blob: 4ac11671474dcde823379be25990532684a499ea [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
//
// Specifies helper classes for intelligibility enhancement.
//
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_
#include <complex>
#include "webrtc/base/scoped_ptr.h"
namespace webrtc {
namespace intelligibility {
// Return |current| changed towards |target|, with the change being at most
// |limit|.
float UpdateFactor(float target, float current, float limit);
// Apply a small fudge to degenerate complex values. The numbers in the array
// were chosen randomly, so that even a series of all zeroes has some small
// variability.
std::complex<float> zerofudge(std::complex<float> c);
// Incremental mean computation. Return the mean of the series with the
// mean |mean| with added |data|.
std::complex<float> NewMean(std::complex<float> mean,
std::complex<float> data,
size_t count);
// Updates |mean| with added |data|;
void AddToMean(std::complex<float> data,
size_t count,
std::complex<float>* mean);
// Internal helper for computing the variances of a stream of arrays.
// The result is an array of variances per position: the i-th variance
// is the variance of the stream of data on the i-th positions in the
// input arrays.
// There are four methods of computation:
// * kStepInfinite computes variances from the beginning onwards
// * kStepDecaying uses a recursive exponential decay formula with a
// settable forgetting factor
// * kStepWindowed computes variances within a moving window
// * kStepBlocked is similar to kStepWindowed, but history is kept
// as a rolling window of blocks: multiple input elements are used for
// one block and the history then consists of the variances of these blocks
// with the same effect as kStepWindowed, but less storage, so the window
// can be longer
class VarianceArray {
public:
enum StepType {
kStepInfinite = 0,
kStepDecaying,
kStepWindowed,
kStepBlocked,
kStepBlockBasedMovingAverage
};
// Construct an instance for the given input array length (|freqs|) and
// computation algorithm (|type|), with the appropriate parameters.
// |window_size| is the number of samples for kStepWindowed and
// the number of blocks for kStepBlocked. |decay| is the forgetting factor
// for kStepDecaying.
VarianceArray(size_t freqs, StepType type, size_t window_size, float decay);
// Add a new data point to the series and compute the new variances.
// TODO(bercic) |skip_fudge| is a flag for kStepWindowed and kStepDecaying,
// whether they should skip adding some small dummy values to the input
// to prevent problems with all-zero inputs. Can probably be removed.
void Step(const std::complex<float>* data, bool skip_fudge = false) {
(this->*step_func_)(data, skip_fudge);
}
// Reset variances to zero and forget all history.
void Clear();
// Scale the input data by |scale|. Effectively multiply variances
// by |scale^2|.
void ApplyScale(float scale);
// The current set of variances.
const float* variance() const { return variance_.get(); }
// The mean value of the current set of variances.
float array_mean() const { return array_mean_; }
private:
void InfiniteStep(const std::complex<float>* data, bool dummy);
void DecayStep(const std::complex<float>* data, bool dummy);
void WindowedStep(const std::complex<float>* data, bool dummy);
void BlockedStep(const std::complex<float>* data, bool dummy);
void BlockBasedMovingAverage(const std::complex<float>* data, bool dummy);
// TODO(ekmeyerson): Switch the following running means
// and histories from rtc::scoped_ptr to std::vector.
// The current average X and X^2.
rtc::scoped_ptr<std::complex<float>[]> running_mean_;
rtc::scoped_ptr<std::complex<float>[]> running_mean_sq_;
// Average X and X^2 for the current block in kStepBlocked.
rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_;
rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_sq_;
// Sample history for the rolling window in kStepWindowed and block-wise
// histories for kStepBlocked.
rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> history_;
rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_;
rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_sq_;
// The current set of variances and sums for Welford's algorithm.
rtc::scoped_ptr<float[]> variance_;
rtc::scoped_ptr<float[]> conj_sum_;
const size_t num_freqs_;
const size_t window_size_;
const float decay_;
size_t history_cursor_;
size_t count_;
float array_mean_;
bool buffer_full_;
void (VarianceArray::*step_func_)(const std::complex<float>*, bool);
};
// Helper class for smoothing gain changes. On each applicatiion step, the
// currently used gains are changed towards a set of settable target gains,
// constrained by a limit on the magnitude of the changes.
class GainApplier {
public:
GainApplier(size_t freqs, float change_limit);
// Copy |in_block| to |out_block|, multiplied by the current set of gains,
// and step the current set of gains towards the target set.
void Apply(const std::complex<float>* in_block,
std::complex<float>* out_block);
// Return the current target gain set. Modify this array to set the targets.
float* target() const { return target_.get(); }
private:
const size_t num_freqs_;
const float change_limit_;
rtc::scoped_ptr<float[]> target_;
rtc::scoped_ptr<float[]> current_;
};
} // namespace intelligibility
} // namespace webrtc
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_