|  | /* | 
|  | *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "rtc_base/rtp_to_ntp_estimator.h" | 
|  |  | 
|  | #include <cmath> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <optional> | 
|  |  | 
|  | #include "rtc_base/logging.h" | 
|  | #include "rtc_base/numerics/safe_conversions.h" | 
|  | #include "system_wrappers/include/ntp_time.h" | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace { | 
|  | // Maximum number of RTCP SR reports to use to map between RTP and NTP. | 
|  | constexpr size_t kNumRtcpReportsToUse = 20; | 
|  | // Don't allow NTP timestamps to jump more than 1 hour. Chosen arbitrary as big | 
|  | // enough to not affect normal use-cases. Yet it is smaller than RTP wrap-around | 
|  | // half-period (90khz RTP clock wrap-arounds every 13.25 hours). After half of | 
|  | // wrap-around period it is impossible to unwrap RTP timestamps correctly. | 
|  | constexpr uint64_t kMaxAllowedRtcpNtpInterval = uint64_t{60 * 60} << 32; | 
|  | }  // namespace | 
|  |  | 
|  | void RtpToNtpEstimator::UpdateParameters() { | 
|  | size_t n = measurements_.size(); | 
|  | if (n < 2) | 
|  | return; | 
|  |  | 
|  | // Run linear regression: | 
|  | // Given x[] and y[] writes out such k and b that line y=k*x+b approximates | 
|  | // given points in the best way (Least Squares Method). | 
|  | auto x = [](const RtcpMeasurement& m) { | 
|  | return static_cast<double>(m.unwrapped_rtp_timestamp); | 
|  | }; | 
|  | auto y = [](const RtcpMeasurement& m) { | 
|  | return static_cast<double>(static_cast<uint64_t>(m.ntp_time)); | 
|  | }; | 
|  |  | 
|  | double avg_x = 0; | 
|  | double avg_y = 0; | 
|  | for (const RtcpMeasurement& m : measurements_) { | 
|  | avg_x += x(m); | 
|  | avg_y += y(m); | 
|  | } | 
|  | avg_x /= n; | 
|  | avg_y /= n; | 
|  |  | 
|  | double variance_x = 0; | 
|  | double covariance_xy = 0; | 
|  | for (const RtcpMeasurement& m : measurements_) { | 
|  | double normalized_x = x(m) - avg_x; | 
|  | double normalized_y = y(m) - avg_y; | 
|  | variance_x += normalized_x * normalized_x; | 
|  | covariance_xy += normalized_x * normalized_y; | 
|  | } | 
|  |  | 
|  | if (std::fabs(variance_x) < 1e-8) | 
|  | return; | 
|  |  | 
|  | double k = covariance_xy / variance_x; | 
|  | double b = avg_y - k * avg_x; | 
|  | params_ = {{.slope = k, .offset = b}}; | 
|  | } | 
|  |  | 
|  | RtpToNtpEstimator::UpdateResult RtpToNtpEstimator::UpdateMeasurements( | 
|  | NtpTime ntp, | 
|  | uint32_t rtp_timestamp) { | 
|  | int64_t unwrapped_rtp_timestamp = unwrapper_.Unwrap(rtp_timestamp); | 
|  |  | 
|  | RtcpMeasurement new_measurement = { | 
|  | .ntp_time = ntp, .unwrapped_rtp_timestamp = unwrapped_rtp_timestamp}; | 
|  |  | 
|  | for (const RtcpMeasurement& measurement : measurements_) { | 
|  | // Use || since two equal timestamps will result in zero frequency. | 
|  | if (measurement.ntp_time == ntp || | 
|  | measurement.unwrapped_rtp_timestamp == unwrapped_rtp_timestamp) { | 
|  | return kSameMeasurement; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!new_measurement.ntp_time.Valid()) | 
|  | return kInvalidMeasurement; | 
|  |  | 
|  | uint64_t ntp_new = static_cast<uint64_t>(new_measurement.ntp_time); | 
|  | bool invalid_sample = false; | 
|  | if (!measurements_.empty()) { | 
|  | int64_t old_rtp_timestamp = measurements_.front().unwrapped_rtp_timestamp; | 
|  | uint64_t old_ntp = static_cast<uint64_t>(measurements_.front().ntp_time); | 
|  | if (ntp_new <= old_ntp || ntp_new > old_ntp + kMaxAllowedRtcpNtpInterval) { | 
|  | invalid_sample = true; | 
|  | } else if (unwrapped_rtp_timestamp <= old_rtp_timestamp) { | 
|  | RTC_LOG(LS_WARNING) | 
|  | << "Newer RTCP SR report with older RTP timestamp, dropping"; | 
|  | invalid_sample = true; | 
|  | } else if (unwrapped_rtp_timestamp - old_rtp_timestamp > (1 << 25)) { | 
|  | // Sanity check. No jumps too far into the future in rtp. | 
|  | invalid_sample = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (invalid_sample) { | 
|  | ++consecutive_invalid_samples_; | 
|  | if (consecutive_invalid_samples_ < kMaxInvalidSamples) { | 
|  | return kInvalidMeasurement; | 
|  | } | 
|  | RTC_LOG(LS_WARNING) << "Multiple consecutively invalid RTCP SR reports, " | 
|  | "clearing measurements."; | 
|  | measurements_.clear(); | 
|  | params_ = std::nullopt; | 
|  | } | 
|  | consecutive_invalid_samples_ = 0; | 
|  |  | 
|  | // Insert new RTCP SR report. | 
|  | if (measurements_.size() == kNumRtcpReportsToUse) | 
|  | measurements_.pop_back(); | 
|  |  | 
|  | measurements_.push_front(new_measurement); | 
|  |  | 
|  | // List updated, calculate new parameters. | 
|  | UpdateParameters(); | 
|  | return kNewMeasurement; | 
|  | } | 
|  |  | 
|  | NtpTime RtpToNtpEstimator::Estimate(uint32_t rtp_timestamp) const { | 
|  | if (!params_) | 
|  | return NtpTime(); | 
|  |  | 
|  | double estimated = | 
|  | static_cast<double>(unwrapper_.Unwrap(rtp_timestamp)) * params_->slope + | 
|  | params_->offset + 0.5f; | 
|  |  | 
|  | return NtpTime(saturated_cast<uint64_t>(estimated)); | 
|  | } | 
|  |  | 
|  | double RtpToNtpEstimator::EstimatedFrequencyKhz() const { | 
|  | if (!params_.has_value()) { | 
|  | return 0.0; | 
|  | } | 
|  | static constexpr double kNtpUnitPerMs = 4.294967296E6;  // 2^32 / 1000. | 
|  | return kNtpUnitPerMs / params_->slope; | 
|  | } | 
|  |  | 
|  | }  // namespace webrtc |