blob: 3d62439bd5c0384149b3d101a35695185f06faec [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/audio_processing_impl.h"
#include <assert.h>
#include <algorithm>
#include "webrtc/base/checks.h"
#include "webrtc/base/platform_file.h"
#include "webrtc/common_audio/include/audio_util.h"
#include "webrtc/common_audio/channel_buffer.h"
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
extern "C" {
#include "webrtc/modules/audio_processing/aec/aec_core.h"
}
#include "webrtc/modules/audio_processing/agc/agc_manager_direct.h"
#include "webrtc/modules/audio_processing/audio_buffer.h"
#include "webrtc/modules/audio_processing/beamformer/nonlinear_beamformer.h"
#include "webrtc/modules/audio_processing/common.h"
#include "webrtc/modules/audio_processing/echo_cancellation_impl.h"
#include "webrtc/modules/audio_processing/echo_control_mobile_impl.h"
#include "webrtc/modules/audio_processing/gain_control_impl.h"
#include "webrtc/modules/audio_processing/high_pass_filter_impl.h"
#include "webrtc/modules/audio_processing/level_estimator_impl.h"
#include "webrtc/modules/audio_processing/noise_suppression_impl.h"
#include "webrtc/modules/audio_processing/processing_component.h"
#include "webrtc/modules/audio_processing/transient/transient_suppressor.h"
#include "webrtc/modules/audio_processing/voice_detection_impl.h"
#include "webrtc/modules/interface/module_common_types.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/file_wrapper.h"
#include "webrtc/system_wrappers/interface/logging.h"
#include "webrtc/system_wrappers/interface/metrics.h"
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// Files generated at build-time by the protobuf compiler.
#ifdef WEBRTC_ANDROID_PLATFORM_BUILD
#include "external/webrtc/webrtc/modules/audio_processing/debug.pb.h"
#else
#include "webrtc/audio_processing/debug.pb.h"
#endif
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
#define RETURN_ON_ERR(expr) \
do { \
int err = (expr); \
if (err != kNoError) { \
return err; \
} \
} while (0)
namespace webrtc {
namespace {
static bool LayoutHasKeyboard(AudioProcessing::ChannelLayout layout) {
switch (layout) {
case AudioProcessing::kMono:
case AudioProcessing::kStereo:
return false;
case AudioProcessing::kMonoAndKeyboard:
case AudioProcessing::kStereoAndKeyboard:
return true;
}
assert(false);
return false;
}
} // namespace
// Throughout webrtc, it's assumed that success is represented by zero.
static_assert(AudioProcessing::kNoError == 0, "kNoError must be zero");
// This class has two main functionalities:
//
// 1) It is returned instead of the real GainControl after the new AGC has been
// enabled in order to prevent an outside user from overriding compression
// settings. It doesn't do anything in its implementation, except for
// delegating the const methods and Enable calls to the real GainControl, so
// AGC can still be disabled.
//
// 2) It is injected into AgcManagerDirect and implements volume callbacks for
// getting and setting the volume level. It just caches this value to be used
// in VoiceEngine later.
class GainControlForNewAgc : public GainControl, public VolumeCallbacks {
public:
explicit GainControlForNewAgc(GainControlImpl* gain_control)
: real_gain_control_(gain_control), volume_(0) {}
// GainControl implementation.
int Enable(bool enable) override {
return real_gain_control_->Enable(enable);
}
bool is_enabled() const override { return real_gain_control_->is_enabled(); }
int set_stream_analog_level(int level) override {
volume_ = level;
return AudioProcessing::kNoError;
}
int stream_analog_level() override { return volume_; }
int set_mode(Mode mode) override { return AudioProcessing::kNoError; }
Mode mode() const override { return GainControl::kAdaptiveAnalog; }
int set_target_level_dbfs(int level) override {
return AudioProcessing::kNoError;
}
int target_level_dbfs() const override {
return real_gain_control_->target_level_dbfs();
}
int set_compression_gain_db(int gain) override {
return AudioProcessing::kNoError;
}
int compression_gain_db() const override {
return real_gain_control_->compression_gain_db();
}
int enable_limiter(bool enable) override { return AudioProcessing::kNoError; }
bool is_limiter_enabled() const override {
return real_gain_control_->is_limiter_enabled();
}
int set_analog_level_limits(int minimum, int maximum) override {
return AudioProcessing::kNoError;
}
int analog_level_minimum() const override {
return real_gain_control_->analog_level_minimum();
}
int analog_level_maximum() const override {
return real_gain_control_->analog_level_maximum();
}
bool stream_is_saturated() const override {
return real_gain_control_->stream_is_saturated();
}
// VolumeCallbacks implementation.
void SetMicVolume(int volume) override { volume_ = volume; }
int GetMicVolume() override { return volume_; }
private:
GainControl* real_gain_control_;
int volume_;
};
AudioProcessing* AudioProcessing::Create() {
Config config;
return Create(config, nullptr);
}
AudioProcessing* AudioProcessing::Create(const Config& config) {
return Create(config, nullptr);
}
AudioProcessing* AudioProcessing::Create(const Config& config,
Beamformer<float>* beamformer) {
AudioProcessingImpl* apm = new AudioProcessingImpl(config, beamformer);
if (apm->Initialize() != kNoError) {
delete apm;
apm = NULL;
}
return apm;
}
AudioProcessingImpl::AudioProcessingImpl(const Config& config)
: AudioProcessingImpl(config, nullptr) {}
AudioProcessingImpl::AudioProcessingImpl(const Config& config,
Beamformer<float>* beamformer)
: echo_cancellation_(NULL),
echo_control_mobile_(NULL),
gain_control_(NULL),
high_pass_filter_(NULL),
level_estimator_(NULL),
noise_suppression_(NULL),
voice_detection_(NULL),
crit_(CriticalSectionWrapper::CreateCriticalSection()),
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
debug_file_(FileWrapper::Create()),
event_msg_(new audioproc::Event()),
#endif
api_format_({{{kSampleRate16kHz, 1, false},
{kSampleRate16kHz, 1, false},
{kSampleRate16kHz, 1, false}}}),
fwd_proc_format_(kSampleRate16kHz),
rev_proc_format_(kSampleRate16kHz, 1),
split_rate_(kSampleRate16kHz),
stream_delay_ms_(0),
delay_offset_ms_(0),
was_stream_delay_set_(false),
last_stream_delay_ms_(0),
last_aec_system_delay_ms_(0),
stream_delay_jumps_(-1),
aec_system_delay_jumps_(-1),
output_will_be_muted_(false),
key_pressed_(false),
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
use_new_agc_(false),
#else
use_new_agc_(config.Get<ExperimentalAgc>().enabled),
#endif
agc_startup_min_volume_(config.Get<ExperimentalAgc>().startup_min_volume),
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
transient_suppressor_enabled_(false),
#else
transient_suppressor_enabled_(config.Get<ExperimentalNs>().enabled),
#endif
beamformer_enabled_(config.Get<Beamforming>().enabled),
beamformer_(beamformer),
array_geometry_(config.Get<Beamforming>().array_geometry),
supports_48kHz_(config.Get<AudioProcessing48kHzSupport>().enabled) {
echo_cancellation_ = new EchoCancellationImpl(this, crit_);
component_list_.push_back(echo_cancellation_);
echo_control_mobile_ = new EchoControlMobileImpl(this, crit_);
component_list_.push_back(echo_control_mobile_);
gain_control_ = new GainControlImpl(this, crit_);
component_list_.push_back(gain_control_);
high_pass_filter_ = new HighPassFilterImpl(this, crit_);
component_list_.push_back(high_pass_filter_);
level_estimator_ = new LevelEstimatorImpl(this, crit_);
component_list_.push_back(level_estimator_);
noise_suppression_ = new NoiseSuppressionImpl(this, crit_);
component_list_.push_back(noise_suppression_);
voice_detection_ = new VoiceDetectionImpl(this, crit_);
component_list_.push_back(voice_detection_);
gain_control_for_new_agc_.reset(new GainControlForNewAgc(gain_control_));
SetExtraOptions(config);
}
AudioProcessingImpl::~AudioProcessingImpl() {
{
CriticalSectionScoped crit_scoped(crit_);
// Depends on gain_control_ and gain_control_for_new_agc_.
agc_manager_.reset();
// Depends on gain_control_.
gain_control_for_new_agc_.reset();
while (!component_list_.empty()) {
ProcessingComponent* component = component_list_.front();
component->Destroy();
delete component;
component_list_.pop_front();
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
debug_file_->CloseFile();
}
#endif
}
delete crit_;
crit_ = NULL;
}
int AudioProcessingImpl::Initialize() {
CriticalSectionScoped crit_scoped(crit_);
return InitializeLocked();
}
int AudioProcessingImpl::set_sample_rate_hz(int rate) {
CriticalSectionScoped crit_scoped(crit_);
ProcessingConfig processing_config = api_format_;
processing_config.input_stream().set_sample_rate_hz(rate);
processing_config.output_stream().set_sample_rate_hz(rate);
return InitializeLocked(processing_config);
}
int AudioProcessingImpl::Initialize(int input_sample_rate_hz,
int output_sample_rate_hz,
int reverse_sample_rate_hz,
ChannelLayout input_layout,
ChannelLayout output_layout,
ChannelLayout reverse_layout) {
const ProcessingConfig processing_config = {
{{input_sample_rate_hz, ChannelsFromLayout(input_layout),
LayoutHasKeyboard(input_layout)},
{output_sample_rate_hz, ChannelsFromLayout(output_layout),
LayoutHasKeyboard(output_layout)},
{reverse_sample_rate_hz, ChannelsFromLayout(reverse_layout),
LayoutHasKeyboard(reverse_layout)}}};
return Initialize(processing_config);
}
int AudioProcessingImpl::Initialize(const ProcessingConfig& processing_config) {
CriticalSectionScoped crit_scoped(crit_);
return InitializeLocked(processing_config);
}
int AudioProcessingImpl::InitializeLocked() {
const int fwd_audio_buffer_channels =
beamformer_enabled_ ? api_format_.input_stream().num_channels()
: api_format_.output_stream().num_channels();
if (api_format_.reverse_stream().num_channels() > 0) {
render_audio_.reset(new AudioBuffer(
api_format_.reverse_stream().num_frames(),
api_format_.reverse_stream().num_channels(),
rev_proc_format_.num_frames(), rev_proc_format_.num_channels(),
rev_proc_format_.num_frames()));
} else {
render_audio_.reset(nullptr);
}
capture_audio_.reset(new AudioBuffer(
api_format_.input_stream().num_frames(),
api_format_.input_stream().num_channels(), fwd_proc_format_.num_frames(),
fwd_audio_buffer_channels, api_format_.output_stream().num_frames()));
// Initialize all components.
for (auto item : component_list_) {
int err = item->Initialize();
if (err != kNoError) {
return err;
}
}
InitializeExperimentalAgc();
InitializeTransient();
InitializeBeamformer();
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
int err = WriteInitMessage();
if (err != kNoError) {
return err;
}
}
#endif
return kNoError;
}
int AudioProcessingImpl::InitializeLocked(const ProcessingConfig& config) {
for (const auto& stream : config.streams) {
if (stream.num_channels() < 0) {
return kBadNumberChannelsError;
}
if (stream.num_channels() > 0 && stream.sample_rate_hz() <= 0) {
return kBadSampleRateError;
}
}
const int num_in_channels = config.input_stream().num_channels();
const int num_out_channels = config.output_stream().num_channels();
// Need at least one input channel.
// Need either one output channel or as many outputs as there are inputs.
if (num_in_channels == 0 ||
!(num_out_channels == 1 || num_out_channels == num_in_channels)) {
return kBadNumberChannelsError;
}
if (beamformer_enabled_ &&
(static_cast<size_t>(num_in_channels) != array_geometry_.size() ||
num_out_channels > 1)) {
return kBadNumberChannelsError;
}
api_format_ = config;
// We process at the closest native rate >= min(input rate, output rate)...
const int min_proc_rate =
std::min(api_format_.input_stream().sample_rate_hz(),
api_format_.output_stream().sample_rate_hz());
int fwd_proc_rate;
if (supports_48kHz_ && min_proc_rate > kSampleRate32kHz) {
fwd_proc_rate = kSampleRate48kHz;
} else if (min_proc_rate > kSampleRate16kHz) {
fwd_proc_rate = kSampleRate32kHz;
} else if (min_proc_rate > kSampleRate8kHz) {
fwd_proc_rate = kSampleRate16kHz;
} else {
fwd_proc_rate = kSampleRate8kHz;
}
// ...with one exception.
if (echo_control_mobile_->is_enabled() && min_proc_rate > kSampleRate16kHz) {
fwd_proc_rate = kSampleRate16kHz;
}
fwd_proc_format_ = StreamConfig(fwd_proc_rate);
// We normally process the reverse stream at 16 kHz. Unless...
int rev_proc_rate = kSampleRate16kHz;
if (fwd_proc_format_.sample_rate_hz() == kSampleRate8kHz) {
// ...the forward stream is at 8 kHz.
rev_proc_rate = kSampleRate8kHz;
} else {
if (api_format_.reverse_stream().sample_rate_hz() == kSampleRate32kHz) {
// ...or the input is at 32 kHz, in which case we use the splitting
// filter rather than the resampler.
rev_proc_rate = kSampleRate32kHz;
}
}
// Always downmix the reverse stream to mono for analysis. This has been
// demonstrated to work well for AEC in most practical scenarios.
rev_proc_format_ = StreamConfig(rev_proc_rate, 1);
if (fwd_proc_format_.sample_rate_hz() == kSampleRate32kHz ||
fwd_proc_format_.sample_rate_hz() == kSampleRate48kHz) {
split_rate_ = kSampleRate16kHz;
} else {
split_rate_ = fwd_proc_format_.sample_rate_hz();
}
return InitializeLocked();
}
// Calls InitializeLocked() if any of the audio parameters have changed from
// their current values.
int AudioProcessingImpl::MaybeInitializeLocked(
const ProcessingConfig& processing_config) {
if (processing_config == api_format_) {
return kNoError;
}
return InitializeLocked(processing_config);
}
void AudioProcessingImpl::SetExtraOptions(const Config& config) {
CriticalSectionScoped crit_scoped(crit_);
for (auto item : component_list_) {
item->SetExtraOptions(config);
}
if (transient_suppressor_enabled_ != config.Get<ExperimentalNs>().enabled) {
transient_suppressor_enabled_ = config.Get<ExperimentalNs>().enabled;
InitializeTransient();
}
}
int AudioProcessingImpl::input_sample_rate_hz() const {
CriticalSectionScoped crit_scoped(crit_);
return api_format_.input_stream().sample_rate_hz();
}
int AudioProcessingImpl::sample_rate_hz() const {
CriticalSectionScoped crit_scoped(crit_);
return api_format_.input_stream().sample_rate_hz();
}
int AudioProcessingImpl::proc_sample_rate_hz() const {
return fwd_proc_format_.sample_rate_hz();
}
int AudioProcessingImpl::proc_split_sample_rate_hz() const {
return split_rate_;
}
int AudioProcessingImpl::num_reverse_channels() const {
return rev_proc_format_.num_channels();
}
int AudioProcessingImpl::num_input_channels() const {
return api_format_.input_stream().num_channels();
}
int AudioProcessingImpl::num_output_channels() const {
return api_format_.output_stream().num_channels();
}
void AudioProcessingImpl::set_output_will_be_muted(bool muted) {
CriticalSectionScoped lock(crit_);
output_will_be_muted_ = muted;
if (agc_manager_.get()) {
agc_manager_->SetCaptureMuted(output_will_be_muted_);
}
}
bool AudioProcessingImpl::output_will_be_muted() const {
CriticalSectionScoped lock(crit_);
return output_will_be_muted_;
}
int AudioProcessingImpl::ProcessStream(const float* const* src,
int samples_per_channel,
int input_sample_rate_hz,
ChannelLayout input_layout,
int output_sample_rate_hz,
ChannelLayout output_layout,
float* const* dest) {
StreamConfig input_stream = api_format_.input_stream();
input_stream.set_sample_rate_hz(input_sample_rate_hz);
input_stream.set_num_channels(ChannelsFromLayout(input_layout));
input_stream.set_has_keyboard(LayoutHasKeyboard(input_layout));
StreamConfig output_stream = api_format_.output_stream();
output_stream.set_sample_rate_hz(output_sample_rate_hz);
output_stream.set_num_channels(ChannelsFromLayout(output_layout));
output_stream.set_has_keyboard(LayoutHasKeyboard(output_layout));
if (samples_per_channel != input_stream.num_frames()) {
return kBadDataLengthError;
}
return ProcessStream(src, input_stream, output_stream, dest);
}
int AudioProcessingImpl::ProcessStream(const float* const* src,
const StreamConfig& input_config,
const StreamConfig& output_config,
float* const* dest) {
CriticalSectionScoped crit_scoped(crit_);
if (!src || !dest) {
return kNullPointerError;
}
ProcessingConfig processing_config = api_format_;
processing_config.input_stream() = input_config;
processing_config.output_stream() = output_config;
RETURN_ON_ERR(MaybeInitializeLocked(processing_config));
assert(processing_config.input_stream().num_frames() ==
api_format_.input_stream().num_frames());
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
event_msg_->set_type(audioproc::Event::STREAM);
audioproc::Stream* msg = event_msg_->mutable_stream();
const size_t channel_size =
sizeof(float) * api_format_.input_stream().num_frames();
for (int i = 0; i < api_format_.input_stream().num_channels(); ++i)
msg->add_input_channel(src[i], channel_size);
}
#endif
capture_audio_->CopyFrom(src, api_format_.input_stream());
RETURN_ON_ERR(ProcessStreamLocked());
capture_audio_->CopyTo(api_format_.output_stream(), dest);
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
audioproc::Stream* msg = event_msg_->mutable_stream();
const size_t channel_size =
sizeof(float) * api_format_.output_stream().num_frames();
for (int i = 0; i < api_format_.output_stream().num_channels(); ++i)
msg->add_output_channel(dest[i], channel_size);
RETURN_ON_ERR(WriteMessageToDebugFile());
}
#endif
return kNoError;
}
int AudioProcessingImpl::ProcessStream(AudioFrame* frame) {
CriticalSectionScoped crit_scoped(crit_);
if (!frame) {
return kNullPointerError;
}
// Must be a native rate.
if (frame->sample_rate_hz_ != kSampleRate8kHz &&
frame->sample_rate_hz_ != kSampleRate16kHz &&
frame->sample_rate_hz_ != kSampleRate32kHz &&
frame->sample_rate_hz_ != kSampleRate48kHz) {
return kBadSampleRateError;
}
if (echo_control_mobile_->is_enabled() &&
frame->sample_rate_hz_ > kSampleRate16kHz) {
LOG(LS_ERROR) << "AECM only supports 16 or 8 kHz sample rates";
return kUnsupportedComponentError;
}
// TODO(ajm): The input and output rates and channels are currently
// constrained to be identical in the int16 interface.
ProcessingConfig processing_config = api_format_;
processing_config.input_stream().set_sample_rate_hz(frame->sample_rate_hz_);
processing_config.input_stream().set_num_channels(frame->num_channels_);
processing_config.output_stream().set_sample_rate_hz(frame->sample_rate_hz_);
processing_config.output_stream().set_num_channels(frame->num_channels_);
RETURN_ON_ERR(MaybeInitializeLocked(processing_config));
if (frame->samples_per_channel_ != api_format_.input_stream().num_frames()) {
return kBadDataLengthError;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
event_msg_->set_type(audioproc::Event::STREAM);
audioproc::Stream* msg = event_msg_->mutable_stream();
const size_t data_size =
sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_;
msg->set_input_data(frame->data_, data_size);
}
#endif
capture_audio_->DeinterleaveFrom(frame);
RETURN_ON_ERR(ProcessStreamLocked());
capture_audio_->InterleaveTo(frame, output_copy_needed(is_data_processed()));
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
audioproc::Stream* msg = event_msg_->mutable_stream();
const size_t data_size =
sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_;
msg->set_output_data(frame->data_, data_size);
RETURN_ON_ERR(WriteMessageToDebugFile());
}
#endif
return kNoError;
}
int AudioProcessingImpl::ProcessStreamLocked() {
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
audioproc::Stream* msg = event_msg_->mutable_stream();
msg->set_delay(stream_delay_ms_);
msg->set_drift(echo_cancellation_->stream_drift_samples());
msg->set_level(gain_control()->stream_analog_level());
msg->set_keypress(key_pressed_);
}
#endif
MaybeUpdateHistograms();
AudioBuffer* ca = capture_audio_.get(); // For brevity.
if (use_new_agc_ && gain_control_->is_enabled()) {
agc_manager_->AnalyzePreProcess(ca->channels()[0], ca->num_channels(),
fwd_proc_format_.num_frames());
}
bool data_processed = is_data_processed();
if (analysis_needed(data_processed)) {
ca->SplitIntoFrequencyBands();
}
if (beamformer_enabled_) {
beamformer_->ProcessChunk(*ca->split_data_f(), ca->split_data_f());
ca->set_num_channels(1);
}
RETURN_ON_ERR(high_pass_filter_->ProcessCaptureAudio(ca));
RETURN_ON_ERR(gain_control_->AnalyzeCaptureAudio(ca));
RETURN_ON_ERR(noise_suppression_->AnalyzeCaptureAudio(ca));
RETURN_ON_ERR(echo_cancellation_->ProcessCaptureAudio(ca));
if (echo_control_mobile_->is_enabled() && noise_suppression_->is_enabled()) {
ca->CopyLowPassToReference();
}
RETURN_ON_ERR(noise_suppression_->ProcessCaptureAudio(ca));
RETURN_ON_ERR(echo_control_mobile_->ProcessCaptureAudio(ca));
RETURN_ON_ERR(voice_detection_->ProcessCaptureAudio(ca));
if (use_new_agc_ && gain_control_->is_enabled() &&
(!beamformer_enabled_ || beamformer_->is_target_present())) {
agc_manager_->Process(ca->split_bands_const(0)[kBand0To8kHz],
ca->num_frames_per_band(), split_rate_);
}
RETURN_ON_ERR(gain_control_->ProcessCaptureAudio(ca));
if (synthesis_needed(data_processed)) {
ca->MergeFrequencyBands();
}
// TODO(aluebs): Investigate if the transient suppression placement should be
// before or after the AGC.
if (transient_suppressor_enabled_) {
float voice_probability =
agc_manager_.get() ? agc_manager_->voice_probability() : 1.f;
transient_suppressor_->Suppress(
ca->channels_f()[0], ca->num_frames(), ca->num_channels(),
ca->split_bands_const_f(0)[kBand0To8kHz], ca->num_frames_per_band(),
ca->keyboard_data(), ca->num_keyboard_frames(), voice_probability,
key_pressed_);
}
// The level estimator operates on the recombined data.
RETURN_ON_ERR(level_estimator_->ProcessStream(ca));
was_stream_delay_set_ = false;
return kNoError;
}
int AudioProcessingImpl::AnalyzeReverseStream(const float* const* data,
int samples_per_channel,
int sample_rate_hz,
ChannelLayout layout) {
const StreamConfig reverse_config = {
sample_rate_hz, ChannelsFromLayout(layout), LayoutHasKeyboard(layout),
};
if (samples_per_channel != reverse_config.num_frames()) {
return kBadDataLengthError;
}
return AnalyzeReverseStream(data, reverse_config);
}
int AudioProcessingImpl::AnalyzeReverseStream(
const float* const* data,
const StreamConfig& reverse_config) {
CriticalSectionScoped crit_scoped(crit_);
if (data == NULL) {
return kNullPointerError;
}
if (reverse_config.num_channels() <= 0) {
return kBadNumberChannelsError;
}
ProcessingConfig processing_config = api_format_;
processing_config.reverse_stream() = reverse_config;
RETURN_ON_ERR(MaybeInitializeLocked(processing_config));
assert(reverse_config.num_frames() ==
api_format_.reverse_stream().num_frames());
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
event_msg_->set_type(audioproc::Event::REVERSE_STREAM);
audioproc::ReverseStream* msg = event_msg_->mutable_reverse_stream();
const size_t channel_size =
sizeof(float) * api_format_.reverse_stream().num_frames();
for (int i = 0; i < api_format_.reverse_stream().num_channels(); ++i)
msg->add_channel(data[i], channel_size);
RETURN_ON_ERR(WriteMessageToDebugFile());
}
#endif
render_audio_->CopyFrom(data, api_format_.reverse_stream());
return AnalyzeReverseStreamLocked();
}
int AudioProcessingImpl::AnalyzeReverseStream(AudioFrame* frame) {
CriticalSectionScoped crit_scoped(crit_);
if (frame == NULL) {
return kNullPointerError;
}
// Must be a native rate.
if (frame->sample_rate_hz_ != kSampleRate8kHz &&
frame->sample_rate_hz_ != kSampleRate16kHz &&
frame->sample_rate_hz_ != kSampleRate32kHz &&
frame->sample_rate_hz_ != kSampleRate48kHz) {
return kBadSampleRateError;
}
// This interface does not tolerate different forward and reverse rates.
if (frame->sample_rate_hz_ != api_format_.input_stream().sample_rate_hz()) {
return kBadSampleRateError;
}
if (frame->num_channels_ <= 0) {
return kBadNumberChannelsError;
}
ProcessingConfig processing_config = api_format_;
processing_config.reverse_stream().set_sample_rate_hz(frame->sample_rate_hz_);
processing_config.reverse_stream().set_num_channels(frame->num_channels_);
RETURN_ON_ERR(MaybeInitializeLocked(processing_config));
if (frame->samples_per_channel_ !=
api_format_.reverse_stream().num_frames()) {
return kBadDataLengthError;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
if (debug_file_->Open()) {
event_msg_->set_type(audioproc::Event::REVERSE_STREAM);
audioproc::ReverseStream* msg = event_msg_->mutable_reverse_stream();
const size_t data_size =
sizeof(int16_t) * frame->samples_per_channel_ * frame->num_channels_;
msg->set_data(frame->data_, data_size);
RETURN_ON_ERR(WriteMessageToDebugFile());
}
#endif
render_audio_->DeinterleaveFrom(frame);
return AnalyzeReverseStreamLocked();
}
int AudioProcessingImpl::AnalyzeReverseStreamLocked() {
AudioBuffer* ra = render_audio_.get(); // For brevity.
if (rev_proc_format_.sample_rate_hz() == kSampleRate32kHz) {
ra->SplitIntoFrequencyBands();
}
RETURN_ON_ERR(echo_cancellation_->ProcessRenderAudio(ra));
RETURN_ON_ERR(echo_control_mobile_->ProcessRenderAudio(ra));
if (!use_new_agc_) {
RETURN_ON_ERR(gain_control_->ProcessRenderAudio(ra));
}
return kNoError;
}
int AudioProcessingImpl::set_stream_delay_ms(int delay) {
Error retval = kNoError;
was_stream_delay_set_ = true;
delay += delay_offset_ms_;
if (delay < 0) {
delay = 0;
retval = kBadStreamParameterWarning;
}
// TODO(ajm): the max is rather arbitrarily chosen; investigate.
if (delay > 500) {
delay = 500;
retval = kBadStreamParameterWarning;
}
stream_delay_ms_ = delay;
return retval;
}
int AudioProcessingImpl::stream_delay_ms() const {
return stream_delay_ms_;
}
bool AudioProcessingImpl::was_stream_delay_set() const {
return was_stream_delay_set_;
}
void AudioProcessingImpl::set_stream_key_pressed(bool key_pressed) {
key_pressed_ = key_pressed;
}
bool AudioProcessingImpl::stream_key_pressed() const {
return key_pressed_;
}
void AudioProcessingImpl::set_delay_offset_ms(int offset) {
CriticalSectionScoped crit_scoped(crit_);
delay_offset_ms_ = offset;
}
int AudioProcessingImpl::delay_offset_ms() const {
return delay_offset_ms_;
}
int AudioProcessingImpl::StartDebugRecording(
const char filename[AudioProcessing::kMaxFilenameSize]) {
CriticalSectionScoped crit_scoped(crit_);
static_assert(kMaxFilenameSize == FileWrapper::kMaxFileNameSize, "");
if (filename == NULL) {
return kNullPointerError;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// Stop any ongoing recording.
if (debug_file_->Open()) {
if (debug_file_->CloseFile() == -1) {
return kFileError;
}
}
if (debug_file_->OpenFile(filename, false) == -1) {
debug_file_->CloseFile();
return kFileError;
}
int err = WriteInitMessage();
if (err != kNoError) {
return err;
}
return kNoError;
#else
return kUnsupportedFunctionError;
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
}
int AudioProcessingImpl::StartDebugRecording(FILE* handle) {
CriticalSectionScoped crit_scoped(crit_);
if (handle == NULL) {
return kNullPointerError;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// Stop any ongoing recording.
if (debug_file_->Open()) {
if (debug_file_->CloseFile() == -1) {
return kFileError;
}
}
if (debug_file_->OpenFromFileHandle(handle, true, false) == -1) {
return kFileError;
}
int err = WriteInitMessage();
if (err != kNoError) {
return err;
}
return kNoError;
#else
return kUnsupportedFunctionError;
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
}
int AudioProcessingImpl::StartDebugRecordingForPlatformFile(
rtc::PlatformFile handle) {
FILE* stream = rtc::FdopenPlatformFileForWriting(handle);
return StartDebugRecording(stream);
}
int AudioProcessingImpl::StopDebugRecording() {
CriticalSectionScoped crit_scoped(crit_);
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// We just return if recording hasn't started.
if (debug_file_->Open()) {
if (debug_file_->CloseFile() == -1) {
return kFileError;
}
}
return kNoError;
#else
return kUnsupportedFunctionError;
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
}
EchoCancellation* AudioProcessingImpl::echo_cancellation() const {
return echo_cancellation_;
}
EchoControlMobile* AudioProcessingImpl::echo_control_mobile() const {
return echo_control_mobile_;
}
GainControl* AudioProcessingImpl::gain_control() const {
if (use_new_agc_) {
return gain_control_for_new_agc_.get();
}
return gain_control_;
}
HighPassFilter* AudioProcessingImpl::high_pass_filter() const {
return high_pass_filter_;
}
LevelEstimator* AudioProcessingImpl::level_estimator() const {
return level_estimator_;
}
NoiseSuppression* AudioProcessingImpl::noise_suppression() const {
return noise_suppression_;
}
VoiceDetection* AudioProcessingImpl::voice_detection() const {
return voice_detection_;
}
bool AudioProcessingImpl::is_data_processed() const {
if (beamformer_enabled_) {
return true;
}
int enabled_count = 0;
for (auto item : component_list_) {
if (item->is_component_enabled()) {
enabled_count++;
}
}
// Data is unchanged if no components are enabled, or if only level_estimator_
// or voice_detection_ is enabled.
if (enabled_count == 0) {
return false;
} else if (enabled_count == 1) {
if (level_estimator_->is_enabled() || voice_detection_->is_enabled()) {
return false;
}
} else if (enabled_count == 2) {
if (level_estimator_->is_enabled() && voice_detection_->is_enabled()) {
return false;
}
}
return true;
}
bool AudioProcessingImpl::output_copy_needed(bool is_data_processed) const {
// Check if we've upmixed or downmixed the audio.
return ((api_format_.output_stream().num_channels() !=
api_format_.input_stream().num_channels()) ||
is_data_processed || transient_suppressor_enabled_);
}
bool AudioProcessingImpl::synthesis_needed(bool is_data_processed) const {
return (is_data_processed &&
(fwd_proc_format_.sample_rate_hz() == kSampleRate32kHz ||
fwd_proc_format_.sample_rate_hz() == kSampleRate48kHz));
}
bool AudioProcessingImpl::analysis_needed(bool is_data_processed) const {
if (!is_data_processed && !voice_detection_->is_enabled() &&
!transient_suppressor_enabled_) {
// Only level_estimator_ is enabled.
return false;
} else if (fwd_proc_format_.sample_rate_hz() == kSampleRate32kHz ||
fwd_proc_format_.sample_rate_hz() == kSampleRate48kHz) {
// Something besides level_estimator_ is enabled, and we have super-wb.
return true;
}
return false;
}
void AudioProcessingImpl::InitializeExperimentalAgc() {
if (use_new_agc_) {
if (!agc_manager_.get()) {
agc_manager_.reset(new AgcManagerDirect(gain_control_,
gain_control_for_new_agc_.get(),
agc_startup_min_volume_));
}
agc_manager_->Initialize();
agc_manager_->SetCaptureMuted(output_will_be_muted_);
}
}
void AudioProcessingImpl::InitializeTransient() {
if (transient_suppressor_enabled_) {
if (!transient_suppressor_.get()) {
transient_suppressor_.reset(new TransientSuppressor());
}
transient_suppressor_->Initialize(
fwd_proc_format_.sample_rate_hz(), split_rate_,
api_format_.output_stream().num_channels());
}
}
void AudioProcessingImpl::InitializeBeamformer() {
if (beamformer_enabled_) {
if (!beamformer_) {
beamformer_.reset(new NonlinearBeamformer(array_geometry_));
}
beamformer_->Initialize(kChunkSizeMs, split_rate_);
}
}
void AudioProcessingImpl::MaybeUpdateHistograms() {
static const int kMinDiffDelayMs = 60;
if (echo_cancellation()->is_enabled()) {
// Activate delay_jumps_ counters if we know echo_cancellation is runnning.
// If a stream has echo we know that the echo_cancellation is in process.
if (stream_delay_jumps_ == -1 && echo_cancellation()->stream_has_echo()) {
stream_delay_jumps_ = 0;
}
if (aec_system_delay_jumps_ == -1 &&
echo_cancellation()->stream_has_echo()) {
aec_system_delay_jumps_ = 0;
}
// Detect a jump in platform reported system delay and log the difference.
const int diff_stream_delay_ms = stream_delay_ms_ - last_stream_delay_ms_;
if (diff_stream_delay_ms > kMinDiffDelayMs && last_stream_delay_ms_ != 0) {
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.PlatformReportedStreamDelayJump",
diff_stream_delay_ms, kMinDiffDelayMs, 1000, 100);
if (stream_delay_jumps_ == -1) {
stream_delay_jumps_ = 0; // Activate counter if needed.
}
stream_delay_jumps_++;
}
last_stream_delay_ms_ = stream_delay_ms_;
// Detect a jump in AEC system delay and log the difference.
const int frames_per_ms = rtc::CheckedDivExact(split_rate_, 1000);
const int aec_system_delay_ms =
WebRtcAec_system_delay(echo_cancellation()->aec_core()) / frames_per_ms;
const int diff_aec_system_delay_ms =
aec_system_delay_ms - last_aec_system_delay_ms_;
if (diff_aec_system_delay_ms > kMinDiffDelayMs &&
last_aec_system_delay_ms_ != 0) {
RTC_HISTOGRAM_COUNTS("WebRTC.Audio.AecSystemDelayJump",
diff_aec_system_delay_ms, kMinDiffDelayMs, 1000,
100);
if (aec_system_delay_jumps_ == -1) {
aec_system_delay_jumps_ = 0; // Activate counter if needed.
}
aec_system_delay_jumps_++;
}
last_aec_system_delay_ms_ = aec_system_delay_ms;
}
}
void AudioProcessingImpl::UpdateHistogramsOnCallEnd() {
CriticalSectionScoped crit_scoped(crit_);
if (stream_delay_jumps_ > -1) {
RTC_HISTOGRAM_ENUMERATION(
"WebRTC.Audio.NumOfPlatformReportedStreamDelayJumps",
stream_delay_jumps_, 51);
}
stream_delay_jumps_ = -1;
last_stream_delay_ms_ = 0;
if (aec_system_delay_jumps_ > -1) {
RTC_HISTOGRAM_ENUMERATION("WebRTC.Audio.NumOfAecSystemDelayJumps",
aec_system_delay_jumps_, 51);
}
aec_system_delay_jumps_ = -1;
last_aec_system_delay_ms_ = 0;
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
int AudioProcessingImpl::WriteMessageToDebugFile() {
int32_t size = event_msg_->ByteSize();
if (size <= 0) {
return kUnspecifiedError;
}
#if defined(WEBRTC_ARCH_BIG_ENDIAN)
// TODO(ajm): Use little-endian "on the wire". For the moment, we can be
// pretty safe in assuming little-endian.
#endif
if (!event_msg_->SerializeToString(&event_str_)) {
return kUnspecifiedError;
}
// Write message preceded by its size.
if (!debug_file_->Write(&size, sizeof(int32_t))) {
return kFileError;
}
if (!debug_file_->Write(event_str_.data(), event_str_.length())) {
return kFileError;
}
event_msg_->Clear();
return kNoError;
}
int AudioProcessingImpl::WriteInitMessage() {
event_msg_->set_type(audioproc::Event::INIT);
audioproc::Init* msg = event_msg_->mutable_init();
msg->set_sample_rate(api_format_.input_stream().sample_rate_hz());
msg->set_num_input_channels(api_format_.input_stream().num_channels());
msg->set_num_output_channels(api_format_.output_stream().num_channels());
msg->set_num_reverse_channels(api_format_.reverse_stream().num_channels());
msg->set_reverse_sample_rate(api_format_.reverse_stream().sample_rate_hz());
msg->set_output_sample_rate(api_format_.output_stream().sample_rate_hz());
int err = WriteMessageToDebugFile();
if (err != kNoError) {
return err;
}
return kNoError;
}
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
} // namespace webrtc