| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/video_coding/media_opt_util.h" |
| |
| #include <assert.h> |
| #include <math.h> |
| |
| #include <algorithm> |
| |
| #include "modules/video_coding/fec_rate_table.h" |
| #include "modules/video_coding/internal_defines.h" |
| #include "modules/video_coding/utility/simulcast_rate_allocator.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/experiments/rate_control_settings.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| |
| namespace webrtc { |
| // Max value of loss rates in off-line model |
| static const int kPacketLossMax = 129; |
| |
| namespace media_optimization { |
| |
| VCMProtectionParameters::VCMProtectionParameters() |
| : rtt(0), |
| lossPr(0.0f), |
| bitRate(0.0f), |
| packetsPerFrame(0.0f), |
| packetsPerFrameKey(0.0f), |
| frameRate(0.0f), |
| keyFrameSize(0.0f), |
| fecRateDelta(0), |
| fecRateKey(0), |
| codecWidth(0), |
| codecHeight(0), |
| numLayers(1) {} |
| |
| VCMProtectionMethod::VCMProtectionMethod() |
| : _effectivePacketLoss(0), |
| _protectionFactorK(0), |
| _protectionFactorD(0), |
| _scaleProtKey(2.0f), |
| _maxPayloadSize(1460), |
| _corrFecCost(1.0), |
| _type(kNone) {} |
| |
| VCMProtectionMethod::~VCMProtectionMethod() {} |
| |
| enum VCMProtectionMethodEnum VCMProtectionMethod::Type() const { |
| return _type; |
| } |
| |
| uint8_t VCMProtectionMethod::RequiredPacketLossER() { |
| return _effectivePacketLoss; |
| } |
| |
| uint8_t VCMProtectionMethod::RequiredProtectionFactorK() { |
| return _protectionFactorK; |
| } |
| |
| uint8_t VCMProtectionMethod::RequiredProtectionFactorD() { |
| return _protectionFactorD; |
| } |
| |
| bool VCMProtectionMethod::RequiredUepProtectionK() { |
| return _useUepProtectionK; |
| } |
| |
| bool VCMProtectionMethod::RequiredUepProtectionD() { |
| return _useUepProtectionD; |
| } |
| |
| int VCMProtectionMethod::MaxFramesFec() const { |
| return 1; |
| } |
| |
| VCMNackFecMethod::VCMNackFecMethod(int64_t lowRttNackThresholdMs, |
| int64_t highRttNackThresholdMs) |
| : VCMFecMethod(), |
| _lowRttNackMs(lowRttNackThresholdMs), |
| _highRttNackMs(highRttNackThresholdMs), |
| _maxFramesFec(1) { |
| assert(lowRttNackThresholdMs >= -1 && highRttNackThresholdMs >= -1); |
| assert(highRttNackThresholdMs == -1 || |
| lowRttNackThresholdMs <= highRttNackThresholdMs); |
| assert(lowRttNackThresholdMs > -1 || highRttNackThresholdMs == -1); |
| _type = kNackFec; |
| } |
| |
| VCMNackFecMethod::~VCMNackFecMethod() { |
| // |
| } |
| bool VCMNackFecMethod::ProtectionFactor( |
| const VCMProtectionParameters* parameters) { |
| // Hybrid Nack FEC has three operational modes: |
| // 1. Low RTT (below kLowRttNackMs) - Nack only: Set FEC rate |
| // (_protectionFactorD) to zero. -1 means no FEC. |
| // 2. High RTT (above _highRttNackMs) - FEC Only: Keep FEC factors. |
| // -1 means always allow NACK. |
| // 3. Medium RTT values - Hybrid mode: We will only nack the |
| // residual following the decoding of the FEC (refer to JB logic). FEC |
| // delta protection factor will be adjusted based on the RTT. |
| |
| // Otherwise: we count on FEC; if the RTT is below a threshold, then we |
| // nack the residual, based on a decision made in the JB. |
| |
| // Compute the protection factors |
| VCMFecMethod::ProtectionFactor(parameters); |
| if (_lowRttNackMs == -1 || parameters->rtt < _lowRttNackMs) { |
| _protectionFactorD = 0; |
| VCMFecMethod::UpdateProtectionFactorD(_protectionFactorD); |
| |
| // When in Hybrid mode (RTT range), adjust FEC rates based on the |
| // RTT (NACK effectiveness) - adjustment factor is in the range [0,1]. |
| } else if (_highRttNackMs == -1 || parameters->rtt < _highRttNackMs) { |
| // TODO(mikhal): Disabling adjustment temporarily. |
| // uint16_t rttIndex = (uint16_t) parameters->rtt; |
| float adjustRtt = 1.0f; // (float)VCMNackFecTable[rttIndex] / 100.0f; |
| |
| // Adjust FEC with NACK on (for delta frame only) |
| // table depends on RTT relative to rttMax (NACK Threshold) |
| _protectionFactorD = rtc::saturated_cast<uint8_t>( |
| adjustRtt * rtc::saturated_cast<float>(_protectionFactorD)); |
| // update FEC rates after applying adjustment |
| VCMFecMethod::UpdateProtectionFactorD(_protectionFactorD); |
| } |
| |
| return true; |
| } |
| |
| int VCMNackFecMethod::ComputeMaxFramesFec( |
| const VCMProtectionParameters* parameters) { |
| if (parameters->numLayers > 2) { |
| // For more than 2 temporal layers we will only have FEC on the base layer, |
| // and the base layers will be pretty far apart. Therefore we force one |
| // frame FEC. |
| return 1; |
| } |
| // We set the max number of frames to base the FEC on so that on average |
| // we will have complete frames in one RTT. Note that this is an upper |
| // bound, and that the actual number of frames used for FEC is decided by the |
| // RTP module based on the actual number of packets and the protection factor. |
| float base_layer_framerate = |
| parameters->frameRate / |
| rtc::saturated_cast<float>(1 << (parameters->numLayers - 1)); |
| int max_frames_fec = std::max( |
| rtc::saturated_cast<int>( |
| 2.0f * base_layer_framerate * parameters->rtt / 1000.0f + 0.5f), |
| 1); |
| // |kUpperLimitFramesFec| is the upper limit on how many frames we |
| // allow any FEC to be based on. |
| if (max_frames_fec > kUpperLimitFramesFec) { |
| max_frames_fec = kUpperLimitFramesFec; |
| } |
| return max_frames_fec; |
| } |
| |
| int VCMNackFecMethod::MaxFramesFec() const { |
| return _maxFramesFec; |
| } |
| |
| bool VCMNackFecMethod::BitRateTooLowForFec( |
| const VCMProtectionParameters* parameters) { |
| // Bitrate below which we turn off FEC, regardless of reported packet loss. |
| // The condition should depend on resolution and content. For now, use |
| // threshold on bytes per frame, with some effect for the frame size. |
| // The condition for turning off FEC is also based on other factors, |
| // such as |_numLayers|, |_maxFramesFec|, and |_rtt|. |
| int estimate_bytes_per_frame = 1000 * BitsPerFrame(parameters) / 8; |
| int max_bytes_per_frame = kMaxBytesPerFrameForFec; |
| int num_pixels = parameters->codecWidth * parameters->codecHeight; |
| if (num_pixels <= 352 * 288) { |
| max_bytes_per_frame = kMaxBytesPerFrameForFecLow; |
| } else if (num_pixels > 640 * 480) { |
| max_bytes_per_frame = kMaxBytesPerFrameForFecHigh; |
| } |
| // TODO(marpan): add condition based on maximum frames used for FEC, |
| // and expand condition based on frame size. |
| // Max round trip time threshold in ms. |
| const int64_t kMaxRttTurnOffFec = 200; |
| if (estimate_bytes_per_frame < max_bytes_per_frame && |
| parameters->numLayers < 3 && parameters->rtt < kMaxRttTurnOffFec) { |
| return true; |
| } |
| return false; |
| } |
| |
| bool VCMNackFecMethod::EffectivePacketLoss( |
| const VCMProtectionParameters* parameters) { |
| // Set the effective packet loss for encoder (based on FEC code). |
| // Compute the effective packet loss and residual packet loss due to FEC. |
| VCMFecMethod::EffectivePacketLoss(parameters); |
| return true; |
| } |
| |
| bool VCMNackFecMethod::UpdateParameters( |
| const VCMProtectionParameters* parameters) { |
| ProtectionFactor(parameters); |
| EffectivePacketLoss(parameters); |
| _maxFramesFec = ComputeMaxFramesFec(parameters); |
| if (BitRateTooLowForFec(parameters)) { |
| _protectionFactorK = 0; |
| _protectionFactorD = 0; |
| } |
| |
| // Protection/fec rates obtained above are defined relative to total number |
| // of packets (total rate: source + fec) FEC in RTP module assumes |
| // protection factor is defined relative to source number of packets so we |
| // should convert the factor to reduce mismatch between mediaOpt's rate and |
| // the actual one |
| _protectionFactorK = VCMFecMethod::ConvertFECRate(_protectionFactorK); |
| _protectionFactorD = VCMFecMethod::ConvertFECRate(_protectionFactorD); |
| |
| return true; |
| } |
| |
| VCMNackMethod::VCMNackMethod() : VCMProtectionMethod() { |
| _type = kNack; |
| } |
| |
| VCMNackMethod::~VCMNackMethod() { |
| // |
| } |
| |
| bool VCMNackMethod::EffectivePacketLoss( |
| const VCMProtectionParameters* parameter) { |
| // Effective Packet Loss, NA in current version. |
| _effectivePacketLoss = 0; |
| return true; |
| } |
| |
| bool VCMNackMethod::UpdateParameters( |
| const VCMProtectionParameters* parameters) { |
| // Compute the effective packet loss |
| EffectivePacketLoss(parameters); |
| |
| // nackCost = (bitRate - nackCost) * (lossPr) |
| return true; |
| } |
| |
| VCMFecMethod::VCMFecMethod() |
| : VCMProtectionMethod(), |
| rate_control_settings_(RateControlSettings::ParseFromFieldTrials()) { |
| _type = kFec; |
| } |
| |
| VCMFecMethod::~VCMFecMethod() = default; |
| |
| uint8_t VCMFecMethod::BoostCodeRateKey(uint8_t packetFrameDelta, |
| uint8_t packetFrameKey) const { |
| uint8_t boostRateKey = 2; |
| // Default: ratio scales the FEC protection up for I frames |
| uint8_t ratio = 1; |
| |
| if (packetFrameDelta > 0) { |
| ratio = (int8_t)(packetFrameKey / packetFrameDelta); |
| } |
| ratio = VCM_MAX(boostRateKey, ratio); |
| |
| return ratio; |
| } |
| |
| uint8_t VCMFecMethod::ConvertFECRate(uint8_t codeRateRTP) const { |
| return rtc::saturated_cast<uint8_t>( |
| VCM_MIN(255, (0.5 + 255.0 * codeRateRTP / |
| rtc::saturated_cast<float>(255 - codeRateRTP)))); |
| } |
| |
| // Update FEC with protectionFactorD |
| void VCMFecMethod::UpdateProtectionFactorD(uint8_t protectionFactorD) { |
| _protectionFactorD = protectionFactorD; |
| } |
| |
| // Update FEC with protectionFactorK |
| void VCMFecMethod::UpdateProtectionFactorK(uint8_t protectionFactorK) { |
| _protectionFactorK = protectionFactorK; |
| } |
| |
| bool VCMFecMethod::ProtectionFactor(const VCMProtectionParameters* parameters) { |
| // FEC PROTECTION SETTINGS: varies with packet loss and bitrate |
| |
| // No protection if (filtered) packetLoss is 0 |
| uint8_t packetLoss = rtc::saturated_cast<uint8_t>(255 * parameters->lossPr); |
| if (packetLoss == 0) { |
| _protectionFactorK = 0; |
| _protectionFactorD = 0; |
| return true; |
| } |
| |
| // Parameters for FEC setting: |
| // first partition size, thresholds, table pars, spatial resoln fac. |
| |
| // First partition protection: ~ 20% |
| uint8_t firstPartitionProt = rtc::saturated_cast<uint8_t>(255 * 0.20); |
| |
| // Minimum protection level needed to generate one FEC packet for one |
| // source packet/frame (in RTP sender) |
| uint8_t minProtLevelFec = 85; |
| |
| // Threshold on packetLoss and bitRrate/frameRate (=average #packets), |
| // above which we allocate protection to cover at least first partition. |
| uint8_t lossThr = 0; |
| uint8_t packetNumThr = 1; |
| |
| // Parameters for range of rate index of table. |
| const uint8_t ratePar1 = 5; |
| const uint8_t ratePar2 = 49; |
| |
| // Spatial resolution size, relative to a reference size. |
| float spatialSizeToRef = rtc::saturated_cast<float>(parameters->codecWidth * |
| parameters->codecHeight) / |
| (rtc::saturated_cast<float>(704 * 576)); |
| // resolnFac: This parameter will generally increase/decrease the FEC rate |
| // (for fixed bitRate and packetLoss) based on system size. |
| // Use a smaller exponent (< 1) to control/soften system size effect. |
| const float resolnFac = 1.0 / powf(spatialSizeToRef, 0.3f); |
| |
| const int bitRatePerFrame = BitsPerFrame(parameters); |
| |
| // Average number of packets per frame (source and fec): |
| const uint8_t avgTotPackets = rtc::saturated_cast<uint8_t>( |
| 1.5f + rtc::saturated_cast<float>(bitRatePerFrame) * 1000.0f / |
| rtc::saturated_cast<float>(8.0 * _maxPayloadSize)); |
| |
| // FEC rate parameters: for P and I frame |
| uint8_t codeRateDelta = 0; |
| uint8_t codeRateKey = 0; |
| |
| // Get index for table: the FEC protection depends on an effective rate. |
| // The range on the rate index corresponds to rates (bps) |
| // from ~200k to ~8000k, for 30fps |
| const uint16_t effRateFecTable = |
| rtc::saturated_cast<uint16_t>(resolnFac * bitRatePerFrame); |
| uint8_t rateIndexTable = rtc::saturated_cast<uint8_t>( |
| VCM_MAX(VCM_MIN((effRateFecTable - ratePar1) / ratePar1, ratePar2), 0)); |
| |
| // Restrict packet loss range to 50: |
| // current tables defined only up to 50% |
| if (packetLoss >= kPacketLossMax) { |
| packetLoss = kPacketLossMax - 1; |
| } |
| uint16_t indexTable = rateIndexTable * kPacketLossMax + packetLoss; |
| |
| // Check on table index |
| RTC_DCHECK_LT(indexTable, kFecRateTableSize); |
| |
| // Protection factor for P frame |
| codeRateDelta = kFecRateTable[indexTable]; |
| |
| if (packetLoss > lossThr && avgTotPackets > packetNumThr) { |
| // Set a minimum based on first partition size. |
| if (codeRateDelta < firstPartitionProt) { |
| codeRateDelta = firstPartitionProt; |
| } |
| } |
| |
| // Check limit on amount of protection for P frame; 50% is max. |
| if (codeRateDelta >= kPacketLossMax) { |
| codeRateDelta = kPacketLossMax - 1; |
| } |
| |
| // For Key frame: |
| // Effectively at a higher rate, so we scale/boost the rate |
| // The boost factor may depend on several factors: ratio of packet |
| // number of I to P frames, how much protection placed on P frames, etc. |
| const uint8_t packetFrameDelta = |
| rtc::saturated_cast<uint8_t>(0.5 + parameters->packetsPerFrame); |
| const uint8_t packetFrameKey = |
| rtc::saturated_cast<uint8_t>(0.5 + parameters->packetsPerFrameKey); |
| const uint8_t boostKey = BoostCodeRateKey(packetFrameDelta, packetFrameKey); |
| |
| rateIndexTable = rtc::saturated_cast<uint8_t>(VCM_MAX( |
| VCM_MIN(1 + (boostKey * effRateFecTable - ratePar1) / ratePar1, ratePar2), |
| 0)); |
| uint16_t indexTableKey = rateIndexTable * kPacketLossMax + packetLoss; |
| |
| indexTableKey = VCM_MIN(indexTableKey, kFecRateTableSize); |
| |
| // Check on table index |
| assert(indexTableKey < kFecRateTableSize); |
| |
| // Protection factor for I frame |
| codeRateKey = kFecRateTable[indexTableKey]; |
| |
| // Boosting for Key frame. |
| int boostKeyProt = _scaleProtKey * codeRateDelta; |
| if (boostKeyProt >= kPacketLossMax) { |
| boostKeyProt = kPacketLossMax - 1; |
| } |
| |
| // Make sure I frame protection is at least larger than P frame protection, |
| // and at least as high as filtered packet loss. |
| codeRateKey = rtc::saturated_cast<uint8_t>( |
| VCM_MAX(packetLoss, VCM_MAX(boostKeyProt, codeRateKey))); |
| |
| // Check limit on amount of protection for I frame: 50% is max. |
| if (codeRateKey >= kPacketLossMax) { |
| codeRateKey = kPacketLossMax - 1; |
| } |
| |
| _protectionFactorK = codeRateKey; |
| _protectionFactorD = codeRateDelta; |
| |
| // Generally there is a rate mis-match between the FEC cost estimated |
| // in mediaOpt and the actual FEC cost sent out in RTP module. |
| // This is more significant at low rates (small # of source packets), where |
| // the granularity of the FEC decreases. In this case, non-zero protection |
| // in mediaOpt may generate 0 FEC packets in RTP sender (since actual #FEC |
| // is based on rounding off protectionFactor on actual source packet number). |
| // The correction factor (_corrFecCost) attempts to corrects this, at least |
| // for cases of low rates (small #packets) and low protection levels. |
| |
| float numPacketsFl = |
| 1.0f + (rtc::saturated_cast<float>(bitRatePerFrame) * 1000.0 / |
| rtc::saturated_cast<float>(8.0 * _maxPayloadSize) + |
| 0.5); |
| |
| const float estNumFecGen = |
| 0.5f + |
| rtc::saturated_cast<float>(_protectionFactorD * numPacketsFl / 255.0f); |
| |
| // We reduce cost factor (which will reduce overhead for FEC and |
| // hybrid method) and not the protectionFactor. |
| _corrFecCost = 1.0f; |
| if (estNumFecGen < 1.1f && _protectionFactorD < minProtLevelFec) { |
| _corrFecCost = 0.5f; |
| } |
| if (estNumFecGen < 0.9f && _protectionFactorD < minProtLevelFec) { |
| _corrFecCost = 0.0f; |
| } |
| |
| // DONE WITH FEC PROTECTION SETTINGS |
| return true; |
| } |
| |
| int VCMFecMethod::BitsPerFrame(const VCMProtectionParameters* parameters) { |
| // When temporal layers are available FEC will only be applied on the base |
| // layer. |
| const float bitRateRatio = |
| webrtc::SimulcastRateAllocator::GetTemporalRateAllocation( |
| parameters->numLayers, 0, |
| rate_control_settings_.Vp8BaseHeavyTl3RateAllocation()); |
| float frameRateRatio = powf(1 / 2.0, parameters->numLayers - 1); |
| float bitRate = parameters->bitRate * bitRateRatio; |
| float frameRate = parameters->frameRate * frameRateRatio; |
| |
| // TODO(mikhal): Update factor following testing. |
| float adjustmentFactor = 1; |
| |
| if (frameRate < 1.0f) |
| frameRate = 1.0f; |
| // Average bits per frame (units of kbits) |
| return rtc::saturated_cast<int>(adjustmentFactor * bitRate / frameRate); |
| } |
| |
| bool VCMFecMethod::EffectivePacketLoss( |
| const VCMProtectionParameters* parameters) { |
| // Effective packet loss to encoder is based on RPL (residual packet loss) |
| // this is a soft setting based on degree of FEC protection |
| // RPL = received/input packet loss - average_FEC_recovery |
| // note: received/input packet loss may be filtered based on FilteredLoss |
| |
| // Effective Packet Loss, NA in current version. |
| _effectivePacketLoss = 0; |
| |
| return true; |
| } |
| |
| bool VCMFecMethod::UpdateParameters(const VCMProtectionParameters* parameters) { |
| // Compute the protection factor |
| ProtectionFactor(parameters); |
| |
| // Compute the effective packet loss |
| EffectivePacketLoss(parameters); |
| |
| // Protection/fec rates obtained above is defined relative to total number |
| // of packets (total rate: source+fec) FEC in RTP module assumes protection |
| // factor is defined relative to source number of packets so we should |
| // convert the factor to reduce mismatch between mediaOpt suggested rate and |
| // the actual rate |
| _protectionFactorK = ConvertFECRate(_protectionFactorK); |
| _protectionFactorD = ConvertFECRate(_protectionFactorD); |
| |
| return true; |
| } |
| VCMLossProtectionLogic::VCMLossProtectionLogic(int64_t nowMs) |
| : _currentParameters(), |
| _rtt(0), |
| _lossPr(0.0f), |
| _bitRate(0.0f), |
| _frameRate(0.0f), |
| _keyFrameSize(0.0f), |
| _fecRateKey(0), |
| _fecRateDelta(0), |
| _lastPrUpdateT(0), |
| _lossPr255(0.9999f), |
| _lossPrHistory(), |
| _shortMaxLossPr255(0), |
| _packetsPerFrame(0.9999f), |
| _packetsPerFrameKey(0.9999f), |
| _codecWidth(704), |
| _codecHeight(576), |
| _numLayers(1) { |
| Reset(nowMs); |
| } |
| |
| VCMLossProtectionLogic::~VCMLossProtectionLogic() { |
| Release(); |
| } |
| |
| void VCMLossProtectionLogic::SetMethod( |
| enum VCMProtectionMethodEnum newMethodType) { |
| if (_selectedMethod && _selectedMethod->Type() == newMethodType) |
| return; |
| |
| switch (newMethodType) { |
| case kNack: |
| _selectedMethod.reset(new VCMNackMethod()); |
| break; |
| case kFec: |
| _selectedMethod.reset(new VCMFecMethod()); |
| break; |
| case kNackFec: |
| _selectedMethod.reset(new VCMNackFecMethod(kLowRttNackMs, -1)); |
| break; |
| case kNone: |
| _selectedMethod.reset(); |
| break; |
| } |
| UpdateMethod(); |
| } |
| |
| void VCMLossProtectionLogic::UpdateRtt(int64_t rtt) { |
| _rtt = rtt; |
| } |
| |
| void VCMLossProtectionLogic::UpdateMaxLossHistory(uint8_t lossPr255, |
| int64_t now) { |
| if (_lossPrHistory[0].timeMs >= 0 && |
| now - _lossPrHistory[0].timeMs < kLossPrShortFilterWinMs) { |
| if (lossPr255 > _shortMaxLossPr255) { |
| _shortMaxLossPr255 = lossPr255; |
| } |
| } else { |
| // Only add a new value to the history once a second |
| if (_lossPrHistory[0].timeMs == -1) { |
| // First, no shift |
| _shortMaxLossPr255 = lossPr255; |
| } else { |
| // Shift |
| for (int32_t i = (kLossPrHistorySize - 2); i >= 0; i--) { |
| _lossPrHistory[i + 1].lossPr255 = _lossPrHistory[i].lossPr255; |
| _lossPrHistory[i + 1].timeMs = _lossPrHistory[i].timeMs; |
| } |
| } |
| if (_shortMaxLossPr255 == 0) { |
| _shortMaxLossPr255 = lossPr255; |
| } |
| |
| _lossPrHistory[0].lossPr255 = _shortMaxLossPr255; |
| _lossPrHistory[0].timeMs = now; |
| _shortMaxLossPr255 = 0; |
| } |
| } |
| |
| uint8_t VCMLossProtectionLogic::MaxFilteredLossPr(int64_t nowMs) const { |
| uint8_t maxFound = _shortMaxLossPr255; |
| if (_lossPrHistory[0].timeMs == -1) { |
| return maxFound; |
| } |
| for (int32_t i = 0; i < kLossPrHistorySize; i++) { |
| if (_lossPrHistory[i].timeMs == -1) { |
| break; |
| } |
| if (nowMs - _lossPrHistory[i].timeMs > |
| kLossPrHistorySize * kLossPrShortFilterWinMs) { |
| // This sample (and all samples after this) is too old |
| break; |
| } |
| if (_lossPrHistory[i].lossPr255 > maxFound) { |
| // This sample is the largest one this far into the history |
| maxFound = _lossPrHistory[i].lossPr255; |
| } |
| } |
| return maxFound; |
| } |
| |
| uint8_t VCMLossProtectionLogic::FilteredLoss(int64_t nowMs, |
| FilterPacketLossMode filter_mode, |
| uint8_t lossPr255) { |
| // Update the max window filter. |
| UpdateMaxLossHistory(lossPr255, nowMs); |
| |
| // Update the recursive average filter. |
| _lossPr255.Apply(rtc::saturated_cast<float>(nowMs - _lastPrUpdateT), |
| rtc::saturated_cast<float>(lossPr255)); |
| _lastPrUpdateT = nowMs; |
| |
| // Filtered loss: default is received loss (no filtering). |
| uint8_t filtered_loss = lossPr255; |
| |
| switch (filter_mode) { |
| case kNoFilter: |
| break; |
| case kAvgFilter: |
| filtered_loss = rtc::saturated_cast<uint8_t>(_lossPr255.filtered() + 0.5); |
| break; |
| case kMaxFilter: |
| filtered_loss = MaxFilteredLossPr(nowMs); |
| break; |
| } |
| |
| return filtered_loss; |
| } |
| |
| void VCMLossProtectionLogic::UpdateFilteredLossPr(uint8_t packetLossEnc) { |
| _lossPr = rtc::saturated_cast<float>(packetLossEnc) / 255.0; |
| } |
| |
| void VCMLossProtectionLogic::UpdateBitRate(float bitRate) { |
| _bitRate = bitRate; |
| } |
| |
| void VCMLossProtectionLogic::UpdatePacketsPerFrame(float nPackets, |
| int64_t nowMs) { |
| _packetsPerFrame.Apply( |
| rtc::saturated_cast<float>(nowMs - _lastPacketPerFrameUpdateT), nPackets); |
| _lastPacketPerFrameUpdateT = nowMs; |
| } |
| |
| void VCMLossProtectionLogic::UpdatePacketsPerFrameKey(float nPackets, |
| int64_t nowMs) { |
| _packetsPerFrameKey.Apply( |
| rtc::saturated_cast<float>(nowMs - _lastPacketPerFrameUpdateTKey), |
| nPackets); |
| _lastPacketPerFrameUpdateTKey = nowMs; |
| } |
| |
| void VCMLossProtectionLogic::UpdateKeyFrameSize(float keyFrameSize) { |
| _keyFrameSize = keyFrameSize; |
| } |
| |
| void VCMLossProtectionLogic::UpdateFrameSize(size_t width, size_t height) { |
| _codecWidth = width; |
| _codecHeight = height; |
| } |
| |
| void VCMLossProtectionLogic::UpdateNumLayers(int numLayers) { |
| _numLayers = (numLayers == 0) ? 1 : numLayers; |
| } |
| |
| bool VCMLossProtectionLogic::UpdateMethod() { |
| if (!_selectedMethod) |
| return false; |
| _currentParameters.rtt = _rtt; |
| _currentParameters.lossPr = _lossPr; |
| _currentParameters.bitRate = _bitRate; |
| _currentParameters.frameRate = _frameRate; // rename actual frame rate? |
| _currentParameters.keyFrameSize = _keyFrameSize; |
| _currentParameters.fecRateDelta = _fecRateDelta; |
| _currentParameters.fecRateKey = _fecRateKey; |
| _currentParameters.packetsPerFrame = _packetsPerFrame.filtered(); |
| _currentParameters.packetsPerFrameKey = _packetsPerFrameKey.filtered(); |
| _currentParameters.codecWidth = _codecWidth; |
| _currentParameters.codecHeight = _codecHeight; |
| _currentParameters.numLayers = _numLayers; |
| return _selectedMethod->UpdateParameters(&_currentParameters); |
| } |
| |
| VCMProtectionMethod* VCMLossProtectionLogic::SelectedMethod() const { |
| return _selectedMethod.get(); |
| } |
| |
| VCMProtectionMethodEnum VCMLossProtectionLogic::SelectedType() const { |
| return _selectedMethod ? _selectedMethod->Type() : kNone; |
| } |
| |
| void VCMLossProtectionLogic::Reset(int64_t nowMs) { |
| _lastPrUpdateT = nowMs; |
| _lastPacketPerFrameUpdateT = nowMs; |
| _lastPacketPerFrameUpdateTKey = nowMs; |
| _lossPr255.Reset(0.9999f); |
| _packetsPerFrame.Reset(0.9999f); |
| _fecRateDelta = _fecRateKey = 0; |
| for (int32_t i = 0; i < kLossPrHistorySize; i++) { |
| _lossPrHistory[i].lossPr255 = 0; |
| _lossPrHistory[i].timeMs = -1; |
| } |
| _shortMaxLossPr255 = 0; |
| Release(); |
| } |
| |
| void VCMLossProtectionLogic::Release() { |
| _selectedMethod.reset(); |
| } |
| |
| } // namespace media_optimization |
| } // namespace webrtc |