of blocks for kStepBlocked. |decay| is the forgetting factor |
| // for kStepDecaying. |
| VarianceArray(size_t freqs, StepType type, size_t window_size, float decay); |
| |
| // Add a new data point to the series and compute the new variances. |
| // TODO(bercic) |skip_fudge| is a flag for kStepWindowed and kStepDecaying, |
| // whether they should skip adding some small dummy values to the input |
| // to prevent problems with all-zero inputs. Can probably be removed. |
| void Step(const std::complex<float>* data, bool skip_fudge = false) { |
| (this->*step_func_)(data, skip_fudge); |
| } |
| // Reset variances to zero and forget all history. |
| void Clear(); |
| // Scale the input data by |scale|. Effectively multiply variances |
| // by |scale^2|. |
| void ApplyScale(float scale); |
| |
| // The current set of variances. |
| const float* variance() const { return variance_.get(); } |
| |
| // The mean value of the current set of variances. |
| float array_mean() const { return array_mean_; } |
| |
| private: |
| void InfiniteStep(const std::complex<float>* data, bool dummy); |
| void DecayStep(const std::complex<float>* data, bool dummy); |
| void WindowedStep(const std::complex<float>* data, bool dummy); |
| void BlockedStep(const std::complex<float>* data, bool dummy); |
| void BlockBasedMovingAverage(const std::complex<float>* data, bool dummy); |
| |
| // TODO(ekmeyerson): Switch the following running means |
| // and histories from rtc::scoped_ptr to std::vector. |
| |
| // The current average X and X^2. |
| rtc::scoped_ptr<std::complex<float>[]> running_mean_; |
| rtc::scoped_ptr<std::complex<float>[]> running_mean_sq_; |
| |
| // Average X and X^2 for the current block in kStepBlocked. |
| rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_; |
| rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_sq_; |
| |
| // Sample history for the rolling window in kStepWindowed and block-wise |
| // histories for kStepBlocked. |
| rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> history_; |
| rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_; |
| rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_sq_; |
| |
| // The current set of variances and sums for Welford's algorithm. |
| rtc::scoped_ptr<float[]> variance_; |
| rtc::scoped_ptr<float[]> conj_sum_; |
| |
| const size_t num_freqs_; |
| const size_t window_size_; |
| const float decay_; |
| size_t history_cursor_; |
| size_t count_; |
| float array_mean_; |
| bool buffer_full_; |
| void (VarianceArray::*step_func_)(const std::complex<float>*, bool); |
| }; |
| |
| // Helper class for smoothing gain changes. On each applicatiion step, the |
| // currently used gains are changed towards a set of settable target gains, |
| // constrained by a limit on the magnitude of the changes. |
| class GainApplier { |
| public: |
| GainApplier(size_t freqs, float change_limit); |
| |
| // Copy |in_block| to |out_block|, multiplied by the current set of gains, |
| // and step the current set of gains towards the target set. |
| void Apply(const std::complex<float>* in_block, |
| std::complex<float>* out_block); |
| |
| // Return the current target gain set. Modify this array to set the targets. |
| float* target() const { return target_.get(); } |
| |
| private: |
| const size_t num_freqs_; |
| const float change_limit_; |
| rtc::scoped_ptr<float[]> target_; |
| rtc::scoped_ptr<float[]> current_; |
| }; |
| |
| } // namespace intelligibility |
| |
| } // namespace webrtc |
| |
| #endif // WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_ |