blob: e6933e307463f9d272e4c8a1a3a9addd9d935fff [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm>
#include <cmath>
#include <cstring>
#include <memory>
#include <vector>
#include "api/array_view.h"
#include "api/audio_codecs/builtin_audio_decoder_factory.h"
#include "modules/audio_coding/codecs/pcm16b/audio_encoder_pcm16b.h"
#include "modules/audio_coding/neteq/tools/audio_checksum.h"
#include "modules/audio_coding/neteq/tools/encode_neteq_input.h"
#include "modules/audio_coding/neteq/tools/neteq_test.h"
#include "modules/rtp_rtcp/source/byte_io.h"
namespace webrtc {
namespace test {
namespace {
constexpr int kPayloadType = 95;
class SineGenerator : public EncodeNetEqInput::Generator {
public:
explicit SineGenerator(int sample_rate_hz)
: sample_rate_hz_(sample_rate_hz) {}
rtc::ArrayView<const int16_t> Generate(size_t num_samples) override {
if (samples_.size() < num_samples) {
samples_.resize(num_samples);
}
rtc::ArrayView<int16_t> output(samples_.data(), num_samples);
for (auto& x : output) {
x = static_cast<int16_t>(2000.0 * std::sin(phase_));
phase_ += 2 * kPi * kFreqHz / sample_rate_hz_;
}
return output;
}
private:
static constexpr int kFreqHz = 300; // The sinewave frequency.
const int sample_rate_hz_;
const double kPi = std::acos(-1);
std::vector<int16_t> samples_;
double phase_ = 0.0;
};
class FuzzRtpInput : public NetEqInput {
public:
explicit FuzzRtpInput(rtc::ArrayView<const uint8_t> data) : data_(data) {
AudioEncoderPcm16B::Config config;
config.payload_type = kPayloadType;
config.sample_rate_hz = 32000;
std::unique_ptr<AudioEncoder> encoder(new AudioEncoderPcm16B(config));
std::unique_ptr<EncodeNetEqInput::Generator> generator(
new SineGenerator(config.sample_rate_hz));
input_.reset(new EncodeNetEqInput(std::move(generator), std::move(encoder),
std::numeric_limits<int64_t>::max()));
packet_ = input_->PopPacket();
FuzzHeader();
MaybeFuzzPayload();
}
std::optional<int64_t> NextPacketTime() const override {
return packet_->time_ms;
}
std::optional<int64_t> NextOutputEventTime() const override {
return input_->NextOutputEventTime();
}
std::optional<SetMinimumDelayInfo> NextSetMinimumDelayInfo() const override {
return input_->NextSetMinimumDelayInfo();
}
std::unique_ptr<PacketData> PopPacket() override {
RTC_DCHECK(packet_);
std::unique_ptr<PacketData> packet_to_return = std::move(packet_);
packet_ = input_->PopPacket();
FuzzHeader();
MaybeFuzzPayload();
return packet_to_return;
}
void AdvanceOutputEvent() override { return input_->AdvanceOutputEvent(); }
void AdvanceSetMinimumDelay() override {
return input_->AdvanceSetMinimumDelay();
}
bool ended() const override { return ended_; }
std::optional<RTPHeader> NextHeader() const override {
RTC_DCHECK(packet_);
return packet_->header;
}
private:
void FuzzHeader() {
constexpr size_t kNumBytesToFuzz = 11;
if (data_ix_ + kNumBytesToFuzz > data_.size()) {
ended_ = true;
return;
}
RTC_DCHECK(packet_);
const size_t start_ix = data_ix_;
packet_->header.payloadType =
ByteReader<uint8_t>::ReadLittleEndian(&data_[data_ix_]);
packet_->header.payloadType &= 0x7F;
data_ix_ += sizeof(uint8_t);
packet_->header.sequenceNumber =
ByteReader<uint16_t>::ReadLittleEndian(&data_[data_ix_]);
data_ix_ += sizeof(uint16_t);
packet_->header.timestamp =
ByteReader<uint32_t>::ReadLittleEndian(&data_[data_ix_]);
data_ix_ += sizeof(uint32_t);
packet_->header.ssrc =
ByteReader<uint32_t>::ReadLittleEndian(&data_[data_ix_]);
data_ix_ += sizeof(uint32_t);
RTC_CHECK_EQ(data_ix_ - start_ix, kNumBytesToFuzz);
}
void MaybeFuzzPayload() {
// Read one byte of fuzz data to determine how many payload bytes to fuzz.
if (data_ix_ + 1 > data_.size()) {
ended_ = true;
return;
}
size_t bytes_to_fuzz = data_[data_ix_++];
// Restrict number of bytes to fuzz to 16; a reasonably low number enough to
// cover a few RED headers. Also don't write outside the payload length.
bytes_to_fuzz = std::min(bytes_to_fuzz % 16, packet_->payload.size());
if (bytes_to_fuzz == 0)
return;
if (data_ix_ + bytes_to_fuzz > data_.size()) {
ended_ = true;
return;
}
std::memcpy(packet_->payload.data(), &data_[data_ix_], bytes_to_fuzz);
data_ix_ += bytes_to_fuzz;
}
bool ended_ = false;
rtc::ArrayView<const uint8_t> data_;
size_t data_ix_ = 0;
std::unique_ptr<EncodeNetEqInput> input_;
std::unique_ptr<PacketData> packet_;
};
} // namespace
void FuzzOneInputTest(const uint8_t* data, size_t size) {
std::unique_ptr<FuzzRtpInput> input(
new FuzzRtpInput(rtc::ArrayView<const uint8_t>(data, size)));
std::unique_ptr<AudioChecksum> output(new AudioChecksum);
NetEqTest::Callbacks callbacks;
NetEq::Config config;
auto codecs = NetEqTest::StandardDecoderMap();
// kPayloadType is the payload type that will be used for encoding. Verify
// that it is included in the standard decoder map, and that it points to the
// expected decoder type.
const auto it = codecs.find(kPayloadType);
RTC_CHECK(it != codecs.end());
RTC_CHECK(it->second == SdpAudioFormat("L16", 32000, 1));
NetEqTest test(config, CreateBuiltinAudioDecoderFactory(), codecs,
/*text_log=*/nullptr, /*neteq_factory=*/nullptr,
std::move(input), std::move(output), callbacks);
test.Run();
}
} // namespace test
void FuzzOneInput(const uint8_t* data, size_t size) {
if (size > 70000) {
return;
}
test::FuzzOneInputTest(data, size);
}
} // namespace webrtc